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Abstract

The sequence equivalence problem for DOL systems is shown to be decidable. In an
algebraic formulation the sequence equivalence problem for DOL systems can be stated
as follows: Given homomorphisms h1 and h2 on a free monoid ¥* and a word o from ¥*,
is hi(c) = ho(o) for all n > 07

0. Introduction

Given two homomorphisms hl and h2 on a free monoid =* and a word o in I*, can we
determine whether hg(c) = hg(o) for all n > 07 This is an algebraic formulation of

the well-known DOL sequence equivalence problem. The problem originated in Lindenmayer
systems which are mathematical models of cellular development. In that context it can
be restated as the problem of the deve]opmenta] equivalence of two genetic encodings
in filamental organisms developing deterministically without interaction. Lindenmayer
systems without interaction (DOL systems) were introduced in [5] and the equivalence
problem for them was posed shortly afterwards in [8] .

Here we summarize [1] and [2] which together show that this problem is decidable. The
aim of the present paper is to give an intuitive overview to the proof techniques
used in [1] and [21. We give only outlines of most proofs, readers interested in the
technical details are referred to the two above papers. However, it may be useful to
read this paper first since the informal outlines of some of the proofs will make the
reading of [1] and [2] easier.

* This paper summarizes two previous works supported by the ilational Research Council
of Canada, Grant No. A7403 and was written when the first author was visiting the
University of Karlsruhe, Germany.
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First we explain intuitively the basic ideas of our solution of the DOL equivalence
problem. Henceforth, by equivalence we mean sequence equivalence. The technical terms
which are used in the introduction but defined only later are enclosed in quotation
marks on firt use.

We start by showing that, without loss of generality, the testing for equivalence may
be restricted to "normal" systems. Then we introduce an essential auxiliary notion,
namely, the "balance" of a string w in =* with respect to two homomorphisms hl’ h2

on * (or with respect to two DOL system based on these homomorphisms). The balance
of w is the difference of the length of hl(w} and hz(w). The central intermediate
result is Theorem 4 showing that there exists a fixed bound on the balance of all
prefixes of all strings generated by two equivalent normal DOL systems. In section 3
and 4 this result is proved. First “simple" systems are considered. A normal system
is simple iff it has no "subsystem” in the sense of general algebra. If a system has
a subsystem, then the underlying set of the subsystem is called a “subalphabet".

For simple systems it is shown first, using the methods of linear algebra, that the
balance of every "long" prefix is "very small™ compared to its length. Then, using
combinatorial methods, this result is strengthened to show that the balance of two
equivalent systems is bounded if at least one of the systems is simple.

For two equivalent systems neither of which is simple we find a common subalphabet and
show that either

1} all substrings of the language generated by the systems which are entirely in this
subalphabet are "short" (such a subalphabet is called "limited") or

2) that every two systems forming a pair "induced" by this subalphabet are eguivalent.
Another pair of normal systems is obtained by “removing" the subsystem (i.e. by
omitting the symbols from the common subalphabet). As before, these "remainder”-systems
are equivalent because the original systems are eguivalent. Since both the subsystem
and the remainder system are systems over a smaller alphabet we can use the bounded-
ness as an induction hypothesis. The base of the induction deals (essentially) with
systems over one letter so the claim is easy to verify. This allows us to assume that
the remainder-pair and (in the case of a subalphabet which is not limited) also every
induced-pair have bounded balance. As the case of limited subalphabets causes no
problem, this allows us to construct a bound on the balance for the original pair.

One of the more important technical details which has been omitted above is the
following. In every step of the induction we have to consider the non-propagating
systems and another singular case separately. Since a propagating system may have a
non~propagating remainder system we cannot include the propagating property into the
requirements for normality.

In the last section we design a decision procedure which works for every family of
DOL systems for which equivalence implies bounded balance. However, we have shown that
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we need, without loss of generality, only to give the decision procedure for normal
systems. Therefore it is sufficient that equivalence of normal systems implies
bounded balance, this in fact we show in Section 5.

The normal systems are used for technical rather than essential reasons and we con-
Jjecture that every pair of equivalent DOL systems has bounded balance. It also seems
feasible to sharpen the proof of Theorem 3 so that it would give a bound on the ba-
lance of a pair of DOL systems rather then to show only that such bound exists. This
will then allow the complexity of the whole procedure to be determined.

