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The obesity gene, TMEM18, is of ancient origin,
found in majority of neuronal cells in all major
brain regions and associated with obesity in
severely obese children
Markus Sällman Almén1†, Josefin A Jacobsson1†, Jafar HA Shaik1, Pawel K Olszewski1,2, Jonathan Cedernaes1,
Johan Alsiö1, Smitha Sreedharan1, Allen S Levine2,3, Robert Fredriksson1, Claude Marcus4, Helgi B Schiöth1*

Abstract

Background: TMEM18 is a hypothalamic gene that has recently been linked to obesity and BMI in genome wide
association studies. However, the functional properties of TMEM18 are obscure.

Methods: The evolutionary history of TMEM18 was inferred using phylogenetic and bioinformatic methods. The
gene’s expression profile was investigated with real-time PCR in a panel of rat and mouse tissues and with
immunohistochemistry in the mouse brain. Also, gene expression changes were analyzed in three feeding-related
mouse models: food deprivation, reward and diet-induced increase in body weight. Finally, we genotyped 502
severely obese and 527 healthy Swedish children for two SNPs near TMEM18 (rs6548238 and rs756131).

Results: TMEM18 was found to be remarkably conserved and present in species that diverged from the human
lineage over 1500 million years ago. The TMEM18 gene was widely expressed and detected in the majority of cells
in all major brain regions, but was more abundant in neurons than other cell types. We found no significant
changes in the hypothalamic and brainstem expression in the feeding-related mouse models. There was a strong
association for two SNPs (rs6548238 and rs756131) of the TMEM18 locus with an increased risk for obesity
(p = 0.001 and p = 0.002).

Conclusion: We conclude that TMEM18 is involved in both adult and childhood obesity. It is one of the most
conserved human obesity genes and it is found in the majority of all brain sites, including the hypothalamus and
the brain stem, but it is not regulated in these regions in classical energy homeostatic models.

Background
Obesity is an increasing global health problem accompa-

nied by several significant health impairments, such as

type-2 diabetes and cardiovascular diseases. Although

excessive energy intake together with low levels of phy-

sical activity contribute to the ongoing obesity epidemic,

genetic research has shown that heritage might account

for as much as 70% of the population variation in BMI

[1]. Genome-wide association (GWA) studies have

linked several genomic loci with a high BMI, and several

new candidate genes have been identified [2]. Most

recently, the FTO gene has been given special attention

because of its strong association with obesity in multiple

cohorts differing in age [3]. Basic research showed that

FTO-deficient mice have less adipose tissue and a lower

body mass compared with wild type mice, which sup-

ports the biological role proposed for the gene by the

GWA analyses [4].

Aside from FTO, GWA studies associated with obesity

yet another gene, named TMEM18. TMEM18 was first

proposed as an important obesity-related locus by the

GIANT consortium [5]. That study strongly associated

the nearby SNP, rs6548238, to increased BMI and body

weight. Subsequently, these results were replicated in
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the Icelandic GWA study for three other SNPs located

in the close proximity of TMEM18 (rs2867125,

rs4854344 and rs7561317), which all showed a strong

association to both BMI and body weight [6]. The FTO

locus’ association to BMI was confirmed therein.

Furthermore, the TMEM18 locus’ association to BMI

has been replicated in two additional studies [7,8] and it

has also been associated to the age of menarche [9]. It

should be noted that while the risk contribution of the

TMEM18 locus to obesity in adults has been examined

(6), no attempt to determine such association has been

made in obese children. However, one previous study

has associated the locus with BMI in children [8].

The TMEM18 gene codes for a poorly characterized

transmembrane protein. One study indicated that this

protein is located in the nuclear envelope in neural stem

cells [10]. TMEM18 may be involved in cell migration

as overexpression of the protein increases the migration

of neural stem cells towards glioma in the rat brain. A

preliminary expression profiling of TMEM18, that

accompanied the first GWA study, suggested that it is

ubiquitously expressed, but with certain differences

between tissues [5]. In line with the proposed role in

the regulation of body weight, TMEM18 was shown to

be expressed in the brain, including the hypothalamus,

the region responsible for the control of energy homeos-

tasis. Only few other brain areas were investigated in

that project.

The current project provides the first detailed charac-

terization of the human TMEM18 protein’s sequence

features, evolutionary history, gene expression profile in

the rat and mouse, distribution in the mouse brain, and

gene expression regulation in several murine feeding/

body weight models. We also investigated the risk of

obesity for variants upstream of the TMEM18 locus in

the cohort of severely obese children and healthy con-

trols, and performed the first examination of the locus

association to several obesity-related traits.

Methods
Evolutionary and sequence analysis

Retrieval of protein sequences

The proteomes of eleven different organisms represent-

ing different lineages of eukaryotes, with the focus on

the metazoans and vertebrates, were gathered from dif-

ferent sources as follows. All protein sequences for

Homo sapiens, Mus musculus, Gallus gallus, Xenopus

tropicalis, Caenorhabditis elegans and Drosophila mela-

nogaster were downloaded from Ensembl 53 [11]; Bran-

ciostoma floridae [12],Trichoplax adhaerens [13] and

Thalassiosira pseudonana [14] were downloaded from

the Joint Genome Institute’s website, Saccharomyces cer-

evisae was downloaded from the Saccharomyces genome

database [15], Arabidopsis thaliana from The

Arabidopsis Information Resource (TAIR) [16] and all

bacterial proteomes were downloaded from NCBI’s ftp-

site [17].

