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Abstract 

The sequence equivalence problem for  DOL systems is shown to be decidable. In an 

algebraic formulation the sequence equivalence problem for  DOL systems can be stated 

as fo l lows: Given homomorphisms h I and h 2 on a free monoid ~ and a word ~ from ~ ,  

is = fo r  a l l  n > O7 

O. Introduct ion 

Given two homomorphisms h I and h 2 on a free monoid ~m and a word a in z* ,  can we 

determine whether h~(~)_ = h~(~) fo r  a l l  n > O? This is an algebraic formulat ion of 

the well-known DOL sequence equivalence problem. The problem or ig inated in Lindenmayer 

systems which are mathematical models of c e l l u l a r  development. In that  context i t  can 

be restated as the problem of the developmental equivalence of two genetic encodings 

in f i lamental organisms developing de te rm in is t i ca l l y  without in te rac t ion .  Lindenmayer 

systems without in teract ion (DOL systems) were introduced in [5] and the equivalence 

problem for  them was posed shor t ly  afterwards in [8] . 

Here we summarize [1] and [2] which together show that th is  problem is decidable. The 

aim of the present paper is  to give an i n t u i t i v e  overview to the proof techniques 

used in [1] and [2].  We give only out l ines of most proofs, readers interested in the 

technical deta i ls  are referred to the two above papers. However, i t  may be useful to 

read th is  paper f i r s t  since the informal out l ines of some of the proofs w i l l  make the 

reading of [1] and [2] easier. 

* This paper summarizes two previous works supported by the ~lational Research Council 
of Canada, Grant No. A7403 and was wr i t ten  when the f i r s t  author was v i s i t i n g  the 
Univers i ty  of Karlsruhe, Germany. 
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F i rs t  we explain i n t u i t i v e l y  the basic ideas of our solution of the DOL equivalence 

problem. Henceforth, by equivalence we mean sequence equivalence. The technical terms 

which are used in the introduction but defined only l a te r  are enclosed in quotation 

marks on f i r t  use. 

We s tar t  by showing that ,  without loss of general i ty ,  the test ing for  equivalence may 

be rest r ic ted to "normal" systems. Then we introduce an essential aux i l i a ry  notion, 

namely, the "balance" of a s t r ing w in ~ with respect to two homomorphisms h 1, h 2 

on I • (or with respect to two DOL system based on these homomorphisms). The balance 

of w is the dif ference of the length of hl(W ) and h2(w ). The central intermediate 

resul t  is Theorem 4 showing that there exists a f ixed bound on the balance of a l l  

pref ixes of a l l  str ings generated by two equivalent normal DOL systems. In section 3 

and 4 th is  resu l t  is proved. F i rs t  "simple" systems are considered. A normal system 

is simple i f f  i t  has no "subsystem" in the sense of general algebra. I f  a system has 

a subsystem, then the underlying set of the subsystem is called a "subalphabet". 

For simple systems i t  is shown f i r s t ,  using the methods of l inear  algebra, that the 

balance of every "long" p re f i x  is "very small" compared to i t s  length. Then, using 

combinatorial methods, th is  resul t  is strengthened to show that the balance of two 

equivalent systems is bounded i f  at least one of the systems is simple. 

For two equivalent systems neither of which is simple we f ind a common subalphabet and 

show that e i ther  

1) a l l  substrings of the language generated by the systems which are en t i re l y  in th is  

subalphabet are "short" (such a subalphabet is called " l im i ted" )  or 

2) that every two systems forming a pair  "induced" by this subalphabet are equivalent. 

Another pair  of normal systems is obtained by "removing" the subsystem ( i .e .  by 

omitt ing the symbols from the common subalphabet). As before, these "remainder"-systems 

are equivalent because the or ig inal  systems are equivalent. Since both the subsystem 

and the remainder system are systems over a smaller alphabet we can use the bounded- 

hess as an induction hypothesis. The base of the induction deals (essent ia l ly )  with 

systems over one l e t t e r  so the claim is easy to ve r i f y .  This allows us to assume that 

the remainder-pair and (in the case of a subalphabet which is not l imi ted)  also every 

induced-pair have bounded balance. As the case of l imi ted subalphabets causes no 

problem, th is  allows us to construct a bound on the balance for  the or ig inal  pair .  

One of the more important technical deta i ls  which has been omitted above is the 

fol lowing. In every step of the induction we have to consider the non-propagating 

systems and another singular case separately. Since a propagating system may have a 

non-propagating remainder system we cannot include the propagating property into the 

requirements for  normality. 

In the las t  section we design a decision procedure which works for  every family of 

DOL systems for  which equivalence implies bounded balance. However, we have shown that 
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we need, without loss of genera l i ty ,  only to qive the decision procedure for  normal 

systems. Therefore i t  is s u f f i c i e n t  that equivalence of normal systems implies 

bounded balance, th is  in fact  we show in Section 5. 

The normal systems are used for  technical rather than essential reasons and we con- 

jecture that every pair  of equivalent DOL systems has bounded balance. I t  also seems 

feasible to sharpen the proof of Theorem 3 so that i t  would give a bound on the ba- 

lance of  a pa i r  of DOL systems rather then to show only that such bound ex is ts .  This 

w i l l  then al low the complexity of  the whole procedure to be determined. 

1. Notation 

Given an alphabet ~, ~ denotes the free monoid generated by E, with unit (empty 

String) ~. A DOL system is a 3-tuple G = (~,h,o) consisting of alphabet ~, homomorphism 
h and a starting string ~ E %~. L(G), the language generated by G, is defined as 

{hn(o) :n ~ 0}. G is said to be reduced, i f  every symbol from E occurs in at least 
n one h (~), n ~ O. To reduce G means to omit from ~ al l  the symbols which do not have 

this property. 