1. Notation

Given an alphabet £, I* denotes the free monoid generated by I, with unit (empty
string) e. A DOL system is a 3-tuple G = (I,h,0) consisting of alphabet £, homomorphism
h and a starting string o € I*. L(G), the language generated by G, is defined as

{hn(o) :n > 0}. G is said to be reduced, if every symbol from I occurs in at least

one hn(c), n > 0. To reduce G means to omit from £ all the symbols which do not have
this property.

For w € 2* and a € L, #hw denotes the number of occurrences of a in w. If (al,...,an)
is an ordering of &, then (#a ooty w) is called the Parikh vector of w and is
1 n

denoted by [w]. The matrix M = ( , where m; 5 =4, h(ai) is called the growth

mij)lgign
1<i<n J

ma triz for G.

If i is a number, |i| denotes the absolute value of i; if w is a string |w| deno-
tes the Tength of w; later on |A| is also used for Tength of a vector A or maximum
characteristic value of a matrix A. For w € £*, let min(w) = {a:ﬁhw > 0}. Given

G = (£,h,0), we say that w is a G-prefix (G-substring, G-suffix) if w is a prefix
{substring, suffix) of hn(o) for some n > 0. Two DOL systems G, = (z’hi’ci)’ i=1,2
are called (sequence) equivalent if h?{cl) = hg(cz) for all n = 0,1,... . Two DOL-
systems Gl’ 62 are called Parikh equivalent if [h?(ol)] = [hg(cz)] for all
n=0,1,... . The balance (with respect to GI’GZ) of a string w in I* is defined by
B(w) = ||h1(w)|-|h2(w)}{. If there exists ¢ » 0 so that B(x) < ¢ for all G -prefixes
%, then the pair (Gl’GZ) is said to have bounded balance. In this case the smallest
such ¢ is called the balance of the pair (Gl’GZ}‘

For two sets A,B,A U B denotes their union. If A,B are disjoint, we stress this by
writing A+B for the union. Finally, we will often write a instead of {a} for a one-
element set.
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2. The Normal Systems

Let G = (Z,h,o0) be a DOL system. We define the function m: p(Z) ~ P(L), where P(L) is
the set of all subsets of & by putting
m(9) = ¢,
m{{a})
m{AUB)

it

min{h(a)) for a € 2,
m(A) U m(B).

It is easy to see that mi(a) = min{h1(a)) for all i > 1. We will write m{a} for m{{al})

and use mys Moy My, etc. to denote similar functions based on hi’ h2, hlhz’ etc.

Definition 1 A DOL system G = {I,h,0) is called an zr-system if £ = Iy + ZC + Zr is
a decomposition of I into three non-empty disjoint sets such that h{a) € leé for

*
a € Ly, h(a) € i for a € Ios h(a) € okr, fora € I, and ¢ € LI¥L . We call I the
core of I, z, is called the left side, I, the right side of I. The number of symbols

in the core ZC of £ is called the order of G.

Definition 2 A DOL system G = (I,h,0) is called normal if

(1) G is an 7r-system,
(2) G is reduced,
(3) if a € m(b) for some j > 0 then a € m(b),

holds for every a,b € ZC.

Now, we show that,without loss of generality, the testing for equivalence can be re-
stricted to the normal systems.

Theorem 1 The sequence equivalence problem is decidable for DOL systems iff it is
decidable for normal systems.

Proof Outline (for details see [2] Lemma 1,2 and Theorem 1). Given a DOL system

G = (Z,h,0), let GJ -k = {1, hJ ( }) be the (J,k) speed-up of G. It is easy to see
that two DOL systems G1 and GZ are equivalent iff all the j pairs of DOL systems
Gi’k GJ -k for k = 0, ...,j-1 are equivalent.

Given agy pair G = (T, hj,c) i = 1,2 of DOL systems we can effectively find j so that
the speed-up systems GJ’k are norma1 for i =1,2and k = 0,...,...,] - 1. We first
find hl’h for which h k1 and h, k2 meet condition (3) of normality. Then we choose j

as the least common mu1t1p1e of h1 and h2

i 1
Finally, we reduce the systems GI*" for i = 1,2 and k = 0,..., j - 1, and if the
systems are not Ir-systems we create the sides "artificially".
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3. The Ir-Simple Systems

Definition 3 Let G = <ZZ tIo Zr’h’0> be an 7r-system. A homomorphism h is cq]]ed

lr-simple if for every a,b € L. and every k > 0 there is j > 0 such that a € ka(b).

Equiv§1ent1y, calling h fp-irreducible if for every a,b € ZC there is j > 0 such that
ac mJ(b), h is Lr-simple iff hK is Zr-irreducible for all k > 1. We call G Zr-simple
if h is Zr-simple.