Mining for TMEM18

The human TMEM18 sequence was collected from Uni-

Prot [18] and used to query the OMA database [19]

(release September 2008). The OMA is a database

which automatically groups protein sequences predicted

to be orthologous. To allow identification of members

of the TMEM18 family that are not orthologous to the

human gene, we used the following procedure.

Sequences that belong to the orthologous group of

human TMEM18 were downloaded from the database

and aligned using mafft-einsi [20] with default para-

meters. The multiple sequence alignment (MSA) was

viewed and edited in Jalview [21]. A hidden-markov

model (HMM) was created and calibrated from the

MSA using the HMMER [22] package with default para-

meters. The HMM was applied on the listed proteomes

using the hmmpfam program of the HMMER package

with the default parameters. The results were evaluated

for false-positives and hits with an E-value below 10-6

were considered as significant. The protein and nucleo-

tide sequences for the hits were collected and redun-

dancy was manually removed so that only one protein/

transcript was kept for each gene.

Multiple sequence alignments and Phylogenetic analysis

The protein sequences identified in the mining proce-

dure were aligned using mafft-einsi with default para-

meters. The resulting MSA was viewed, analyzed and

edited in Jalview. The protein sequences of the MSA

were reversely translated to the corresponding mRNA

transcripts by using RevTrans [23] with the default para-

meters and the retrieved nucleotide MSA was used for

the phylogenetic analysis. The phylogenetic inference

was performed with the maximum likelihood method

using RAxML (v. 7.0.4) [24] according to the “Hard &

Slow Way” described in the program’s manual, the Easy-

RAx script found at the program’s website was utilized

to execute the analysis. In brief, the best known maxi-

mum likelihood tree was found in 100 maximum parsi-

mony trees, 1000 non-parametric bootstraps were

carried out and frequencies were written on the best

known maximum likelihood tree. The final tree was

drawn using Mesquite (v 2.6) and edited in Inkscape (v.

0.46), using the T. pseudonana sequence as the out-

group. Pairwise sequence alignments were made using

EMBOSS’ [25] implementation of the Needleman-

Wunsch [26] algorithm with the default parameters.

Sequence analysis of the human TMEM18 protein

Poly Phobius [27] (v. 1.04) was used to predict trans-

membrane topology for the human TMEM18 sequence.

The protein MSA made for the evolutionary analysis

was used as input to increase accuracy of the prediction.
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Glycosylation sites of type O-b-GlcNAc, which occurs in

the nucleus, was predicted using the YinOYang [28] (v.

1.2) server with the default parameters. Phosphorylation

sites were predicted with the NetPhos [29] (v. 2.0) server

using the default parameters. The prediction of nuclear

localization signals (NLS) was performed with Pre-

dictNLS and the NLSdb database [30]. Finally, the Uni-

Prot and Ensembl websites were consulted for

additional annotation.

TMEM18 tissue expression profiling with quantitative

real-time PCR

The TMEM18 mRNA expression was detected in tissue

panels from both the mouse and the rat. Animal hand-

ling and tissue panel preparation was performed as pre-

viously described in Haitina et al. together with details

of the real-time PCR analysis [31]. The primers used

can be found in Additional file 1. All animal experi-

ments has been approved by “Uppsala’s Ethical Commit-

tee on Animal Experiments” (reference number: C285/5

and C84/8) and follows international guidelines.

TMEM18-like immunoreactivity in the murine brain

C57Bl6/J adult male mice were housed in the controlled

environment (21°C, 12:12 LD cycle), with ad libitum

access to chow and water. An intraperitonial injection of

mixture of Dormitor (70 μg/g b. wt., Orion, Finland)

and Ketalar (7 μg/g b. wt., Pfizer, Sweden) was used to

anesthetize the mice. Phosphate buffered saline (PBS)

followed by 4% paraformaldehyde were used to perform

transcardial perfusion through the left ventricle. The

fixed brain was excised and incubated overnight in 4%

paraformaldehyde; subsequently the tissue was dehy-

drated and infiltrated with paraffin (Tissue Tek vacuum

infiltration processor; Miles Scientific, Elkhart, IN). Sec-

tioning (7 μm) of the paraffin-embedded brain was car-

ried out on the Microm microtome onto superfrost

slides (Menzel-Gläser, Braunschweig, Germany).

