104. The O-minimal Ideal of the Global of a Combinatorial Completely 0 -simple Semigroup

By Takayuki Tamura and Kenya Yamaoka
Department of Mathematics, University of California, Davis
(Communicated by Shokichi Iyanaga, m. J. A., Nov. 12, 1987)

1. Introduction. Let $S=\mathscr{M}^{0}(I, M,\{1\} ; P)$ be a completely 0 -simple combinatorial semigroup where $\{1\}$ is the trivial group and $P=\left(p_{j i}\right)$ is an $M \times I$-matrix over $\{0,1\}$ (see [1], [2]). Let $\mathscr{P}(S)$ be the globali.e. the power semigroup of S. As proved in [3], $\mathcal{P}(S)$ has a unique 0 -minimal ideal $\mathcal{C}(S)$, and $\mathcal{C}(S) \cong \mathscr{M}^{0}(\mathscr{P}(I), \mathscr{P}(M),\{1\} ; \tilde{P})$ where $\tilde{P}=\left(\tilde{p}_{B A}\right), \quad B \in \mathscr{P}(M), \quad A \in \mathcal{P}(I)$, $\bar{p}_{B A}=1$ if $p_{j i} \neq 0$ for some $j \in B, i \in A ; \tilde{p}_{B A}=0$ otherwise. According to [4], $\mathscr{P}(S)$ has a unique maximal regular zero-free \mathcal{G}-class $\mathscr{I}(S)$ and $\mathscr{I}^{0}(S)=\mathscr{I}(S)$ $\cup\{0\}$ is completely 0 -simple and $\mathscr{T}^{0}(S) \cong \mathscr{M}^{0}(\bar{Q}(I), \bar{Q}(M),\{1\} ; \bar{P})$ where $\bar{Q}(I)$ is the set of all elements A of $\mathcal{P}(I)$ satisfying ; there is $j \in M$ such that $p_{j i} \neq 0$ for all $i \in A ; \bar{Q}(M)$ is dually defined, $\bar{P}=\left(\bar{p}_{B A}\right)$ where $\bar{p}_{B A}=1$ if $p_{j i} \neq 0$ for all $j \in B, i \in A ; \bar{p}_{B A}=0$ otherwise. Let S_{1} and S_{2} be completely 0 -simple semigroups, $S_{1}=\mathscr{M}^{0}\left(I_{1}, M_{1},\{1\} ; P_{1}\right), S_{2}=\mathscr{M}^{0}\left(I_{2}, M_{2},\{1\} ; P_{2}\right)$. The first author has obtained the following:

Lemma 1. [4] If $\mathscr{I}^{0}\left(S_{1}\right) \cong \mathscr{I}^{0}\left(S_{2}\right)$, then $S_{1} \cong S_{2}$.
In this paper we will use this result to prove that $\mathcal{C}\left(S_{1}\right) \cong \mathcal{C}\left(S_{2}\right)$ implies $S_{1} \cong S_{2}$.
2. Definitions. Let $X=\left(x_{j i}\right)$ be an $M \times I$-matrix (i.e. $\left.j \in M, i \in I\right)$ over $\{0,1\}$. Given X, define $X^{\prime}=\left(x_{i i}^{\prime}\right)$ by $x_{j i}^{\prime}=1$ if $x_{j i}=0 ; x_{j i}^{\prime}=0$ if $x_{j i}=1$. Let $X=\left(x_{j i}\right)$ and $Y=\left(y_{j i}\right)$ be $M_{1} \times I_{1}$ - and $M_{2} \times I_{2}$-matrices over $\{0,1\}$ respectively. We say X is equivalent to Y, denoted by $X \sim Y$, if there are bijections σ : $M_{1} \rightarrow M_{2}$ and $\tau: I_{1} \rightarrow I_{2}$ such that $x_{j i}=y_{\sigma(j), \tau(i)}$ for all $j \in M, i \in I$. If every row and every column of X contains 1 , then X is called a sandwich. Both X and X^{\prime} are sandwiches if and only if every row and every column of X contains both 0 and 1. Adjoin a new letter 1 to M and I, namely, let $M^{1}=M$ $\cup\{1\}, 1 \notin M ; I^{1}=I \cup\{1\}, 1 \in I$. Given an $M \times I$-matrix $X=\left(x_{12}\right)$ over $\{0,1\}$, we define an $M^{1} \times I^{1}$-matrix $X^{1}=\left(x_{j i}^{1}\right)$ over $\{0,1\}$ as follows: For all $j \in M$, $i \in I$,