If G is zr-simple and normal, then from a € ka(b) we get a € m(b).

Putting a = b we get a € m{a), which impiies in turn that a € mk(b) for all i > L.
Thus if G is normal, G is Zr-simple iff m(b) = ZC for all b € ZC. However, the follo-
wing lemma is needed for systems not necessarily normal.

Lemma 1 Let G, = (Z’hi’g)’ i = 1,2 be two Pariskh equivalent DOL systems, Gl Ir-simple
and of order at least two (]Z] > 2). Then for every e > 0 there is ny > 0 such that

for every w € ¥, w ¢ (¥7 U L)%, B(h?(w)) < elhg(w)] for all n > n,.

Proof Outline (for details see [2], Lemma 3). By [73, for i = 1,2, the Parikh vector
v; of hi(a) can be written as Vi = XMi where x is the Parikh vector of w and M, is

the growth matrix of Mi' Therefore the computation of v%,v?,... constitutes the power
method for computing the characteristic u. vector of Mi corresponding to the largest

i
eigenvalue of M. From the observation that B(ul) = B(UZ) = 0 then easily follows that

B(h (w))

Tim ——— =
n o0
- (W)

Theorem 2 Let Gi = (Z,hi,a), i = 1,2, be two Parikh equivalent DOL systems, Glz r-
simple and |2] > 2. Then for every e > 0 there is K > 0 such that for every Gl-prefix
w, |w| > K we have g{w) < & |w]|.

W = hEO(ul)x for a "large" integer Ny and "short" string x € *. We have
<
(

n n
3(h10(u1)) + B(x). Given € > 0 we have B(hlo(ul)) < e/2lug| < e/2]w] by Lemma 1
) < e/2]w| since x is snort.

We have shown that the balance of "long" strings is small with respect to their
length. However, our goal is to show a stronger result, namely, that the balance is
bounded. Before we can show this we will need a few auxiliary notions.

The notion of a derivation forest of a string w with respect to a DOL system G is

obtained by the obvious modification of the well-known notion of a derivation tree
for a context-free grammar. The difference is that in DOL systems we have an axiom
{string of symbols) rather than a single starting symbol of context-free grammars.
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Let F be the derivation forest of a(g) for some n > 0 with respect to DOL system

G = (%,h,0). A path in F from a node on the lowest level (of o) to a node « on Tevel
n is called the chain of o. Formally, a chain g is a string in (I x N)* such that if
g = (ao,ko)...(an,kn), then

(i) 1<kgslof s
(i) 1<k cfh(a )l forl<icng
(ii1) 241 is the k1+1-th symbol in h(a;) for 0 < i <n-1.

I.e.,kO is the position of a, in o, and for i > 1, ki determines which of possibly
several branches is taken. First components of pairs are clearly redundant but they
allow us to state easily the condition (iii).

The string 3gr -+ is called the trace of chain q. A chain q is said to be periodic
with period p and prefix (initial segment) ql.if g = qlpqu for some m > 2 and 9, is

a prefix of p. Chain q is leftmost (rightmost) on Tevel 1 if ky = L(k; = lh(ai-l){)'
Chain q is fully leftmost (fully vightmost) if it is leftmost (rightmost) on all levels.
For a node o of derivation forest F and a specific occurrence of G-substring w, we say
that w contains o 1if o 1is one of the nodes labeled by a symbol from w.

Let q be a periodic chain with prefix r and period p. Then there are cyclically repea-
ting (after each|p|steps) common G-substrings on at least one side of q (see [4],
Theorem 11.3 and 11.4).

Theorem 3 Let G; = (E,hi,a) for i = 1,2 be two equivalent Zr-systems. Let Gl be Ir-
simple and of order at least two ({z]| > 2). Then the pair (61,6,) has bounded balance.

Proof Outline (for details see [1], Lemma 3.1, Theorem 3.2 and [2], Theorem 2. Assume
that the pair (Gl,GZ) does not have bounded balance (Assumption 1). Therefore, for
every n, >0 there must exist n, n > Ny and u,v in * so that hl(o) = uyv and the
fo]]ow1ng conditions hold:

(1) B(u) > B( l) for any prefix Wy of h? (c) where 0 < j < n.
(i) B{u) > B(wz) for any prefix W, of nl(c).
(ii1) B(u) > ﬁ(w3) for any prefix wy of u.

