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Abstract—Physiological signals, including heart rate (HR),
heart rate variability (HRV), and respiratory frequency (RF) are
important indicators of our health, which are usually measured in
clinical examinations. Traditional physiological signal measure-
ment often involves contact sensors, which may be inconvenient
or cause discomfort in long-term monitoring sessions. Recently,
there were studies exploring remote HR measurement from
facial videos, and several methods have been proposed. However,
previous methods cannot be fairly compared, since they mostly
used private, self-collected small datasets as there has been
no public benchmark database for the evaluation. Besides, we
haven’t found any study that validates such methods for clinical
applications yet, e.g., diagnosing cardiac arrhythmias/disease,
which could be one major goal of this technology.

In this paper, we introduce the Oulu Bio-Face (OBF) database
as a benchmark set to fill in the blank. The OBF database in-
cludes large number of facial videos with simultaneously recorded
reference physiological signals. The data were recorded both from
healthy subjects and from patients with atrial fibrillation (AF),
which is the most common sustained and widespread cardiac
arrhythmia encountered in clinical practice. Accuracy of HR,
HRV and RF measured from OBF videos are provided as the
baseline results for future evaluation. We also demonstrated
that the video-extracted HRV features can achieve promising
performance for AF detection, which has never been studied
before. From a wider outlook, the remote technology may lead
to convenient self-examination in mobile condition for earlier
diagnosis of the arrhythmia.

I. INTRODUCTION

Physiological signals such as heart rate (HR), heart rate

variability (HRV), and respiratory frequency (RF) are vi-

tal biomarkers of the body and necessary information for

diagnostic and monitoring purposes of clinicians. They are

constantly regulated by the autonomic activity of the nervous

system and thus are indirect sources of information regarding

nervous system functionality. Those biomarkers are monitored
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in many health-care scenarios in clinical settings, whether it is

a treatment procedure or examination and diagnostics. Conven-

tional yet most prevalent means of cardiovascular monitoring

often involves invasive or non-invasive sets of sensors, e.g.,

electrocardiography (ECG) sensors attached to the chest to

measure cardiac electrical activity, or a pulse oximeter attached

to finger tip or earlobe in order to measure the blood volume

pulse (BVP). The wired connection of sensor sets causes

discomfort (particularly for elderlies and infants) for those

undergo long-term monitoring.

In recent years, there were studies reported that heartbeat

could be remotely measured from facial videos [1], [2], [3],

[4], [5]. Some studies [2], [4], [5] proposed color-based

methods to measure heartbeat information by analyzing the

color change of the face videos, while others [3] proposed

motion-based methods. No doubt whatsoever the idea of

estimating physiological signals remotely from face could be

a promising alternative platform for inconvenient clinical and

daily monitoring, and it explains the reason of growing number

of research papers in this area. However, considering the

emerging technology of remote physiological signal measure-

ment, two key questions are yet to be addressed:

1) How can we fairly evaluate the proposed methods?,

2) Are the methods sufficiently accurate for medical pur-

poses?

Previous studies were not able to comprehensively address

these two prominent questions, and one major reason is the

lack of a benchmark database. To our best knowledge, as of

now we were not able to find any database published for the

purpose of validating video-extracted physiological signals to

detect abnormal cardiac activity patterns for clinical purpose.

In this paper, we introduce the Oulu BioFace (OBF)

database, as a benchmark testing set to fill in the blank. OBF

database includes large number of controlled subjects’ data

as well as patients’ suffering from atrial fibrillation (AF). A978-1-5386-2335-0/18/$31.00 c©2018 IEEE
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Fig. 1. (A). ECG of a healthy person, and (B). ECG of an AF patient.
The irregular pulsation of the heart and morphological change of ECG
are descriptive features of AF. If AF could be examined and detected by
some convenient means at home, e.g., self-checking through a smart camera
recording one’s face, it would greatly help people who are in need of
continuous monitoring.

sample ECG signal measured from a healthy person as well

as an AF patient’s signal is shown in Figure 1. Our aim is first

to introduce the database, second to carry out experiments on

OBF to primarily evaluate the accuracy of remote HR, HRV

and RF measurements; and third to demonstrate the possibility

of using video-extracted features for AF detection, which has

never been studied before.