$$
x_{j i}^{1}=x_{j i}, \quad x_{j 1}^{1}=x_{1 i}^{1}=0, \quad x_{11}^{1}=1 .
$$

Then ($\left.X^{1}\right)^{\prime}$ is always a sandwich whether X is so or not. Let $X=\left(x_{j i}\right), j \in M$, $i \in I$, and for each $B \in \mathscr{P}(M), A \in \mathscr{P}(I)$, define a set $X_{B A}=\left\{x_{j i}: j \in B, i \in A\right\}$. Given an $M \times I$-matrix $X=\left(x_{j i}\right)$ over $\{0,1\}$, we define a $\mathscr{P}(M) \times \mathscr{P}(I)$-matrices \tilde{X} and \bar{X} as follows:

$$
\begin{aligned}
& \tilde{X}=\left(\tilde{x}_{B A}\right), \quad \tilde{x}_{B A}= \begin{cases}1 & \text { if } 1 \in X_{B A} \\
0 & \text { if } X_{B A}=\{0\},\end{cases} \\
& \bar{X}=\left(\bar{x}_{B A}\right), \quad \bar{x}_{B A}= \begin{cases}1 & \text { if } X_{B A}=\{1\} \\
0 & \text { if } 0 \in X_{B A} .\end{cases}
\end{aligned}
$$

3. Preliminaries. The following lemma is important for this paper.

Lemma 2. Assume X and Y are $M \times I$-matrices over $\{0,1\}$. Then the following hold.
(1) $\left(X^{\prime}\right)^{\prime}=X$.
(2) If $X \sim Y$, then $X^{\prime} \sim Y^{\prime}$.
(3) $(\bar{X})^{\prime}=\tilde{X}^{\prime}$.
(4) $\tilde{X} \sim \tilde{Y}$ implies $\tilde{X}^{1} \sim \tilde{Y}^{1}$.
(5) $X^{1} \sim Y^{1}$ implies $X \sim Y$.

Proof. (1) and (2) are obvious.
(3) Immediate from the definition of X^{\prime}, \bar{X} and \tilde{X}.
(4) $A \mathscr{P}\left(M_{1}^{1}\right) \times \mathscr{P}\left(I_{1}^{1}\right)$-matrix \tilde{X}^{1} can be obtained from a $\mathscr{P}\left(M_{1}\right) \times \mathscr{P}\left(I_{1}\right)$ matrix $\tilde{X}=\left(\tilde{x}_{B A}\right)$ as follows:
Let $A^{1}=A \cup\{1\}, B^{1}=B \cup\{1\}$ where $A \in \mathscr{P}\left(I_{1}\right), B \in \mathscr{P}\left(M_{1}\right)$. Entries of \tilde{X}^{1} are defined by

$$
\tilde{x}_{B A}^{1}=\tilde{x}_{B A}^{1} 1=\tilde{x}_{B}^{1} 1_{A}=\tilde{x}_{B A}, \quad \tilde{x}_{B}^{1} 1_{A} 1=\tilde{x}_{11}^{1}=1 .
$$