Let F be the derivation forest of Gl and o be the node in F at the last symbol of pre-
fix u at level n. Let q be the chain of o in F and let ay and a, be the first two
nodes of chain q (from the top) such that the label of 0q is the same as the label of
oy the label of the left neighbor of ap s the same as that of the Teft neighbor of
o, and the same holds for the right neighbors. Let these common labels be a,b,c from
left to right; they, of course, are not necessarily different.

let the levels of aq and o, in the derivation forest of Gl {from top) be r and r+t,
respectively. Clearly, since G1 is lr-simple, there exists a constant C independent
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of ng so that r+t < C. Note that we have the constant Cy = [Z]+1 with the property
that on levels higher than C1 each node of any chain has at least one neighbor both
on the left and on the right. This is so since otherwise g would have a fully left-
most {rightmost) initial segment with some symbol occurring at 1gast twice in its
trace; therefore, u would be a prefix (v would be a suffix} of hi(c) for some j < n,
which would be in contradiction with condition (i) implied by Assumption 1.

Let g = 419595 where a5 is the section of q between nodes o and oy Let q' be the
periodical chain defined by q' = qquzq4 where j > 0 and q is a proper prefix of G>
and j and Ay chosen so that the Tength of q' is the same as the length of q. Infor-
mally, we have chosen q' so that it coincides with q up to the second occurrence of
abc and then continues periodically. Therefore, there are cyclically repeating longer
and Tonger substrings on both sides of q'. Specifically h?'t'r(abc} is a common sub-

string of h?'t(o) and h?(o) which on Tevel n contains node o since chain g goes through
node oy Moreover, node o is not close to either end of the common substring since oy
is Tabeled by the middie symbol b in abc and both }h?(a)[ and ]hT(c)} are exponential-
1y growing (for growing m) by Lemma 3.1.

Now, let hg't(o) = Upyvy and hg(o) = UpXyV, where xy = hg'r't(abc), Upx = u and

YVp =V, i.e. the node o on Tevel n is at the last symbol of x. Let Uyx = u'. So we

have the situation illustrated in Fig. 1.

M
<
)

Fig,1l
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As the growth of all symbols in a simple system is exponential of the same power, it
it easy to see that the length of both x and y is 1inearly proportional to the length
of the whole string hg(c). Therefore it follows, using Theorem 2, that for each ¢ > 0
there exists nj so that g{u) < efx| and B(u) < ely| where u,x, and y are determined
by ng-

Now, both hn(o) and h?'t(a) have xy as a substring with node « at the last symbol
preceding y on level n. Since the two systems are equivalent both hl(y) and h (y) are
substrings of h (o) and of hn t+1(0) We recall that both g(u') and 8(u) are "very
small" with respect to h (y} Assumption 1 gives 8{u') < g{u), therefore the relative
position of hl(y) and h (y) as substrings of hl l(o) d1ffers by a "small® shift w
(see Fig. 2) (small w1th respect to the length of hl (o) and also of hl(y)) however,
the relative position of corresponding strings considered as substrings of A" tl {0}
differs by even smaller shift w'. Consider now the "shifts" z and z' of the longer

substrings hy(xy) and h,(xy) on levels n+l and n-t+1. Clearly, lz} = 1z = [w] - |w']
and thus also |z| > |z'].

in opposite directions.

Similar results are obtained also where the "shifts" are

X y
n-t - . — .
\ P\ \
\ \ \
! \ A
\ " \ \
\ 1(x) \ hy (¥) \
n-t4] —d——* = b = SR
z! Z(X) w' hz(l’)
X Yy
n r A 7 A -
\ XSy \
\ \ \
\ \ \
\ \\ \
\
voohy(x) \ hy(¥) \
n+l £ .y A ot s \-x A \\
z hp(x) hy(¥)

Fig.2
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hy(xy)
| - |
n-t+1 é__f:_\ hé(xy) é '
") t —t— y +——t
z ho(xy)
Fig.3

So if we compare levels n-t+l and n+l, as shown on Fig. 3., by matching the common
substring hl(xy) we see that hz(xy)wl = wzhz(xy) for some "very short" strings wq and
W Therefore the string hz(xy) is periodical with period much shorter than both x
and y. Therefore there exists r such that r is a suffix of x and prefix of y as illu-
strated on Fig. 4.

r r
i 1.
] 3 i
'L ! ll AW A - i
X o y
Fig.4

So far we have used only the fact g(u) is strictly maximal up to Tevel n (condition
{i)), but not yet the conditions (ii) and (iii) implied by Assumption 1. Now we will
exploit them by considering two cases:

Case I. Let B(r) = 0. A suffix of x is alsc a suffix of usou = wr for some w in ©*
and therefore B(u) = g(w) which is in contradiction with condition (ii1) implied by

Assumption 1.