For w E Z • and a E ~, @a w denotes the number of occurrences of a in w. I f  (a I . . . . .  an) 

(~al w) is called the Parikh vector of w and is is an ordering of E, then w . . . . .  ~a n 

denoted by [w]. The matrix M = (mij)l~i~n, where mij =~ajh(ai) is called the ~rawth 
l~j~n 

matrix for  G. 

I f  i is a number, ! i  i denotes the absolute value of i ;  i f  w is a s t r ing  lwl deno- 

tes the length of w; la te r  on IAI is also used for  length of a vector A or maximum 

charac ter is t i c  value of a matr ix A. For w E ~ ,  l e t  min(w) = {a:~aW > 0}. Given 

G = (~,h,~) ,  we say that w is a G-pref ix  (G-substring, G-suf f ix )  i f  w is a p re f i x  

(substr ing,  s u f f i x )  of hn(o) fo r  some n ~ O. Two DOL systems G i = ( ~ , h i , ~ i ) ,  i = 1,2 

are cal led (sequence) equivalent i f  h~(Ol) : h~(o2) for  a l l  n = 0 , I  . . . . .  Two DOL- 

systems G I ,  G 2 are cal led Pa~Y~ equivalent i f  [h~(aZ)] : [h~(o2)] for  a l l  

n = 0 , I  . . . . .  The balc~oe (with respect to G1,G2) of a s t r ing  w in S m is defined by 

~(w) = l l h l ( w ) l - l h 2 ( w ) I  I, I f  there exists c > 0 so that B(x) ~ c fo r  a l l  Gl-pref ixes 

×, then the pai r  (G1,G2) is said to have bounded balance. In th is  case the smallest 

such c is  cal led the balance of the pa i r  (GI,G2). 

For two sets A,B,A U B denotes t he i r  union. I f  A,B are d i s j o i n t ,  we stress th is  by 

wr i t i ng  A+B for  the union. F i na l l y ,  we w i l l  often wr i te  a instead of {a} for  a one- 

element set. 
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2. The Normal Systems 

Let G = (Z,h,~)  be a DOL system. We def ine the func t ion  m: P(Z) ÷ P(Z),  where P(~) is 

the set o f  a l l  subsets o f  E by pu t t i ng  

m(~) = 9,  

m({a})  = min(h(a) )  f o r  a E ~, 

m(AUB) = m(A) U m(B). 

I t  is  easy to see tha t  mi(a) = m in (h i ( a ) )  f o r  a l l  i ~ i .  We w i l l  w r i t e  m(a) f o r  m({a}) 

and use m I ,  m 2, m12 etc. to denote s im i l a r  funct ions based on h 1, h 2, h lh 2, etc.  

D e f i n i t i o n  1 A DOL system G = (E,h,o) is ca l led  an / r -system i f  E = E 1 + E c + E r is 

a decomposition of  E in to  three non-empty d i s j o i n t  sets such tha t  h(a) C Zig ~ f o r  

a C E l ,  h(a) E S~ fo r  a E E c, h(a) E Ec~ r *  f o r  a E E r ,  and ~ E Slg~E r .  We ca l l  ~c the 

aore of  E, E l is ca l led the l e f t  side, S r the ~ g h t  side of g. The number of  symbols 

in the core Ec of  ~ is ca l led  the order of G. 

D e f i n i t i o n  2 A DOL system G = (E,h,o) is  ca l led  normal i f  

(1) G is an / r -system, 

(2) G is reduced, 

(3) i f  a E mJ(b) fo r  some j > 0 then a E m(b), 

holds fo r  every a,b E E . 
C 

Now, we show t h a t , w i t h o u t  loss of  gene ra l i t y ,  the t es t i ng  fo r  equivalence can be re- 

s t r i c t e d  to the normal systems. 

Theorem 1 The sequence equivalence problem is decidable fo r  DOL systems i f f  i t  is  

decidable fo r  normal systems. 

Proof Out l ine  ( fo r  de ta i l s  see [2] Lemma 1,2 and Theorem 1). Given a DOL system 

G = (~ ,h ,~ ) ,  l e t  G j ' k  = (Z ,hJ ,hk(a) )  be the ( j : k )  speed-up of  G. I t  is  easy to see 

that~ two DOL systems G I and G 2 are equ iva len t  i f f  a l l  the j pa i rs  of  DOL systems 

G~ 'k ,  G j ' k  f o r  k = O, . . . , j - 1  are equ iva len t .  
2 

Given any pa i r  G i = (S,h~,~) i = 1,2 of  DOL systems we can e f f e c t i v e l y  f i nd  j so tha t  

the speed-up systems G~ '~ are normal f o r  i = 1,2 and k = 0 . . . . . . . . .  j - 1. We f i r s t  

lh~ ~ and h~ ~ meet cond i t ion  (3) of  normal i ty .  Then we choose j f i nd  h l , h  2 fo r  which 1 2 

as the leas t  common mu l t i p l e  of h I and h 2. 

j , k  F i n a l l y ,  we reduce the systems G i f o r  i = 1,2 and k = 0 . . . . .  j - 1, and i f  the 

systems are not I t -systems we create the sides " a r t i f i c i a l l y " .  
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3. The / r -S imple Systems 

D e f i n i t i o n  3 Let G = <E l + £c + 2r 'h 'a> be an / r -system. A homomorphism h is ca l led  

l r - ~ l e  i f  f o r  every a,b E Z c and every k > 0 there is j > 0 such tha t  a E mkJ(b). 

Equ iva len t l y ,  c a l l i n g  h ~r-irredueible i f  f o r  every a,b E Sc there is j > 0 such tha t  

a E mJ(b), h is / r - s imp le  i f f  h k is I r - i r r e d u c i b l e  fo r  a l l  k ~ i .  We ca l l  G / r - s imp le  

i f  h is / r - s imp le .  

I f  G is / r - s imp le  and normal, then from a E mkJ(b) we get a C m(b). 

Put t ing  a = b ~e get a C m(a), which impl ies in turn tha t  a E mk(b) f o r  a l l  i ~ i .  