Immunoflourescence

Sections were deparaffinized in X-tra solve (Medite His-

totechnic, Burgdorf, Germany) and rehydrated with a

series of washes in descending concentrations of ethanol

followed by autoclaved MilliQ water. Antigen retrieval

was performed by boiling the sections in 0.01 M citric

acid (pH 6.0) for 10 minutes. Slides were cooled and

rinsed with 1× PBS pH 7.4. They were transferred to

the humidity (PBS) chamber. Primary antibodies: rabbit

anti-TMEM18, (ProSci, Poway, CA) and mouse anti-

NeuN (Neuronal Nuclei, Millipore, Temecula CA, USA)

diluted 1:400 in PBS+0.3% Triton X100 (Sigma-Aldrich,

USA) were added onto the slides and incubation was

carried out overnight at 4°C. The slides were then

washed with PBS and incubated in the secondary anti-

bodies: donkey-anti-rabbit 594 (1:200; Alexa Fluor,

Invitrogen, USA) and goat-anti-mouse 488 (1:400; Alexa

Fluor, Invitrogen, USA), respectively in PBS+0.3% Triton

X100 in the dark chamber for 4 hours. The slides were

washed with PBS and stained with DAPI. They were

coverslipped using DTG (2.5% DABCO (Sigma), 50 mM

Tris-HCl pH 8.0, 90% glycerol). Sections were analyzed

under the Zeiss XBO75 microscope.

Analysis of results

Pictures of the cortex, amygdala, hypothalamus, thala-

mus and hippocampus were taken with the Zeiss Axio-

Cam HRm under 20× magnification. Photomicrographs

show a random portion of each region of interest. The

images were analyzed and cells counted through appro-

priate filters using ImageJ 1.41o software (National Insti-

tute of Health, USA). A total of 5 pictures from the

cortex, 4 from the amygdala, and 3 each from the

hypothalamus, thalamus and hippocampus were ana-

lyzed. The total number of all cells, NeuN cells and

TMEM18-positive cells as well as the number of

TMEM18 expressing neurons and non-neurons were

counted separately. Percentages of neurons expressing

TMEM18, non-neurons expressing TMEM18, and all

cells combined expressing TMEM18 were calculated.

Feeding experiments

Male C57BL/6J mice (Scanbur, Sweden), housed indivi-

dually or in groups of two (Exp. 1, 2 and 3) in macrolon

cages, under LD 12:12 (lights on at 0700), weighed ca.

28 g at the beginning of the experiment. Tap water and

chow (Lactamin, Sweden) were available ad libitum

unless specified otherwise. Procedures described herein

were approved by the Uppsala Animal Welfare Commit-

tee and followed the EU and Swedish guidelines.

Experiment 1. Hypothalamic and brainstem TMEM18 mRNA

levels following 16-h and 24-h of food deprivation

Chow was removed before the onset of the dark phase

and mice (n = 8) were decapitated between 1000 and

1100 on the next day. Control mice (n = 8) had ad libi-

tum access to food.

Experiment 2. Hypothalamic and brainstem TMEM18 mRNA

levels following 48-h consumption of palatable sucrose or

Intralipid

Mice gained access to a bottle containing 10% sucrose or

4.1% Intralipid (Fresenius, Sweden) for 48 h; control ani-

mals had access to chow only (n = 8/group). Intralipid, a

palatable lipid emulsion, has been used in experiments

utilizing liquid diets [32,33]. Sucrose and Intralipid were

isocaloric (0.4 kcal/g, 1 kcal = 4.2 kJ); energy density of

chow was 3.6 kcal/g. The solutions were similar in palat-

ability: each mouse ingested on average 8.1 kcal of Intra-

lipid and 7.4 kcal of sucrose per day. Total energy intake

per animal was 10.3 kcal in the chow group, 14.1 kcal in

the sucrose group and 12.9 kcal in the Intralipid group.

Mice were decapitated after 48 h (1100 - 1200).
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Experiment 3. Hypothalamic and brainstem TMEM18 mRNA

levels upon increased body weight

Mice received 10% sucrose in addition to chow for 3

weeks; controls had chow only (n = 8/group). The initial

body weights did not differ significantly between the

two groups (controls: 27.6 ± 0.3 g; sucrose: 27.8 ± 0.5

g). At endpoint, sucrose-fed mice weighed 32.1 ± 0.4 g,

whereas the control animals weighed 29.5 ± 0.6 g (P <

0.05; t-test). Energy intake was similar to that described

for the corresponding groups in Experiment 1. Mice

were decapitated between 1100 and 1200.

Analysis of genetic association to obesity and related

traits

Phenotype characterization

Birth weights and lengths were obtained from growth

charts. Actual body weights and lengths were measured

to the nearest 0.1 kg and 1 cm, respectively. BMI stan-

dard deviation score (BMI SDS) was calculated from

weight, height, standardized for age and gender [34]. For

the obese subjects, levels of plasma glucose, serum insu-

lin, serum triglycerides and cholesterol were analysed

from blood samples drawn after 16-h overnight fasting

as previously described [35].