Case II. Let g(r) > 0. Since r is also a prefix of y we can write hn(o) = ﬂrZG for
1
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some U,v in ©* such that ur = u and rv = v. Since 8{(r) > 0, clearly, either B(U) > 8(u)
or S(Grz) > g(u) which is in contradiction with condition (ii) implied by Assumption 1.

4. Subalphabets, remainder systems and induced systems.

Given a DOL system G = (Z,h;o0), a nonempty set Il properly contained in Z. is called

a subalphabet if h(a) € 1* for each a € I. Let Q = T - I. If G is an Ir-system we will

also use O for EC-H. For every z € ¥ we denote by ZQ the string z with all symbols
from I omitted, thus 2% € g*. We define G* as <Q,hQ,OQ> where hg(x) = (h(x))Q for
X € Q. If for a sequence s = 51,52,.., we write 59 = s?,sg,..., then obyiously

4)  (s(en® = s(eY

where s(G) is the sequence generated by DOL system G.

Given two DOL systems G;,6,.11 is called their common subalphabet if I is a subalpha-
bet of G; for i = 1,2. From (4) we get immediately that if Gl,G2 are equivalent and
have a common subalphabet II then also the remainder systems G? and Gg are equivalent.

It is also obvious that if G is normal, so is GQ.

Lemma 2 Let Gi = <Z,hi,c>, i = 1,2 be two normal propagating equivalent DOL systems.
Then Gl and 62 have a common subalphabet I, or the composite homomorphism hlh2 is
lr-simple.

Proof Outline (for details see [2], Lemma 5). Assume that G1 and Gz have no common
subalphabet. First we show that all symbols in I, oceur in infinitely many strings of
L(Gl). Let T be the set of symbols which occur only finitely many times. Since Gl and
G2 are equivalent clearly either © - T is a subalphabet or T' is empty.

Now, write a 2 b for a,b € Lo and i = 1,2 ifb € mj(a), i.e. a directly derives b
in Gi' let == > U > and =* be the transitive and reflexive closure of =. Finally

3

Z¢

Tet f (a) = {b € L. i a=*b}. Obviously, m, (W(a)) < (a) for 1 = 1,2, so @ (a) =
since otherwise W (a) would be a subalphabet. This means that a =* b for any a,b € ZC.
In more detail we can write a—— Ci= Comr .... .... —s C - b, forn >0,

1 1 P 2 is -1 ni, -

1j € {1,2} and c; € 5. Because Gl and G2 are propagating and have no common subal-
phabet we can choose iI =1 and in = 2. From the normality it also follows that we
can "abbreviate" several successive transfers by either - or 3 into one such

transfer, so we get a - dl E d, I . I dm - b for some 0 <m < n and
d, € &_. Therefore a—— dz——~» d4 e...— b where x— y means that

1 ¢ 1,2 1,2 1,2 1,2
y € mlgz(x).

We have shown that for any a,b € I. we have a — * b. That means that the growth
matrix MI,Z associated with h1,2 is in termino}égy of [4] irreducible. Now, we need
only to show a stronger property, namely that a system is Zr-simple if its growth
matrix restricted to L. is primitive (see [4]). From results in [4] it follows that
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if the growth matrix is not primitive then there exist q > 1 and a partition P of D
with g classes such that for every a,b € Z., iface m?,z(b), then a and b belong to
the same class of P. We use again the normality of Gl and GZ to show that if b = a
then a and b must belong to the same class of P. Since a = * b for any a,b in ZC the-
re cannot exist a partition with at least two classes and that completes the proof
that hlh2 is Zr-simple.

Definition 4 Given G = <T h,o>. A subalphabet II ¢ L is called Iimited if there is a
constant k such that for every substring u € Ii* of L{G) we have |u] < k. Note that I
is limited with respect to every DOL system equivalent to G.

Lemma 3 Let GI’GE be two equivalent systems, with a common subalphabet 0. If I is
Timited and if the pair (G 1, ) has a bounded balance, then the pair (Gl,G )} has
bounded balance.

Proof Let the balance of (GQ, Gy) be ¢ and Tet k be such that lu] < k for all Gy-sub-
strings u from I*. Then the ba1ance of the pair (Gl’GZ) is clearly smaller or equal
to (c+l)k+c. o

Definition 5 Let G G2 be a pair of DOL systems, G1_= (Z,hi,o). Given 1 = 1112 e

w1thn>1and11,. .» i,€11,2}, the set S = {6, g %'0<j<n} of pairs of DOL

systems is called 1—combznatzon of (GI’GZ) where G = (I, hl,o .}, fori=1,2,3 =0,
n,hy=hih; hy ...hs ﬁ = hyhy R ...hy oy =0ando--=h......(o)for1-12
Mty 11 2 1n 2 11 2 i i,0 i, ij i

and j = .»n. Finally, we reduce each system G , if necessary.