Thus i f  G is normal, G is I r - s imp le  i f f  m(b) = gc fo r  a l l  b E E c. However, the f o l l o -  

wing lemma is  needed fo r  systems not necessar i ly  normal. 

Lemma 1 Let G i = ( 2 , h i , ~ ) ,  i = 1,2 be two Pariskh equ iva len t  DOL systems, G 1 / r - s imp le  

and o f  order at least  two ( IZ l  ~ 2).  Then f o r  every ~ > 0 there is n O > 0 such tha t  

fo r  every w E Z*, w ~ (Z l U ~ r ) * ,  B(h (w)) ~ ~[h1(w)l  f o r  a l l  n > n O . 

Proof Out l ine  ( fo r  de ta i l s  see [2 ] ,  Lemma 3). By [7]2 f o r  i = 1,2, the Parikh vector  

v i o f  h (0) can be w r i t t en  as v i = xM~ where x is the Parikh vector  o f  w and M i is 

the growth mat r ix  of  M i .  Therefore the computation of  v ! ,v~ . cons t i tu tes  the power 

method fo r  computing the c h a r a c t e r i s t i c  u i vector  o f  M i corresponding to the la rges t  

eigenvalue of  M i .  From the observat ion tha t  B(Ul) = B(u2) = 0 then eas i l y  fo l lows tha t  

B(h~(w)) 
l im - 0 . 

n ÷ ~ 1h~(w) I 

Theorem 2 Let G i = ( S , h i , a ) ,  i = 1,2, be two Parikh equ iva len t  DOL systems, G z l r -  

simple and I~l ~ 2. Then f o r  every ~ > 0 there is K > 0 such tha t  f o r  every G l - p r e f i x  

w, lwl > K we have ~(w) ~ ~ lw l .  

Proof Out l ine  ( f o r  de ta i l s  see [2 ] ,  Lemma 4).  Every G1-pref ix  w can be w r i t t en  as 
n "I w = h l o ( u l ) x  fo r  a arge" in teger  n O and "shor t "  s t r i ng  x E Z*. We have 

n n o 
~(w) < B i h l ° ( U l )  ) + 6(x) .  Given s > 0 we have B(h I (U l ) )  < ~/21Ull  < ~/21,.,! _ _ - ~-i by Lemma i 

and 6(x) ~ c/2Iw I since x is snor t .  

We have shown tha t  the balance of  " long" s t r ings  is small w i th  respect to t h e i r  

length.  However, our goal is to show a st ronger  resu l t~  namely, tha t  the balance is 

bounded. Before we can show t h i s  we w i l l  need a few a u x i l i a r y  not ions.  

The not ion of  a derivation forest of a s t r i ng  w w i th  respect to a DOL system G is 

obtained by the obvious mod i f i ca t ion  of  the well-known not ion of  a de r i va t ion  tree 

fo r  a con tex t - f ree  grammar. The d i f fe rence  is tha t  in  DOL systems we have an axiom 

( s t r i n g  o f  symbols) ra ther  than a s ing le  s t a r t i n g  symbol o f  con tex t - f ree  grammars. 
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Let F be the de r i va t i on  fo res t  o f  hn(o) f o r  some n > 0 w i th  respect to DOL system 

G = (%,h,o). A path in F from a node on the lowest leve l  (o f  ~) to a node ~ on level  

n is  ca l l ed  the chain of  m. Formal ly,  a chain q is a s t r i n g  in (Z x N) ~ such that  i f  

q = ( a o , k o ) . . . ( a n , k n ) ,  then 

( i )  Z ~ k  o~ Iot ; 

( i i )  i ~ k i ~ lh ( a i _ l )  I fo r  i ~ i < n; 

( i i i )  ai+ I is  the k i+1- th  symbol in h (a i )  fo r  0 ~ i < n - I  . 

l . e . , k  o is the pos i t i on  of  a o in o, and fo r  i ~ 1, k i determines which of  poss ib ly  

several branches is taken. F i r s t  components o f  pai rs  are c l e a r l y  redundant but they 

a l low us to s ta te  eas i l y  the cond i t ion  ( i i i ) .  

The s t r i n g  ao . . . a  n is  ca l led  the trace of chain q. A chain q is  said to be periodic 

with period p c~d prefix (initial segment) qL. if q = qlpmq2 for some m ~ 2 and q2 is 

a p r e f i x  of  p. Chain q is leftmost (rightmost) on leve l  i i f  k i = l ( k  i = l h ( a i _ l ) I ) .  

Chain q is f u l l y  lef~most ( fu l l y  ri#htmost) i f  i t  is le f tmost  ( r ightmost)  on a l l  l eve ls .  

For a node m of  de r i va t i on  fo res t  F and a s p e c i f i c  occurrence of  G-substr ing w, we say 

tha t  w contains ~ i f  m is one of  the nodes labeled by a symbol from w. 

Let q be a per iod ic  chain w i th  p r e f i x  r and per iod p. Then there are c y c l i c a l l y  repea- 

t i ng  ( a f t e r  eachlp ls teps ) common G-substr ings on at  leas t  one side of q (see [4 ] ,  

Theorem 11.3 and 11.4).  

Theorem 3 Let G i = (Z ,h i , o )  f o r  i = 1,2 be two equ iva len t  / r -systems. Let G 1 be l r -  

simple and of  order a t  leas t  two ( iSl  ~ 2). Then the pa i r  (Gt,G2) has bounded balance. 

Proof Out l ine  ( f o r  de ta i l s  see [1 ] ,  Lemma 3.1,  Theorem 3.2 and [2 ] ,  Theorem 2. Assume 

tha t  the pa i r  (GL,G2) does not have bounded balance (Assumption 1). Therefore,  f o r  

every n o > 0 there must e x i s t  n, n ~ n o , and u,v in  Z • so tha t  h~(~) = uv and the 

f o l l ow ing  condi t ions hold:  

( i )  6(u) > 6(Wl) f o r  any p r e f i x  w I of  h~(a) where 0 ~ j < n. 