Similarly \tilde{Y}^{1} is obtained from a $\mathcal{P}\left(M_{2}\right) \times \mathscr{P}\left(I_{2}\right)$-matrix \tilde{Y}. If $\tilde{X} \sim \tilde{Y}$ under bijections $\sigma: \mathcal{P}\left(M_{1}\right) \rightarrow \mathcal{P}\left(M_{2}\right)$ and $\tau: \mathscr{P}\left(I_{1}\right) \rightarrow \mathcal{P}\left(I_{2}\right)$, then we define bijections $\sigma^{1}: \mathscr{P}\left(M_{1}^{1}\right) \rightarrow \mathcal{P}\left(M_{2}^{1}\right)$ and $\tau^{1}: \mathscr{P}\left(I_{1}^{1}\right) \rightarrow \mathcal{Q}\left(I_{2}^{1}\right)$ as follows: $\sigma^{1} B=\sigma B$ if $B \in \mathscr{P}\left(M_{1}\right)$; $\sigma^{1} B^{1}=(\sigma B)^{1}$ if $B \in \mathcal{P}\left(M_{1}\right) ; \sigma^{1} 1=1 ; \tau^{1} A=\tau A$ if $A \in \mathcal{P}\left(I_{1}\right) ; \tau^{1} A^{1}=(\tau A)^{1}$ if $A \in \mathcal{P}\left(I_{1}\right) ; \tau^{1} 1=1$.

It follows that $\tilde{X}^{1} \sim \tilde{Y}^{1}$ under σ^{1} and τ^{1}.
(5) Assume $X^{1}=\left(x_{j i}^{1}\right), Y^{1}=\left(y_{j i}^{1}\right)$ and $X^{1} \sim Y^{1}$ under bijections $\sigma^{1}: M_{1}^{1} \rightarrow M_{2}^{1}$ and $\tau^{1}: I_{1}^{1} \rightarrow I_{2}^{1}$. Let $D_{1} \times C_{1}$ be the set of all (j, i) satisfying the following : $x_{j i}^{1}=1, x_{j k}^{1}=0$ for all $k \in I_{1}, k \neq i ; x_{l i}^{1}=0$ for all $l \in M, l \neq j$.
Similarly $D_{2} \times C_{2}$ is defined from Y^{1}. Then D_{1} is mapped to D_{2} under σ^{1}, and C_{1} is mapped to C_{2} under τ^{1}. However the submatrices $D_{1} \times C_{1}$-matrix $X_{1}=\left(x_{j i}^{1}\right)$ and $D_{2} \times C_{2}$-matrix $Y_{1}=\left(y_{j i}^{1}\right)$ are invertible matrices. For any bijection $\sigma_{2}: D_{1} \rightarrow D_{2}$ with $\sigma_{2}(1)=1$, there is a bijection $\tau_{2}: C_{1} \rightarrow C_{2}$ with $\tau_{2}(1)$ $=1$ such that $X_{1} \sim Y_{1}$ under σ_{2} and τ_{2}. Now define $\bar{\sigma}_{2}: M_{1}^{1} \rightarrow M_{2}^{1}$ and $\bar{\tau}_{2}: I_{1}^{1} \rightarrow I_{2}^{1}$, respectively such that $\bar{\sigma}_{2}\left|D_{1}=\sigma_{2}, \bar{\sigma}_{2}\right|\left(M_{1}^{1} \backslash D_{1}\right)=\sigma^{1} \mid\left(M_{1}^{1} \backslash D_{1}\right)$ and $\bar{\tau}_{2} \mid C_{2}=\tau_{2}$, $\bar{\tau}_{2}\left|\left(I_{1}^{1} \backslash C_{1}\right)=\tau^{1}\right|\left(I_{1}^{1} \backslash C_{1}\right)$. Then $X^{1} \sim Y^{1}$ under $\bar{\sigma}_{2}$ and $\bar{\tau}_{2}$, but since $\bar{\sigma}_{2}(1)=1$ and $\bar{\tau}_{2}(1)=1$, we have $X \sim Y$ under $\bar{\sigma}_{2} \mid M_{1}$ and $\bar{\tau}_{2} \mid I_{1}$.
4. Main theorem. In the proof of the following, (1), (2), (3), (4), (5) denote (1), (2), (3), (4), (5) in Lemma 2 respectively.