Instead of l-combination we will say just combination. If 1 = (21) for the minimal

k > 0 such that each GJ is normal we call the 1-combination the normal combination of

(& Gz) We show that for normal systems Gl’GZ such k always exists. We find k so that

;l(a) 21( a) for all aex and s = 1,2,... (see [2], Lemma 2.). Therefore also

mi(mgl(a)) = M (m21(a)) for i = 1,2, and s = 1,2, ... . Now, to show that the homomor-
phisms of the normal combination satisfy condition (3) of normality we note that

ki k k k
2
mz1 ml2 - m22n 1 my n(a) = mgl(a)

for each a€Z, n > 1 and arbitrary k . 2n > 1; since, because of normality of Gl
and GZ’ the repetitions of the same homomorph1sms are irrelevant. Specifically,

it

k
[m, mé&]s(a) mgi(a) = mgz(a) = myfyy (a)

k.S ks k
and (my my11 (a) = my myp{a) = m m21(a)
for each a€X and s > 1, which shows that the systems of a normal combination satisfy

-

condition (3) of normality.



159

We will say that the set $ has bounded balance if each pair (Gi,Gg) € S has bounded
balance.

Lemma 4 Let (Gl, 2) be a pair of DOL systems. Let S be their i1-combination for some
1€{1,21". Then
(1) Gl,G are equivalent iff for all {GJ,G yES, Gl’GZ are equivalent.

(i1) Let Gl and G, be equivalent. Then (Gl,GZ) has bounded balance iff their i-com-
bination S has bounded balance,

Proof Part (1) can be proved analogically as Theorem 1. Now, let k = |1| and assume

that (Gi G%) has bounded balance and let w be a Gl-prefix, say, wWw
n > 0 and some w' € Z*. When proving that the balance is bounded on a set of strings
we may neglect finitely many strings, so, let n > k. Let 1= 1112 K and h=h11h12...hik.
Let ua with uez*, a€l be a prefix of h?’k(o) such that h(u) is a prefix of w, but w
is a proper prefix of h(ua). (Such ua exists if w is a proper prefix, but if w is the

whole string h" (o) then g(w) = 0, so again we may ignore this), i.e. h(u)x = w for

h;(c) for some

.i

some X € I*, and x is a prefix of h(a), from which [x] < H" and B8(x) < BHk, i.e.

B(w) < B(h(u)) + BHk, where H = maxihl(a),hz(a)| and B = max g(a). The boundedness of
B a€xr a€s

g(w) follows from the fact that B(h(u)) = [Iﬁl(u)l-[ﬁz(u)|[ = Bj(u), where we de-
noted by B the balance in ( 1 2) which is bounded, and j is chosen so that w is a
-pref1x

The converse, namely, that if (G1,3,) has bounded balance so has each (Gi,G%) is
obvious, and is not in fact needed in our proofs. o

Definition 6 Let G = (Z,h,0) be a DOL system and let T = I be a subalphabet, and
assume that h® is propagat1ng For every avb € Q*q we define an 7Znduced system
avb . (E +1' +bz h,avb) as follows.

For a € , Tet h(a) = xcv, where ¢ € 9, v € T*. (Note that such decomposition is
possible because hQ is propagating, and is obviously unique.) We dencte {a) = c,1(a)
= v. Similarly, writing h(a) = v'c'y, where ¢' € , v' € II*, we define r{a) = ¢’,
ri{a) = v'.
We define 3% = {C: there is n > 0 and a sequence Cg = @sCysevenCy 45 € =C, €3 €Q
such that ¢, = Z(cjsl), J =1,2,....n}, where ¢ is one new symbol for each ¢ € 9. Si-
milarly, we define "% starting with < = b and using r instead of 7: = {C: there
ism>0 and a sequence c; = b, CyoereaCp = Cy c € Q and ¢y = r(c 1) for j = 1.2,
-.»m}, and where ¢ is another new symbo], one for each ¢ € Q. Let h(a) = I(a)z' (a)
for a € @, h(a) "(a)r(a) for a € 9, h(d) = h(d) for d € T. Finally, ' is the
subset of I of symbo]s actually used when the homomorphism H is repeatedly applied
to v. That compietes the definition of GaVb. When starting with Gl or G2 we will, as
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b, and GaVb.

usual, talk about ﬁ ﬁ e 2

av

1’ 1
Lemma 5 Let Gl ) be two equivalent DOL systems with a common subalphabet II. Assume
both h1 and h1 are propagating and there exists a constant k such that for every Gl-

prefix of the form xav, where a € 2 , x € o*, and v € I* we have

(5) if |v| > k, then h(xa) = hy(xa).