( i i )  B(u) ~ ~(w2) f o r  any p r e f i x  w 2 of  h~(o).  

( i i i )  B(u) > ~(w 3) f o r  any p r e f i x  w 3 of  u. 

Let F be the de r i va t i on  fo res t  of G I and ~ be the node in F at  the l as t  symbol of pre- 

f i x  u at  leve l  n. Let q be the chain of  a in F and l e t  a I and ~2 be the f i r s t  two 

nodes of  chain q (from the top) such that  the label o f  ~ i  is the same as the label o f  

a 2, the label  o f  the l e f t  neighbor o f  a I is  the same as tha t  o f  the l e f t  neighbor of  

a 2 and the same holds fo r  the r i g h t  neighbors. Let these common labels  be a,b,c  from 

l e f t  to r i g h t ;  they,  of course, are not necessar i ly  d i f f e r e n t .  

Let the leve ls  of  ~1 and ~2 in  the de r i va t i on  fo res t  o f  G 1 (from top) be r and r+ t ,  

respec t i ve ly .  C lear l y ,  since G 1 is / r -s imp le ,  there ex is ts  a constant C independent 
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of n o so that r+t ~ C. Note that we have the constant C 1 = IS1+1 with the property 

that on levels higher than C I each node of any chain has at least one neighbor both 

on the l e f t  and on the r igh t .  This is so since otherwise q would have a f u l l y  l e f t -  

most (rightmost) i n i t i a l  segment with some symbol occurring at least twice in i t s  

trace; therefore, u would be a pre f ix  (v would be a su f f i x )  of h~(a) for  some j < n, 

which would be in contradiction with condition ( i )  implied by Assumption 1. 

Let q = qlq2q3 where q2 is the section of q between nodes ~I and ~2" Let q' be the 

periodical chain defined by q' = qlq~q4 where j > 0 and q4 is  a proper pref ix  of q2' 

and j and q4 chosen so that the length of q' is the same as the length of q. Infor-  

mally, we have chosen q' so that i t  coincides with q up to the second occurrence of 

abc and then continues per iod ica l ly .  Therefore, there are cyc l i ca l l y  repeating longer 

and longer substrings on both sides of q ' .  Spec i f i ca l ly  h~-t-r(abc) is a common sub- 

s t r ing of h~' t(~) and h~(~) which on level n contains node ~ since chain q goes through 

node ~2" Moreover, node ~ is not close to e i ther  end of the common substring since ~2 
is labeled by the middle symbol b in abc and both IbT(a)I and lh~(c)I are exponential- 
l y  growing ( for  growing m) by Lemma 3.1. 

l e t  h~-t(~)~ = ulxyv I and h~(a)~ = u2xyv 2 where xy = h~-r ' t (abc) ,  u2x : u and Now, 

yv 2 = v, i .e .  the node ~ on level n is at the las t  symbol of x. Let ulx = u ' .  So we 

have the s i tuat ion i l l u~ t ra ted  in Fig. I .  

a b c 

akb c 

t 

u 2 

u I 

I / 

U e 

U 
~.. 

X 

/ 
t~ 

6<i 

Fig. 1 

V 

Y 

b 
r • 

v 2 



155 

As the growth of al l  symbols in a simple system is exponential of the same power, i t  

i t  easy to see that the length of both x and y is l inear ly  proportional to the length 

of the whole s t r ing h~(~). Therefore i t  fol lows, using Theorem 2, that for each ~ > 0 
there exists n O so that ~(u) ~ elxl and B(u) ~ elYl where u,x,  and y are determined 

by n O . 

Now, both h~(o) and h~-t(~) have xy as a substring with node ~ at the last  symbol 
preceding y on level n. Since the two systems are equivalent both hl(y ) and h2(y ) are 
substrings of "1 hn+l(~) and of h~-t+l(~).  We recall that both ~(u') and ~(u) are "very 
small" with respect to hl(Y ). Assumption I gives ~(u') < B(u), therefore the re lat ive 
posit ion of hl(Y ) and h2(Y ) as substrings of h~-1(a) d i f fers  by a "small" sh i f t  w 
(see Fig. 2) (small with respect to the length of h~+l(~) and also of h i ( y ) ) ,  however, 
the re lat ive posit ion of corresponding str ings considered as substrings~of hn't+1(o) 
d i f fers  by even smaller sh i f t  w'. Consider now the "sh i f ts"  z and z' of the longer 
substrings hl(XY ) and h2(xY ) on levels n+l and n- t+ l .  Clearly, Izl - Iz ' I  = lwl - lw'I 
and thus also Izl > I z ' I .  s imi lar  results are obtained also where the "sh i f ts"  are 
in opposite direct ions. 

x y 
. . . . .  A 

n-t  r ~. i \  

hl(X) ~ hi(Y) \ 

n - t + 1  , I~ ' -  ~ ......... " " ' % 
i s !  ,#~ t 

z' h2(x) w' h2(Y ) 

X y 
............ A 

n " "" 

hl(X) ~ hi(Y ) \ 
n+l ~ ~' ~ ~ 

h2(x ) w ' h2(Y ) 

Fig.2 
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hl(XY) 

t 

I I 
I 

J z' h2(xY) i 
n - t + l  J I~,., ,~ I 

.... I, ' I I I i i 

z h2(xY ) 

Fig. 3 

So i f  we compare leve ls  n-t+1 and n+ l ,  as shown on Fig. 3. ,  by matching the common 

subst r ing hl(XY ) we see tha t  h2(xy)w I = w2h2(xY ) f o r  some "very shor t "  s t r ings  w I and 

w 2. Therefore the s t r i ng  h2(xY ) is  per iod ica l  w i th  period much shor ter  than both x 

and y. Therefore there ex is ts  r such tha t  r is a s u f f i x  o f  x and p r e f i x  of  y as i l l u -  

s t ra ted  on Fig. 4. 

r r 

L I ~ i .... I 
x ~, 

Fig.4 

So fa r  we have used only the fac t  6(u) is s t r i c t l y  maximal up to leve l  n (cond i t ion  

( i ) ) ,  but not ye t  the condi t ions ( i i )  and ( i i i )  impl ied by Assumption 1. Now we w i l l  

e x p l o i t  them by consider ing two cases: 

Case I .  Let B(r) = O. A s u f f i x  of  x is  also a s u f f i x  of u so u = w? fo r  some w in Z* 

and therefore ~(u) = B(w) which is in con t rad ic t i on  w i th  cond i t ion  ( i i i )  impl ied by 

Assumption I .  