Theorem. If S_{1} and S_{2} are combinatorial, then

$$
\tilde{P}_{1} \sim \tilde{P}_{2} \text { implies } P_{1} \sim P_{2}
$$

in other words, $\mathcal{C}\left(S_{1}\right) \cong \mathcal{C}\left(S_{2}\right)$ implies $S_{1} \cong S_{2}$.

$$
\begin{aligned}
& \text { Proof. } \quad \tilde{P}_{1} \sim \tilde{P}_{2} \Longrightarrow \underset{\text { by (4) }}{\Longrightarrow} \tilde{P}_{1}^{1} \sim \underset{\text { by }}{\tilde{P}_{2}^{1}} \Longrightarrow\left(\overline{(1),(3)} \Longrightarrow \overline{\left.\left.P_{1}^{1}\right)^{\prime}\right)^{\prime}} \sim\left(\overline{\left(P_{2}^{1}\right)^{\prime}}\right)^{\prime}\right. \\
& \begin{array}{l}
\underset{\text { by (1), (2) }}{\Longrightarrow} \overline{\left(P_{1}^{1}\right)^{\prime}} \sim \overline{\left(P_{2}^{1}\right)^{\prime}} \Longrightarrow \text { by Lemma } 1_{\Longrightarrow}^{\Longrightarrow} \\
\left.\underset{\text { by (1), (2) }}{\Rightarrow} P_{1}^{1} \sim P_{2}^{1}\right)^{\prime} \sim\left(P_{2}^{1}\right)^{\prime} \\
\Longrightarrow P_{1} \sim P_{2} .
\end{array}
\end{aligned}
$$

Speaking in terms of semigroups, the theorem says $\mathcal{C}\left(S_{1}\right) \cong \mathcal{C}\left(S_{2}\right)$ implies $S_{1} \cong S_{2}$. On the other hand, if $\mathscr{P}\left(S_{1}\right) \cong \mathcal{P}\left(S_{2}\right)$ then $\mathcal{C}\left(S_{1}\right) \cong \mathcal{C}\left(S_{2}\right)$ ([3]). More-
over the first author has obtained in [4] that if $\mathcal{P}\left(S_{1}\right) \cong \mathcal{P}\left(S_{2}\right)$ then $\mathscr{I}^{0}\left(S_{1}\right)$ $\cong \mathscr{T}^{0}\left(S_{2}\right)$. Consequently

Corollary. If S_{1} and S_{2} are combinatorial completely 0 -simple semigroups, then the following are equivalent

$$
\mathcal{P}\left(S_{1}\right) \cong \mathscr{P}\left(S_{2}\right), \quad \mathscr{T}_{1}^{0}\left(S_{1}\right) \cong \mathscr{T}_{2}^{0}\left(S_{2}\right), \quad \mathcal{C}\left(S_{1}\right) \cong \mathcal{C}\left(S_{2}\right), \quad S_{1} \cong S_{2}
$$

5. Remark. If S_{1} and S_{2} are finite, the theorem can be directly proved by means of semilattice homomorphisms without using Lemma 1. This has been obtained by the second author and the proof will be reported in [5].

References

[1] A. H. Clifford and G. B. Preston: The algebraic theory of semigroups. Math. Surveys No. 7, vol. 1, Amer. Math. Soc., Providence, R. I. (1961).
[2] M. Petrich: Introduction to semigroups. Merrill Publ. Co., Columbus, Ohio (1973).
[3] T. Tamura: Isomorphism problem of power semigroups of completely 0 -simple semigroups. Journal of Algebra 98, 319-361 (1986).
[4] -: The regular J-class of the power semigroup of a completely 0 -simple semigroup (preprint).
[5] T. Tamura and K. Yamaoka: Note on Boolean matrices and semigroups. (to appear in Proceedings of the 11th Symposium on semigroups and related topics, Japan 1987.)