Then for every avb € am*, |v| > k, avb a substring of L(G;) the systems G?Vb SVb

are equivalent.

Proof As avb is a Gl~substr1ng, we can write xavby = hi(o) for some X,y € £* and
some j > 0. From (5) we have hl(xa) = x'Zl(a)Zi(a), hz(xa) = x'Zz(a)Zé(a), where
Zl,Zi and Zz,zé are functions from definition 6 based here on hl and hz Similarly,
hi{xavb) = x'Zi(a)Zé(a)hi(v)r {b)r (b)x", for some x',xi € ¥, i = 1,2 Str1ngs
hi{xa), hz(xa) and hy (xavb), hz(xavb) are prefixes of the same string hJ+ (o) = h3+1(0),
SO Zl(a) = Zz(a) € 0 14 (a) ( )ri(b) and 25(a )hz( )rz(b) € I'*, but they are equal as

the next symbol rl(b) = rz(b) € Q. That is, lv| > & implies {through hﬂ(xa) = hg(xa))
that h (avB} = h (avS) As h1 - and thus h - are propagating, also ;h ()| > vl > k.
This proves that GaVb Gng are equivaient. o

5. The main theorem

Theorem 4 Every pair of normal equivalent DOL systems has bounded balance.

Proof Outline ({for details see [2], Theorem 3.)

Let G; = (Z’hi’g) for 1 = 1,2; and let r be the order of G; (same as G,),i. e.

r = QZC[. The proof is by the induction on r. It is easy to verify that the assertion
holds for systems with one-letter core (?ZC§= 1) which serves as base, r = 1, of the
induction.

The induction hypothesis states that the assertion holds for systems of order smaller
than r > 1. To prove the induction step let us consider two normal equivalent systems
of order r, i.e. I ] =r 2> 2.

Case [: Assume that hl( ) = ( ) = ¢ for some a € I, . Then 1l = {a} is a common sub-
alphabet. Let @ = £ ~ 1. Since G1 and G2 are equ1va1ent also G? and Gg are equivalent
and since lQ S 12 | the pair (Gl’ ) has bounded balance by the induction hypothesis.
Subalphabet I is clearly Timited and therefore the pair (Gl’GZ) has bounded balance
by Lemma 3.

Case II: Assume that hl( ) = ¢ for some a € . but not necessarily hz(a) = ¢. Consider
the norma] combination of (G1 GZ) Clearly, we have h (a) =g, ﬁz(a) = g, 50 by case I,
{GT,G )} has bounded balance for i = 1,2 and so has {G } by Lemma 4.

Case ITI. This is the most difficult case and we will give only a very rough outline
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of the proof, which omits many difficult details (see [2], Lemma 9. claim 1, cases
A-D and Subcases IIIl A - III D).

We may now assume that both G1 and G2 are propagating. By Lemma 2 either the combina-
tion of (Gl,GZ) is simple (this implies, using Theorem 3 and Lemma 4, that (Gl’Gz)

has bounded balance}, or there is a common subalphabet 1. Let @ = £ - T and QC = ZC~H.
We may assume that T is maximal, i.e. there is no subalphabet I’ so that I g i < Zc'

Since G1 and G2 are equivalent the remainder systems G1 and G2 are also equivalent,
and since they are of order smaller than r, and normal, the pair (81,82) has bounded
balance by the induction hypothesis.

Now, we consider any Gl prefix w. If all substrings of w in II* are short“, we bound

8(w) easily. To take care of the Gl—preflxes with long substrings in 1" we first show
that there is only a f1n1te number of induced systems of G or GZ generating all such
“long" substrings in 1" with "sides" from Q.

The next difficult step is to show that for every Gl-prefix uv with u € 2*Q andve H+
where v is "long" we have g(u) = 0, i.e. that the balance is zero at every point where
a "long" substring in n starts. Therefore, using Lemma 5, we show that the corres-

ponding induced systems G2YP Gavo

1
G?Vb and G;Vb are of order less than r they have bounded balance by the induction hy-

and for each "long" v in T are equivalent. Since

pothesis.