Case I I .  Let ~(r )  > O. Since r is  also a p r e f i x  of  y we can wr i t e  h~(o) = Gr2~ fo r  
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some u,v in Z • such tha t  ur = u and rv = v. Since #(r)  > O, c l e a r l y ,  e i t h e r  B(G) > 5(u) 

or B(ur 2) > B(u) which is in con t rad ic t i on  with condi t ion ( i i )  impl ied by Assumption i .  

4. Subalphabets, remainder systems and induced systems. 

Given a DOL system G = (%,h;a), a nonempty set ~ proper ly  contained in E c is ca l led  

a s u ~ a l p h ~ e t  i f  h(a) E ~ f o r  each a E ~. Let Q = ~ - ~. I f  G is an /r-system we w i l l  

a lso use Qc fo r  %c-K. For every z E %~ we denote by z ~ the s t r i n g  z wi th a l l  symbols 

from ~ omi t ted,  thus z ~ E ~ .  We def ine G ~ as <Q,h~,~> where h~(x) = (h(x ) )  ~ fo r  

x E Q. I f  f o r  a sequence s = S l ,S2 , . .  we wr i t e  s Q ~ • = Sl,S 2 . . . . .  then obviously 

(4) (s(G)) Q : S(G ~) 

where s(G) is the sequence generated by DOL system G. 

Given two DOL systems G1,G2,~ is ca l led  t h e i r  aor~on subalphabet i f  H is a subalpha- 

bet o f  G i f o r  i = 1,2. From (4) we get immediately tha t  i f  G1,G 2 are equ iva len t  and 

have a common subalphabet K then also the remainder systems G~ and G~ are equ iva len t .  

I t  is a lso obvious tha t  i f  G is normal, so is  G ~. 

Lemma 2 Let G i = <Z,h i ,q>,  i = 1,2 be two normal propagating equ iva len t  DOL systems. 

Then G 1 and G 2 have a common subalphabet ~, or the composite homomorphism hlh 2 is 

/ r - s imp le .  

Proof Out l ine ( f o r  de ta i l s  see [2 ] ,  Lemma 5). Assume tha t  G 1 and G 2 have no common 

subalphabet. F i r s t  we show tha t  a l l  symbols in ~c occur in i n f i n i t e l y  many s t r ings o f  

L(G1). Let F be th~ set  o f  symbols which occur only f i n i t e l y  many t imes. Since G I and 

G 2 are equ iva len t  c l e a r l y  e i t h e r  ~ - r is a subalphabet or r is empty. 

Now, w r i t e  a ~ b fo r  a,b E Z c and i = 1,2 i f  b E mi(a ), i . e .  a d i r e c t l y  der ives b 
1 

in G i .  Let ~ = ~ U ~ and:~ • be the t r a n s i t i v e  and r e f l e x i v e  closure o f  ~. F i n a l l y ,  

l e t  ~ (a) = {b E S c : a ~ b } .  Obviously, m i (~(a))  ~ #  (a) fo r  i = 1,2, so # (a) = Z c 

since otherwise ~ (a) would be a subalphabet. This means tha t  a ~ b f o r  any a,b E Z c. 

In more de ta i l  we can wr i te  a .-~-~ C l - -~  c2--~3 in .  1 n i n - 11 12 . . . . . . . . .  ~ c--:~, b, f o r  n > O, 

i j  E {1,2}  and c i E ~c" Because G 1 and G 2 are propagating and have no common subal- 

phabet we can choose i I = i and i n = 2. From the normal i ty  i t  a lso fo l lows that  we 

can "abbrev ia te"  several successive t ransfers  by e i t h e r  ~ or ~ in to  one such 

d ~ d 2 ~ d b fo r  some 0 < m < n and 
1 2  . . . .  i - -  t r a n s f e r ,  so we get a ~ d 2 ~ , 2  d 4 . .  ~ b where x , y means tha t  

d i E E c. Therefore a 1,2 1,2 1,2 
y E ml,2(x). 

We have shown that for any a,b E E c we have a , • b. That means that the growth 

matrix MI, 2 associated with hl, 2 is in terminol '2 ogy of [4] irreducible. Now, we need 

only to show a stronger property, namely that a system is Ir-simple i f  i ts  growth 

matrix restricted to ~c is primitive {see [4]). From results in [4] i t  follows that 
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i f  the growth matrix is not pr imi t ive  then there ex is t  q > I and a par t i t i on  P of Z c 

with q classes such that for  every a,b E Zc, i f  a E m~,2(b), then a and b belong to 

the same class of P. We use again the normality of G l and G 2 to show that i f  b = a  

then a and b must belong to the same class of P. Since a ~ m b for  any a,b in ~c the- 

re cannot ex is t  a par t i t ion  with at least two classes and that completes the proof 

that hlh 2 is / r-s imple. 

Def in i t ion 4 Given G = <~ h,o>. A subalphabet ~ ~ S is called l im i ted  i f  there is a 

constant k such that fo r  every substring u E ~ of L(G) we have !u I < k. Note that 

is l imi ted with respect to every D0L system equivalent to G. 