Subjects

We genotyped 1027 children and adolescents compris-

ing two study groups as described earlier [35]. Briefly, a

case group of 502 obese children (262 girls and 240

boys) was enrolled at the National Childhood Obesity

Centre at Karolinska University Hospital, Huddinge,

Sweden. The obese subjects were between 6 and 20

years old and mean age was 12.6 ± 3.3 years. BMI SDS

ranged from 2.7 to 11.1 and mean BMI SDS was 6.2 ±

1.4 2) The control group with 525 healthy Swedish ado-

lescents (268 girls and 257 boys) was recruited from 17

upper secondary schools in the Stockholm area. The

subjects in the control group were between 15 and 20

years old and mean age was 17.1 ± 0.8 years. BMI SDS

ranged from -1.9 to 2.4 and mean BMI SDS was 0.2 ±

0.8. Subjects with overweight/obesity or chronic diseases

were excluded from the control group and seven chil-

dren with type-2 diabetes were excluded from the obese

group. The study was approved by the Regional Com-

mittee of Ethics, Stockholm, (reference number KI702/

03) and follows the Helsinki declaration and interna-

tional guidelines. All participants or their legal guardians

gave their written informed consent of inclusion in the

study and publication of the results.

Statistical analysis

In order to test for deviation from Hardy-Weinberg

equilibrium, the Pearson’s c2-test (1 d.f) was applied.

Genotype and allele frequencies were calculated and

logistic regression was used to calculate the odds ratio

(OR) with a 95% confidence interval (CI) assuming an

additive model. Association with obesity was determined

by comparing subjects with normal weight and obesity.

Associations between genotypes and phenotypes were

analyzed with linear regression, assuming an additive

model. Quantitative skewed variables were log-trans-

formed before analysis. Covariates such as birth weight,

birth length, weight, length, gender, BMI SDS and age

were tested for dependence on the response variables

and included in the model if significant. All the analysis

was performed using PLINK [36].

Genotyping

Genomic DNA was extracted from peripheral blood

using QiaGen Maxiprep kit (Qiagen, Hilden, Germany).

Genotyping was performed with pre-designed Taqman

single-nucleotide polymorphism genotyping assay

(Applied Biosystems, Foster City, USA) and an ABI7900

genetic analyser with SDS 2.2 software.

Results
Sequence analysis of the human TMEM18 protein

A comprehensive picture of the human TMEM18 pro-

tein can be found in Figure 1. The human TMEM18

gene is located on chromosome 2. It is 9466 bp-long,

including introns, and it has seven protein coding exons.

The gene has three transcripts of which the longest one

is translated into a 140 amino acid-long protein, that

were predicted to have three transmembrane a-helices.

The N-terminus of the protein, which probably faces

the inside of the nuclear envelope, was predicted to

have five O-b-GlcNAc glycosylation sites, and the sec-

ond loop to have one phosphorylation site. The protein

has a nuclear localization signal at the C-terminal,

which according to NLSdb, is identical to, among

others, human homeobox proteins and it targets the

protein for transport to the nucleus. A coiled-coil

domain was also found in the same part of the protein.

Evolutionary investigation

We searched for homologues in a wide range of gen-

omes in all kingdoms of life and we present herein the

specific mining of eleven genomes for genes homolo-

gous to TMEM18. We found that all genomes contained

one single positive hit for the TMEM18 family, except

for S. cerevisae and C. elegans where no homologous

genes were identified. The non-redundant proteins

sequences used that were received in the mining is

available in Additional file 2. We investigated this

further by mining the NCBI’s protein database nr using

protein PSI-BLAST with the human TMEM18 protein

sequence as query and with the default parameters. We

found no sequences from the fungi or pseudoocoelomata

(where C. elegans belongs) lineages in these searches,

suggesting that these taxonomic groups have lost the

TMEM18 gene. The multiple sequence alignment
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(Figure 2) showed that the TMEM18 sequence is well

conserved, eleven residues were identical in all the

investigated organisms and another 30 were identical

with 80% of the sequences. The average pair wise

sequence identity (similarity) was 37% (82%) for all spe-

cies and 41% (88%) within vertebrates. Thus, the

TMEM18 family has been highly conserved during the

evolutionary history of eukaryotes.

We created a phylogenetic tree for the TMEM18 family

(Figure 3). T. pseudonana was used as the outgroup

and, as expected; the plant A. thaliana was found to be

basal of the metazoan group. Within the metazoan

group, the order of invertebrates was not as anticipated,

since T. adhaerens should be most basal, followed by D.

melanogaster and B. floridae. However, the supporting

bootstrap values were not strong for this part of the

topology, which may reflect high conservation of the

sequences. The vertebrates formed a clear cluster with

an expected topology, apart from the reversal of the X.

tropicalis and D. rerio positions, but here the bootstrap

values were low.