Now, we are finally in the position to show that the balance is bounded also on Gl—
prefixes with "long" substrings in 7. We can write each such G1~prefix w in the form
W = Xyz where X € I*Q, y € H+, z € I* where y is the last "long” substring in 1" from
left, i.e. z does not contain any "long" substring in ot (possibly z = g). It is essen-

tial that we already know that g(x) = 0. Let H = max (max h, ( )), ¢ be the bound on
i=1,2 a€x

balance of Gl,G2 and <, be the maximum of bounds on balance of the finitely many pairs
of induced systems. From B ( ) =0, it follows that 8(x) < H. Also B(y) < c. t 2H and
finally 8(z} < c{H +1)H So together we have B{w) < B(x} + B{y) + 8{z) < H + c, * 2
+ c(HC+1)H and therefore the balance of the pair Gy G2 is bounded.

6. Equivalent systems with bounded balance

Now, we show that when we consider only DOL systems for which equivalence implies
bounded balance, we can design a decision procedure for equivalence. We conjecture
that this implication holds for all DOL systems, however in view of Theorem 1 it is
sufficient that it holds for normal systems as proved in section 5.

Theorem 5 Let 7 be a family of DOL systems with the property: (*) If G1 and GZ are
two equivalent systems in », then the pair (GI’GZ) has bounded balance. Then the se-
guence equivalence problem for F is decidable.

Proof (see also [1], Theorem 2.1).Clearly, we can restrict ourselves to a pair of
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reduced DOL systems from 7 with identical alphabets and identical axioms. We will ex-
hibit two semidecision procedures, one for nonequivalence and the other for equivalence.

The semidecision procedure for nonequivalence is trivial, we compute h?(c) and hg(c)
for n = 0,1,2,... and stop with answer "nonequivalent" if h?(c) $ hg{c) for some n.

Our semiprocedure for equivalence is based on the condition (*) for F, namely that a
pair of equivalent systems from ¥ has bounded balance.

Clearly, hi(o) = hg(c) for n > 0 iff hg(g) = hz(h’l"l(c}) for n > 0 1ff hy(w) = hy(w)
for each w in L(Gl). L(Gl) is a DOL language and therefore also an EOL-language [91.

Now we design a semiprocedure which will check successively for k = 1,2,... whether
the pair (Gl’GZ) has k-bounded balance and whether Gl and GZ are sequence equivalent.
We already know that to check the sequence equivalence it is enough to check whether
hl(w) = hz(w) for each w € L(Gl). The checking of these two properties for a particu-
lar k is done as follows:

Let Mk be a deterministic g.s.m [10] with a "buffer" of Tength k in its finite control
which for any input string w in ¥ attempts to check {from left to right when reading
w) whether hl(w} = hz(w). It is obviously possible to do this if G1 and GZ have k-
bounded balance since we have available a "buffer" of length k (i.e. a buffer able

to contain k symbols from ). Given input w, our g.s.m. Mk will produce its output

as follows:

(i) If the buffer of Mk
duced (Mk goes into a non-accepting state).

does not overflow and hy(w) = hz(w), then no output is pro-

(11) Otherwise, (M, finds that hl(v) } hy(v) for some prefix v of w or the buffer
overflows), Mk stops in an accepting state and therefore produces some output (what
output is produced is irrelevant).

Clearly, Tk(L(Gl)) = f iff the pair (GI,GZ) has k-bounded balance and hl(w) = hz(w)
for all w € L(Gl)' Since EOL-systems are effectively closed under g.s.m. mappings
[91 we can construct an EOL-system S, such that L(S,) = Tk(Gl)' Finally, it is re-
cursively decidable [3,9] whether the EOL-language L(Sk) is empty. Therefore, simply
enumerate 51,52,... and test each S, for L(S;) = . The systems G, and G, are equi-
valent iff there is k so that L(Sk) = 0.

Our semiprocedure must eventually stop if Gl = G2 since, because condition (*) for

F, there exists ¢ > 0 so that G1 and GZ have c~bounded balance.

o

Corollary 1 The sequence equivalence problem for DOL systems is decidable.

Proof Theorem 4 shows that the family of normal systems satisfies the condition
(*) of Theorem 5, therefore, by Theorem 5, the sequence equivalence problem is deci-
dable for this family. Thus, by Theorem 1, the sequence equivalence problem is deci-
dable for all DOL systems. o
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Corollary 2 The language equivalence problem for DOL systems is decidable, i.e. gi-
ven two DOL systems Gl’GZ’ it is decidable whether L(Gl) = L(Gz).

Proof By Corollary 1 and Corollary 4.6 in [6].
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