Lemma 3 Let GI,G 2 be two equivalent systems, with a common subalphabet ~. I f  ~ is  

l imi ted and i f  the pair  ~ i 2~ has a bounded balance, then the pair  (GL,G2) has 

bounded balance. 

Proof Let the balance of (G~,G~) be c and l e t  k be such that lul ! k for  a l l  G1-sub- 

str ings u from ~ .  Then the balance of the pair  (GI,G2) is c lear ly  smaller or equal 

to (c+l)k+c. 

Def in i t ion 5 Let G1,G 2 be a pair  of D0L systems~ Gi.= (S,hi ,o) .  Given i = i l i  2 . . .  i n 

with n > 1 and i I . . . . .  i nE{ l ,2 } ,  the set S : {G~, G~ : 0 ! J < n} of pairs of D0L 

systems is cal led 1-combinat i~ of (G1,G2) where G~ = ( Z , h i , o i j ) ,  for  i = 1,2, j = 0, 

. . . .  n ,~ l=h lh i lh i2 . . .h in ,h2  = h2h i l h i2 . . . h in ,~ i ,0  =. o and ~ i , j  = h i j " ' h i n  (°) for  i =1,2 

and j = 1 . . . .  ,n. F ina l l y ,  we reduce each system G~, i f  necessary. 

Instead of i-combination we w i l l  say just  combination. I f  I = (21) k for the minimal 

k > 0 such that each G~ is normal we cal l  the ~-combination the normal combination of 

(G1,G2). We show that fo r  normal systems G1,G 2 such k always ex is ts .  We f ind k so that 

m~l(a) = ks m21(a ) for  a l l  aEZ and s = 1,2 . . . .  (see [2] ,  Lemma 2.) .  Therefore also 

mi(m~l(a)) = mi(m~(a)) for i = 1,2, and s = 1,2 . . . . .  Now, to show that the homomor- 

phisms of the normal combination sa t i s fy  condition (3) of normality we note that 

k I k 2 k2n- I m~2n(a) 
m 2 m I . . .  m 2 = m~1(a) 

for  each aE~, n > 1 and arb i t ra ry  k 1, . . . .  k2n ~ 1; since, because of normality of G 1 

and G 2, the repet i t ions of the same homomorphisms are i r re levant .  Spec i f i ca l l y ,  

ks 
[m 2 m~l]s(a) = m21(a) = m~l(a) = m2m~l(a) 

and [m I m~l]s(a) = m I m~(a) = m I m~1(a) 

for  each aEZ and s > 1, which shows that the systems of a normal combination sa t is fy  

condition (3) of normality. 
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We w i l l  say tha t  the set  S has bounded balance i f  each pa i r  (G~,G~) E S has bounded 

balance. 

Lemma 4 Let (GI,G2) be a pa i r  o f  DOL systems. Let S be t h e i r  l -combinat ion f o r  some 

~E{l,2} +. Then 

( i )  GI,G 2 are equ iva len t  i f f  f o r  a l l  (G~,G~) E S, G j ~j 1,~2 are equ iva len t .  

( i i )  Let G 1 and G 2 be equ iva len t .  Then (GI,G2) has bounded balance i f f  t h e i r  l-com- 

b ina t i on  S has bounded balance. 

Proof Part ( i )  can be proved ana log i ca l l y  as Theorem 1. Now, l e t  k = I~I and assume 

tha t  (G~,G~) has bounded balance and l e t  w be a G l - p r e f i x ,  say, ww' = h~(o) f o r  some 

n > 0 and some w' E S*. When proving tha t  the balance is bounded on a set o f  s t r ings  

we may neglect  f i n i t e l y  many s t r i ngs ,  so, l e t  n > ko Let ~ = i l i 2 . . . i  k and h = h i l h i 2 o . . h i k .  

Let ua wi th  uES*, aEE be a p r e f i x  of  h~-k(o) such tha t  h(u) is a p r e f i x  of  w, but w 

is a proper p r e f i x  of  h(ua) .  (Such ua ex is ts  i f  w is a proper p r e f i x ,  but i f  w is the 

whole s t r i n g  h~(o) then B(w) = O, so again we may ignore t h i s ) ,  i . e .  h (u)x  = w fo r  

some x E ~*,  and x is a p r e f i x  o f  h (a) ,  from which Ix I ~ H k and B(x) ~ BH k, i . e .  

B(w) ~ B(h(u))  + BH k, where H = max ih l (a ) ,h2 (a ) ]  and B = max B(a). The boundedness of  
aEZ aCE 

~(w) fo l lows from the fac t  tha t  ~(h(u))  = ! I ~ l ( U ) l - l h 2 ( u ) l [  = ~ j ( u ) ,  where we de- 

noted by Bj the balance in (G~,G~) which is bounded, and j is  chosen so tha t  w is a 

G~-pref ix .  

The converse, namely, t ha t  i f  (GI~G 2) has bounded balance so has each (G~,G~) is 

obvious,  and is not in  fac t  needed in our proofs.  

D e f i n i t i o n  6 Let G = (Z,h ,o)  be a DOL system and l e t  ~ c E be a subalphabet, and 

assume tha t  h ~ is  propagat ing. For every avb E ~ * ~  we def ine an induced system 
GaVb = (Ea+~'+bs,h,av~) as fo l l ows .  

For a E ~, l e t  h(a) = xcv,  where c E ~, v E ~*. (Note tha t  such decomposition is 

possib le because h ~ is  propagat ing,  and is obv ious ly  unique.)  We denote / (a )  = c , / ' ( a )  

= v. S i m i l a r l y ,  w r i t i n g  h(a) = v ' c ' y ,  where c' E ~, v '  E ~*,  we def ine r (a )  = c ~, 
r '  (a) : v ' .  