Expression profiling

We investigated the TMEM18’s mRNA expression pat-

tern in a wide range of rat and mouse tissues using real-

time PCR. We found that TMEM18 was widely

expressed, but varied in expression level between differ-

ent tissues and was abundant in feeding and body

weight regulatory brain regions such as the hypothala-

mus and brainstem, although higher in other tissues

(Figure 4). As a comparison, we downloaded microarray

expression data for the D. melanogaster TMEM18 from

FlyAtlas [37], which confirmed the wide expression pat-

tern found in the rat and mouse (Figure 4)

Immunohistochemical detection of TMEM18 in the mouse

brain

We stained a large number of sections from the mouse

brain. No region was devoid of TMEM18 immunoreac-

tivity and the TMEM18 protein showed a widespread

distribution throughout the mouse brain. We also per-

formed co-labeling of TMEM18 with the cellular mar-

ker, DAPI, and a neuronal marker, NeuN (Figure 5) and

in total 7276 cells from the cortex (1904 cells), amygdala

(1505 cells), hypothalamus (1314 cells), thalamus (1033

cells) and hippocampus (1520 cells) were counted. The

results revealed that TMEM18 was present in 71% of all

cell types, 73% of NeuN-positive cells and 63% of

NeuN-negative cells (Figure 5).

Central expression of TMEM18 in mice differing in

feeding or body weight profiles

Hypothalamic and brainstem expression of TMEM18

was unchanged in all of the feeding paradigms utilized

herein, including 16- and 24-h energy deprivation, as

well as short- (48 h) and long-term (3 weeks long; lead-

ing to increased body weight) exposure to palatable

tastants that differ in macronutrient composition (see

Figure 6).

Analysis of genetic association to obesity and related

traits

None of the two SNPs analyzed caused deviation from

Hardy-Weinberg equilibrium (Table 1) and the variants

were almost in complete linkage disequilibrium, r2 =

0.95. Table 1 shows obesity risk estimates (odds ratios;

OR) for the two genotyped variants located 23 kbp

upstream TMEM18, rs6548238 and rs7561317. Both

SNPs were significantly (p = 0.002 and p = 0.001)

Figure 1 Schematic image of the human TMEM18 protein’s

features. TMEM18 has three transmembrane a-helices and the N-
terminal and second loop probably face the inside of the nucleus,
whereas the first loop and the C-terminal are oriented towards the
cytoplasm, according to predictions by Phobius. The N-terminal
contains five predicted O-b-GlcNAc glycosylation sites (red
pentagons) and the second loop contains one phosphorylation site
(blue star). Also, one of the glycosylation sites (*) is potentially
targeted by phosphorylation. The C-terminal is annotated to contain
a Coiled-coiled domain and an NLS-motif. The protein is highly
conserved: blue boxes represents well conserved motifs, capital
letters represent amino acids that are completely conserved in all
investigated organisms and lower cases represent those conserved
in 90%. Circles represent single conserved residues. The circles and
amino acid letters are colored according to Zappo color scheme in
Jalview. All numbers represent amino acid positions, starting at the
N-terminal.
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associated with obesity in directions consistent with

prior reports of association with BMI (OR = 1.450 and

OR = 1.507) [5-7]. Table 2 summarizes the analyzed

phenotypes in the normal weight and obese children

and adolescents for the two SNPs. No significant asso-

ciation was found after adjustment for multiple testing.

There was, however, a clear trend for BMI SDS among

the obese children: the homozygote carriers of the

major allele had 0.5 SD higher BMI SDS levels com-

pared to the homozygote carriers of the minor allele (p

= 0.073 and p = 0.038). This trend was also observed

among the obese children for a shorter birth length for

carriers of the major allele for both SNPs (p = 0.048

and p = 0.032).

Discussion
The TMEM18 gene has a remarkably long evolutionary

history as it is found in most of the eukaryotic genomes

we have looked at. It has therefore been present for at

least 1500 MYA since the divergence of animals and

plants/T. pseudonana [38]. Thus, it is one of the most

ancient genes implicated in human obesity, such as FTO

[39] and MC4R [40], that we are aware of. Most of the

main genes involved in body weight regulation appeared

after the radiation of vertebrates and very few are pre-

sent beyond the animal kingdom. The amino acid

sequences are highly conserved (Figures 2 and 3) with

relatively small differences between vertebrates and

other animals. Another very interesting feature (of

Figure 2 Multiple sequence alignment of the TMEM18 family. The protein sequences were aligned using mafft-einsi with the default
parameters and viewed and edited with Jalview. The column color intensity corresponds to the degree of conservation and completely
conserved residues are marked with a red star. The predicted transmembrane helices of the human TMEM18 protein are represented by pink
boxes and the predicted nuclear localization signals for the mouse and human are marked with red boxes in the sequence.
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curiosity, shared by the FTO gene), is that the gene is

found in a single copy with no close relative in the gen-

omes where it is present, despite that some genomes

have undergone recent whole genome duplications such

as A. thaliana (38 MYA) [41]. Surprisingly, we found

two separate lineages where the TMEM18 gene is absent:

fungi (yeasts, molds and mushrooms) and pseudoocoelo-

mata (C. elegans). Both contain well analyzed genomes

of high quality, suggesting that this gene has been lost at

least two times on separate occasions in evolution and

that the gene is thus not essential for life in all eukar-

yotes. The TMEM18 protein is predicted to have three

transmembrane helices, a relatively uncommon property

among human membrane proteins, as fewer than 5% of

them share this feature [42]. The membrane topology is

mainly found among proteins with poorly characterized

functions that do not have close relatives and are, there-

fore, sole representatives of their protein family in the

human proteome. The TMEM18 protein has a nuclear

localization signal that targets the protein for transporta-

tion to the nucleus, which also has been confirmed

experimentally [10]. Moreover, it contains a coiled-coil

domain (Figure 1) that is common among DNA or RNA

binding proteins, such a transcription factors, e.g. c-Fos

[43]. However, transcription factors are generally not

membrane-bound proteins, but at least one exception

exists in the gene named Myelin gene regulatory factor

(MRF) that is predicted to have a transmembrane helix

and plays a central regulatory role in myelination of the

CNS [44]. We found that there are only seven proteins,

unrelated to each other, in the human proteome that

contain three transmembrane helices and one coiled-coil

domain, according to our queries in UniProt. Thus, the

molecular structure of the TMEM18 protein is very

uncommon in terms of other proteins in the human gen-

ome and surely very much different compared to other

proteins involved in obesity, such as the enzyme FTO

and the G protein-coupled melanocortin receptor,

MC4R.

Other interesting features of the TMEM18 protein are

the evolutionary conserved potential O-b-GlcNAc glyco-

sylation and the phosphorylation sites, which are targets

for the important posttranslational regulation of many

proteins’ functions and activities. Noteworthy, these sites

are found in parts of the proteins that are supposed to

face the inside of the nuclear envelope, i.e., the N-term-

inal and second loop (Figure 1) which, together with the

beginning of the first and second transmembrane helices,

Figure 3 Phylogenetic tree of the TMEM18 family. The phylogenetic tree was calculated from a nucleotide multiple sequence alignment
with a maximum-likelihood approach using the RAxML program. The tree was bootstrapped 1000 times and branch lengths correspond to log-
likelihood scores (see scale). The sequence similarities and identities (percentage of alignment length) for each protein are towards the human
TMEM18 protein and were calculated from global alignments produced with the EMBOSS implementation of the Needleman-Wunsch algorithm.
The time points since the divergence of animals and plants/T. pseudonana (1625 MYA) and since the radiation of vertebrates (797 MYA) were
taken from the TimeTree resource.
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are the most evolutionary conserved parts of the

TMEM18 protein. This suggests that these parts of the

protein constitute a potential active site, binding site or

another important functional structure of the protein.

The TMEM18 gene is expressed in all the tissues we

analyzed in the rat and mouse. Moreover, microarray

data on TMEM18 from the fly (D. melanogaster), found

in the FlyAtlas database, (Figure 4) correspond well to

the mammalian expression data and confirm the wide-

spread expression with the abundant presence in the

brain, although higher in several other tissues. Thus, the

expression pattern is in agreement with the evolutionary

conservation of the protein sequence. We performed a

comprehensive immunohistochemical analysis as well as

in situ hybridization (Additional file 3). The immunohis-

tochemical results showed that the TMEM18 protein is

expressed throughout the mouse brain, which agrees

with the real-time PCR expression profiles (Figure 4)

and the in situ hybridization (See Additional file 3). We

performed co-localization with specific neuronal marker

and assessed the extent of the expression in five major

brain areas. We found that TMEM18 is expressed in

most cells (71%), with a somewhat higher, but signifi-

cant (p = 0.011; t-test), presence in neurons (73%) than

in non-neurons (64%). The outcome is consistent for

different brain areas studied (Figure 5), while the

hypothalamus is the only region that has a relatively

lower percentage of expression in neurons. The

TMEM18 gene was presented as a hypothalamic gene

by the earlier study reporting the GWA to obesity [5].

We did not however see any evidence of significant

enrichment in the TMEM18 expression level in the

Figure 4 TMEM18 tissue distribution in rat, mouse and fly. Relative mRNA expression of the TMEM18 gene was investigated in three
species. Means are relative to the tissue with the lowest expression (set to 1) in the rat and mouse. The expression was measured with real-time
PCR for A. Rat and B. Mouse, whereas the expression of TMEM18 in C. fly was received from the FlyAtlas microarray database, the expression is
relative to the whole fly. All error bars represent SEM.
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hypothalamus compared to other central regions, which

is clear for, e.g., the aforementioned FTO gene and

most neuroendocrine genes involved in body weight reg-

ulation. Thus, our results show that TMEM18 is likely

to have a function in multiple tissues rather than being

a solely hypothalamic gene. Nonetheless, the real-time

PCR and immunohistochemical analyses confirmed that

the TMEM18 is expressed abundantly in the hypothala-

mus and brainstem, regions that play a crucial role in

the regulation of energy homeostasis: the hypothalamus,

as the area that controls primarily feeding for calories

and contains also components of the feeding reward sys-

tem, and the brainstem that serves as the “relay station”