We def ine S a = {~: there is  n > 0 and a sequence c O : a,c I . . . . .  Cn_ 1, c n = c, cj  E 

such tha t  cj = / ( C j _ l ) ,  j = 1,2 . . . . .  n} ,  where c is one new symbol f o r  each c E ~. S i -  

m i l a r l y ,  we def ine bE s t a r t i n g  wi th c O = b and using r instead o f  l :  bs = {~: there 

is  m > 0 and a sequence c O = b,c I . . . . .  c m = c, cj E ~ and cj  = r (c j_1 )  f o r  j = 1,2, 

. . . .  m}, and where ~ is another new symbol, one fo r  each c E ~. Let h(a) = ~ ( a ) / ' ( a )  

f o r  a E ~, h(~) = r ' ( a ) r - - ~  fo r  a E ~, h(d) = h(d) f o r  d E ~. F i n a l l y ,  ~' is the 

subset o f  ~ o f  symbols a c t u a l l y  used when the homomorphism h is repeatedly appl ied 

to v. That completes the d e f i n i t i o n  of  G avb. When s t a r t i n g  w i th  G 1 or G 2 we w i l l ,  as 
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~ ~avb and aavb usual, ta lk  about ..1,,,2,~i , ~2 " 

Lemma 5 Let G1,G 2 be two equiva lent  DOL systems wi th a common subalphabet ~. Assume 

both h I and h~ are propagating and there ex is ts  a constant k such that  fo r  every G l -  

p re f i x  of  the form xav, where a E ~ , x E Z*, and v E Z* we have 

(5) i f  Ivl > k, then h~(xa) = h~(xa). 

Then fo r  every avb E ~ * ~ ,  Ivl > k, avb a substr ing of  L(G1) the systems G~ vb, G~ vb 

are equiva lent .  

Proof As avb is a Gl-SUbstr ing, we can wr i te  xavby = h~(q) fo r  some x,y  E Z* and 

some j > O. From (5) we have hl(Xa ) = x ' / 1 (a ) /~ (a  ), h2(xa) = x ' / 2 ( a ) / ~ ( a ) ,  where 

l l , / {  and 12,1½ are funct ions from d e f i n i t i o n  6 based here on h I and h 2. S im i l a r l y ,  

h ' (b)x~ fo r  some x ' , x~  E ~* i = 1,2. Str ings hi(xavb ) = x ' / i ( a ) / ~ ( a  ) i ( v ) r i ( b ) r  i , 
hz(xa) ,  h2(xa ) and hl(Xavb ),  h2(xavb ) are pre f ixes of  the same s t r i ng  h~+1(o) = h~+Z(o), 

so / l ( a )  = /2(a) C ~; /~ (a )h l (V) r~(b)  and /~(a)h2(v) r~(b  ) c ~*~ but they are equal as 

the next symbol^r1(b ) = r2(b) C ~. That i s ,  !v I > k implies (through h~ (xa )=  h~(xa)) 

that  h1(av~ ) = h~(av~). As h I - and thus h I - are propagat ing, also lh l (V)  I ~ Ivl > k. 

This proves that~G~ vb, G~ vb are equiva lent .  D 

5. The main theorem 

Theorem 4 Every pa i r  of  normal equiva lent  DOL systems has bounded balance. 

Proof Out l ine ( fo r  de ta i l s  see [2 ] ,  Theorem 3.) 

Let G i = (Z ,h i ,o )  f o r  i = 1,2; and l e t  r be the order of G 1 (same as G2)~i. e. 

r = IEcI. The proof is by the induct ion on r .  I t  is easy to v e r i f y  that  the assert ion 

holds fo r  systems wi th  o n e - l e t t e r  core (T~cl= 1) which serves as base, r = i ,  of  the 

induct ion.  

The induct ion hypothesis states that  the assert ion holds fo r  systems of order smal ler 

than r > i .  To prove the induct ion step l e t  us consider two normal equivalent  systems 

of  order r ,  i . e .  IZcl = r ~ 2. 

Case I :  Assume that  h i (a ) = h2(a ) = ~ fo r  some a C Z c. Then ~ = {a} is a common sub- 

alphabet. Let ~ = S - ~. Since G 1 and G 2 are equiva lent  also G~ and G~ are equivalent  

since l~cl < l~c] the pa i r  (G~,G~) has bounded balance by the induct ion hypothesis. and 
Subalphabet ~ is c lea r l y  l im i ted  and therefore the pa i r  (GI,G2) has bounded balance 

by Lemma 3. 

Case I I :  Assume that  h l (a ) = ~ fo r  some a E Z c but not necessar i ly  h2(a) = ~. Consider 

the normal combination of  (G1,G2). C lear ly ,  we have h l (a)  = ~ h2(a) = c, so by case I ,  
i i (G1,G2) has bounded balance fo r  i = 1,2 and so has (G1,G2) by Lemma 4. 

Case I I I .  This is the most d i f f i c u l t  case and we w i l l  give only a very rough ou t l i ne  
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of the proof~ which omits many d i f f i c u l t  deta i ls  ~see [2]~ Lemma 9. claim 1, cases 

A-D and Subcases I I I  A - I I I  D). 

We may now assume that both G I and G 2 are propagating. By Lemma 2 e i ther  the combina- 

t ion of (G1,G2) is simple ( th is implies, using Theorem 3 and Lemma 4, that (GI~G2) 

has bounded balance), or there is a common subalphabet E. Let ~ = E - E and ~c = Zc-Z" 

We may assume that E is maximal, i , e .  there is no subalphabet ~ so that E ~ E' ~ Ec" 

Since G 1 and G 2 are equivalent the remainder systems G I and G 2 are also equivalent, 

and since they are of order smaller than r ,  and normal, the pair  (G1,G2) has bounded 

balance by the induction hypothesis. 

Now, we consider any Gl -pre f ix  w. I f  a l l  substrings of w in E* are "short" ,  we bound 

5(w) eas i ly .  To take care of the Gl-prefixes with long substrings in E+ we f i r s t  show 

that there is only a f i n i t e  number of induced systems of G 1 or G 2 generating a l l  such 

"long" substrings in E+ with "sides" from ~. 

The next d i f f i c u l t  step is to show that for  every Gl -pref ix  uv with u E ~*~ and vE E+ 

where v is "long" we have B(u) = 0, i .e .  that the balance is zero at every point where 

a "long" substring in E+ s tar ts .  Therefore, using Lemma 5, we show that the corres- 

ponding induced systems G~ vb and G avb for  each "long" v in E+ 2 are equivalent. Since 
G~ vb and Gavb ~2 are of order less than r they have bounded balance by the induction hy- 

pothesis. 

[~ow, we are f i n a l l y  in the posit ion to show that the balance is bounded also on G 1- 

prefixes with "long" substrings in E+. We can wr i te  each such Gl-pref ix  w in the form 

w = xyz where x E Z*~, y E H +, z E E* where y is the las t  "long" substring in ~+ from 

l e f t ,  i .e .  z does not contain any "long" substring in E+ (possibly z = E). I t  is essen- 

t i a l  that we already know that B(x) = 0. Let H = max (max h i (a ) ) ,  c be the bound on 
i=1,2 aCE 

balance of GI,G 2 and c be the maximum of bounds on balance of the f i n i t e l y  many pairs 

= + 2H and of induced systems. From B~(x) 0, i t  follows that B(x) ~ H. Also B(Y) 5 c 

f i n a l l y  B(z) ~ c(HC+l)H. So together we have B(w) ~ B(x) + B(Y) + ~(z) ~ H + c + 2H 

+ c(HC+l)H and therefore the balance of the pair  G1,G 2 is bounded. 

6. Equivalent systems with bounded balance 

Now, we show that when we consider only D0L systems for  which equivalence implies 

bounded balance, we can design a decision procedure for  equivalence. We conjecture 

that th is  impl icat ion holds for  a l l  D0L systems, however in view of Theorem 1 i t  is 

su f f i c ien t  that i t  holds for normal systems as proved in section 5. 

Theorem 5 Let F be a family of DOL systems with the property:(*)  I f  G 1 and G 2 are 

two equivalent systems in F, then the pai r  (GI,G2) has bounded balance. Then the se- 

quence equivalence problem for  F is decidable. 

Proof (see also [1] ,  Theorem 2.1) .C lear ly ,  we can r e s t r i c t  ourselves to a pair  of 
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reduced DOL systems from F with ident ical  alphabets and ident ical  axioms. We w i l l  ex- 

h ib i t  two semidecision procedures, one for  nonequivalence and the other for equivalence. 

The semidecision procedure for  nonequivalence is t r i v i a l ,  we compute h~(~) and h~(~) 

for n = 0,1,2 . . . .  and stop with answer "nonequivalent" i f  h1(~ ) ~ h~(~) for some n. 

Our semiprocedure for equivalence is based on the condition (*) for  F, namely that a 

pair  of equivalent systems from F has bounded balance. 

Clearly, h~(~) : h ~ ( ~ ) f o r  n ~ 0 i f f  h~(~) : h 2 ( h ~ - l ( o ) ) f o r  n > 0 i f f  hl(W) : h2(w ) 

for  each w in L(GI). L(G1) is a DOL language and therefore also an EOL-language [9].  

Now we design a semiprocedure which w i l l  check successively for k = 1,2 . . . .  whether 

the pair  (GI,G2) has k-bounded balance and whether G I and G 2 are sequence equivalent. 

We already know that to check the sequence equivalence i t  is enough to check whether 

h1(w ) = h2(w ) for  each w E L(GI). The checking of these two properties for  a part icu- 

lar  k is done as fol lows: 

Let M k be a determinist ic g.s.m [10] with a "buffer"  of length k in i ts  f i n i t e  control 

which for any input s t r ing w in E attempts to check (from l e f t  to r ight  when reading 

w) whether hi(w ) = h2(w ). I t  is obviously possible to do this i f  G 1 and G 2 have k- 

bounded balance since we have avai lable a "buf fer"  of length k ( i . e .  a buffer able 

to contain k symbols from Z). Given input w, our g.s.m. M k w i l l  produce i ts  output 

as fol lows: 

( i )  I f  the buf fer  of  M k does not overflow and hl(W ) = h2(w ), then no output is pro- 

duced (M k goes into a non-accepting state) .  

( i i )  Otherwise, (M k finds that hl(V ) ~ h2(v ) for  some pre f i x  v of w or the buf fer  

overf lows), M k stops in an accepting state and therefore produces some output (what 

output is produced is i r re levant ) .  

Clearly, Tk(L(G1) ) = ~ i f f  the pair  (G1,G2) has k-bounded balance and hl(W ) = h2(w ) 

for al l  w C L(GI). Since EOL-systems are e f fec t i ve ly  closed under g.s.m, mappings 

[9] we can construct an EOL-system S k such that L(Sk) = Tk(GI). F ina l ly ,  i t  is re- 

cursively decidable [3,9] whether the EOL-language L(Sk) is empty. Therefore, simply 

enumerate SI,S 2 . . . .  and test  each S k for  L(Sk) = 9. The systems G I and G 2 are equi- 

valent i f f  there is k so that L(Sk) = O. 

Our semiprocedure must eventually stop i f  G I ~ G 2 since, because condit ion (*) for  

F, there exists c > 0 so that G 1 and G 2 have c-bounded balance. 
D 

Corollary i The sequence equivalence problem for  DOL systems is decidable. 

Proof Theorem 4 shows that the family of normal systems sat is f ies  the condition 

(*) of Theorem 5, therefore, by Theorem 5, the sequence equivalence problem is deci- 

dable for  th is  family. Thus, by Theorem i ,  the sequence equivalence problem is deci- 

dable for  a l l  DOL systems. [] 
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Corollary 2 The language equivalence problem for DOL systems is decidable, i .e. gi- 

ven two DOL systems GI,G2, i t  is decidable whether L(G1) = L(G2). 

Proof By Corollary I and Corollary 4.6 in [6]. 
D 
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