for the gut-CNS signal cascade. Changes in energy

needs of the organism, body weight as well as the

rewarding value of food affect expression of genes

known to participate in the regulation of consumption

and body weight. Therefore, we studied the potential

regulation of the TMEM18 gene expression in three dif-

ferent animal models that explore classical feeding

Figure 5 The TMEM18 protein distribution in different cells in the mouse brain. Averaged percentages of different cell types positive for
TMEM18 in five regions of the mouse brain: A. Cortex, B. Amygdala C. Hypothalamus D. Thalamus and E. Hippocampus. Sections were stained
with DAPI (blue) as a cellular marker, NeuN antibody (green) for neurons and TMEM18 antibody (red). F. cell types in the hypothalamus are
marked with arrows and numbered as follows: 1. TMEM18-positive neurons, 2. TMEM18-negative neurons, 3. TMEM18-positive non-neurons and
4. TMEM18-negative non-neurons.
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paradigms. Feeding-related gene expression profile has

previously been shown to be significantly changed in

these tissues. For example, palatability affected hypotha-

lamic expression of melanocortin receptor-4 (MC4R)

and kappa (KOR) and mu (MOR) opioid receptors; an

increased body weight influenced proopiomelanocortin

(POMC), melanin concentrating hormone (MCH) and

dynorphin (DYN) [45] while restriction of energy intake

through deprivation upregulated expression of the obe-

sity-associated gene FTO. Somewhat surprisingly, the

TMEM18’s expression level in the hypothalamus and

brainstem remained the same in all models utilized

herein (Figure 6). In fact, it shows a more stable

expression (GeNorm expression stability value; M =

0.493) than the commonly used housekeeping genes:

Tubulin beta (M = 0.575) in the brainstem samples

from the deprivation and increased body weight models

(Experiment 1 and 3) and Cyclophilin (M = 0.505,

TMEM18 M = 0.458) in the hypothalamus samples

from the Sucrose vs Intralipid model (Experiment 2).

The average expression stability value is 0.469, which is

remarkable as it parallels housekeeping genes in these

models. Still, TMEM18 would not be considered a true

housekeeping gene as it is not found in all cells. It is

however clear that TMEM18 is differently regulated

compared to the classical neuropeptides and receptors,

Figure 6 TMEM18 hypothalamic and brainstem mRNA expression in three feeding-related mouse models. mRNA expression relative to
the control group (error bars represent SEM) in the hypothalamus (HT) and brainstem (BS) for: A. 48-h consumption of palatable sucrose or
Intralipd, B. 16- and 24-h food deprivation and C. Increased body weight after 3-week exposure to sucrose. No significant changes in TMEM18
mRNA expression were found using a one-way ANOVA in any of the experiments.

Table 1 Association study of TMEM18 rs6548238 and rs7561317 variants with obesity

n Genotype, n (%) MAF, % OR (95% CI) P HWE

11 12 22

rs6548238 CC CT TT

Normal weight 523 356 (68) 148 (28) 19 (4) 18 0.461

Obese 500 378 (76) 115 (23) 7 (1) 13 1.450 (1.137-1.850) 0.002 0.586

rs7561317 GG GA AA

Normal weight 523 348 (67) 156 (30) 19 (4) 19 0.001 0.770

Obese 499 375 (75) 117 (23) 7 (1) 13 1.507 (1.184-1.918) 0.530

Data are number of subjects in each group and number of subjects for each genotype (% in each group). Minor allele frequency (MAF) for each group is given

as percentage. Odds ratio (OR) with a 95% confidence interval (CI) was calculated assuming an additive model. Association with obesity was determined

comparing subjects with normal weight and with obesity. P indicates p-values adjusted for sex. HWE indicates p-values for deviation from Hardy-Weinberg

Equilibrium.
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whose mRNA levels are altered in these models. It is

interesting in this context that TMEM18 contains sev-

eral potential phosphorylation and glycosylation sites

(Figure 1) as both these processes are common regula-

tory pathways for nuclear proteins. It is also possible

that this gene is so prevalent in central neurons (73% of

them express it) that feeding-related changes in

TMEM18 expression might have affected only a small

subpopulation of TMEM18 cells and they were not

detectable with the real-time PCR analysis of a large

region, such as the hypothalamus or brainstem.

Our human genetic study showed a strong significance

for the association of two SNPs (Table 1) located

upstream of TMEM18 with childhood obesity in a

Swedish cohort of obese children and a clear trend for

an increase in BMI SDS for homozygote carriers of the

major allele. Further, the estimations of the odds-ratios

suggest that there are significantly higher risks for car-

riers of the major allele of both SNPs to develop obesity

(Table 1). The odds-ratio for rs6548238 (OR = 1.450) is

in the same magnitude as the calculations made by

Renström and colleagues (OR = 1.100) for a cohort of

4923 Swedish adults [7]. Moreover, the odds-ratios for

the locus near TMEM18 are also as high as reported for

the FTO locus (OR = 1.593) for the same cohort [35].

This strengthens previous observations that this region

is as strongly associated with obesity as FTO. We do

not find however any significant association for the var-

iations with any of the investigated obesity-related traits,

many relevant for the detection of a diabetic phenotype,

while there is a trend for a decrease in birth weight and

length for homozygote carriers of the major alleles

(Table 2). In conclusion, the results show that a region

near TMEM18 is significantly contributing to obesity in

severely obese children, a group that arguably has the

highest genetic component and greatest need for health-

care among different population subgroups of obese

individuals.

Conclusions
In conclusion, we show that common variations nearby

the TMEM18 gene are associated not only to adult

obesity but also obesity in severely obese children in a

similar magnitude as FTO, the first gene associated

with the common form of obesity. TMEM18 has a

remarkably long evolutionary history that spans at least

1500 MY, longer than most other genes implicated in

body weight regulation that we are aware of. The gene

is widely distributed in the brain, found in the majority

of all cells in the brain with slight, yet significant,

enrichment in neurons compared to non-neurons.

Table 2 Anthrometric characteristics in obese and

normal-weight children and adolescents stratified

according to TMEM18 rs6548238 and rs7561317

genotype.

rs6548238 CC CT TT P

Normal-weight,
n = 523

Age (years) 17.1 ± 0.9 16.9 ± 0.8 17.0 ± 0.5 0.126

Weight (kg) 63.5 ± 9.9 63.5 ± 10.1 65.2 ± 9.6 0.247

Length (m) 1.73 ± 0.08 1.73 ± 0.09 1.73 ± 0.09 0.651

BMI SDS 0.139 ± 0.565 0.184 ± 0.630 0.158 ± 0.375 0.921

Obese, n = 500

Age (years) 12.2 ± 3.3 12.6 ± 2.9 13.2 ± 2.5 0.203

Birth length
(cm)

50.0 ± 2.9 50.4 ± 2.5 52.1 ± 1.6 0.048

Birth weight (g) 3465 ± 721 3627 ± 641 3879 ± 225 0.077

Length (m) 1.66 ± 0.14 1.58 ± 0.16 1.58 ± 0.18 0.674

Weight (kg) 109.6 ± 31.5 90.4 ± 28.5 91.5 ± 29.1 0.920

BMI SDS 6.3 ± 0.9 5.5 ± 1.6 5.8 ± 1.5 0.073

P-Glucose
(mmol/l)

4.5 ± 0.7 4.3 ± 0.6 4.4 ± 0.9 0.512

fS-Insulin
(mmol/l)

118.2 ± 71.3 113.8 ± 74.5 92.6 ± 44.3 0.503

Triglycerides
(mmol/l)

0.82 ± 0.81 0.82 ± 0.97 0.57 ± 0.53 0.944

Cholesterol
(mmol/l)

3.73 ± 0.85 3.84 ± 0.86 3.43 ± 0.53 0.482

rs7561317 GG GA AA P

Normal-weight,
n = 523

Age (years) 17.1 ± 0.9 16.9 ± 0.8 17.1 ± 0.5 0.175

Weight (kg) 63.4 ± 9.9 63.6 ± 9.9 65.2 ± 9.6 0.335

Length (m) 1.72 ± 0.09 1.73 ± 0.09 1.73 ± 0.09 0.708

BMI SDS 0.139 ± 0.567 0.181 ± 0.629 0.158 ± 0.374 0.780

Obese, n = 500

Age (years) 12.2 ± 3.3 12.6 ± 2.9 13.3 ± 2.5 0.191

Birth length
(cm)

49.9 ± 2.9 50.4 ± 2.4 52.1 ± 1.6 0.032

Birth weight (g) 3469 ± 723 3614 ± 644 3879 ± 225 0.121

Length (m) 1.66 ± 0.14 1.58 ± 0.16 1.58 ± 0.18 0.792

Weight (kg) 109.6 ± 31.5 90.1 ± 27.8 91.5 ± 29.3 0.859

BMI SDS 6.3 ± 0.9 5.5 ± 1.6 5.8 ± 1.5 0.038

P-Glucose
(mmol/l)

4.5 ± 0.7 4.3 ± 0.6 4.4 ± 0.9 0.362

fS-Insulin
(mmol/l)

117.7 ± 71.4 115.4 ± 74.6 92.6 ± 44.3 0.713

Triglycerides
(mmol/l)

0.82 ± 0.80 0.81 ± 0.96 0.57 ± 0.53 0.882

Cholesterol
(mmol/l)

3.73 ± 0.86 3.83 ± 0.86 3.43 ± 0.53 0.683

Data are means and SD divided into genotype groups. P indicates p-values

adjusted for

significant covariates.
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Expression of the gene does not seem to be affected in

classical homeostatic models where several known reg-

ulators of appetite and reward are regulated. The pro-

tein has highly evolutionary conserved structural

properties that induce the targeting to the nucleus of

the cell, which may clarify why this newly identified

gene has different expression and regulation patterns

compared to the known neuroendocrine factors thus

far associated with human obesity.

Additional file 1: TMEM18 specific primer sequences for the rat and
mouse used for the real-time PCR analysis.

Additional file 2: Protein sequences together with accession numbers
for the TMEM18 proteins received in the mining and used in the
subsequent analysis.

Additional file 3: The figure shows in situ hybridization with the
TMEM18 probe (red) and DAPI (blue) as a cellular marker in three regions
of the mouse brain: A. Hypothalamus, B. Cortex and C. Amygdala.
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