II. BACKGROUND

A. Remote physiological signal measurement from face

We first briefly review the main progress of studies re-

garding remote physiological signal measurements, derived

from facial videos. By physiological signals we mean average

HR, HRV and RF, while the literature mostly offers studies

exploring average HR, and a few of them considered the

measurements of HRV features and RF. Verkruysse et al. [1]

in 2008 first reported that HR can be measured from color

facial videos recorded under ambient light. The authors also

found that among the three color channels, the green one

contains the strongest heart beat related component. Poh et

al. in [6] proposed a method to use independent component

analysis (ICA) of the three color channels for HR measurement

from web-cam-recorded facial videos. Since then many studies

[7], [4], [8], [5] proposed improved color-based approaches

for average HR measurement from facial videos. The later

approaches mainly focused on face region selection, reducing

artifacts, caused by motions and illumination variations.

Nevertheless, there are also studies considering motion-

based methods for HR measurement from facial videos. In

2013, Balakrishnan et al. [3] first proposed that HR can be

measured by tracking the motion trajectories of facial points

due to the interaction of gravity and arterial pulsations, and

two studies [9], [10] followed their work by improving the

trajectory-analyzing methods for HR measurement from facial

videos. More detailed background of remote HR measurement

studies is referred to one review paper [11].

All the mentioned studies focused on average HR measure-

ment. However, HR counts the number of heartbeats within

a specific period of time, which is a valuable yet very coarse

and limited description of the cardiac activity. The HRV (also

referred as the inter-beat-interval, IBI) on the other side,

indicates the variation in time interval between heartbeats,

which offers much more detailed information about cardiac

and autonomic nervous system activity. But HRV requires

more delicate measurement as it is computed using time points

of each individual heartbeat. For rigorous applications and

complex analysis such as clinical diagnosis, HRV is needed,

while HR is too coarse for such purposes.
Compared to remote HR measurement studies, remote HRV

analysis were only addressed in a few papers. In 2011 Poh

et al. [2] extended their previous work and analyzed HRV

and RF from facial videos using a similar yet slightly im-

proved approach. The method was validated on a small self-

collected dataset of 12 persons. McDuff et al. [12] used the

same approach to compute HRV features derived from face,

and applied the face-derived HRV features for stress level

classification on a self-collected dataset of ten subjects. In

one later work [13], the authors proposed a chrominance-based

method with continuous wavelet transform (CWT) to attenuate

the HRV measurement noise, which was validated on a self-

collected dataset of six subjects. Besides, the feasibility of RF

estimation from facial videos was also proved in [2], [14].
To sum up, remote physiological signal measurements is a

new area in machine vision research, and growing number

of pieces of research is being reported. Considering the

prospective future of the topic, two important questions need

to be addressed:

• How one can fairly evaluate the proposed methods?

Previous studies share one common problem about the

testing datasets. Most of the proposed methods were

only validated on self-collected datasets, containing small

sample size. The limitation of using private datasets is

that there is no benchmark that methods can be fairly

evaluated and compared for this new emerging topic.

There were some studies [4], [8], [5], [10] tested on a

shared MAHNOB-HCI database [15]. The MAHNOB-

HCI was originally designed for emotion analysis, and

the videos involve various issues and poor illumination,

which might be too complicated for delicate HRV mea-

surements. It is better to start the exploration of remote

HRV analysis methods first on a fine and well-controlled

dataset (as the OBF database proposed here), and then

proceed to more challenging datasets later.

• Are the derived signals sufficiently qualified for med-

ical purposes? Although the physiological signals can

be measured for other purposes (e.g. emotion analysis),

one ultimate and the most demanding purpose is clinical

usage (e.g. diagnosing cardiac arrhythmia such as AF).

At the moment, the authors could not find any proposed

remote measurement method which has been validated

for medical diagnosis, and thus, the primary step towards

that is to collect a proper dataset for such target.



B. Atrial fibrillation (AF)

AF is one of the most common sustained widespread cardiac

arrhythmia and according to American Heart Society at least

2.7 million Americans are living with AF. In AF electrical

impulses do not originate in the sinoatrial (SA) node and cause

disorganized and uncoordinated pulse through cardiac muscle.

Thus, AF is usually accompanied with rapid and irregular

heartbeats. It can be diagnosed using electrical activity of the

heart recorded by ECG. ECG signal measured from a healthy

person versus a patient diagnosed with AF is shown in Figure

1. The peak population of AF is owned by elders over 65-

year-old, and it is likely to happen for younger people with

either family history, or with related diseases, like hypertension

or diabetes. AF is a major cause of hospitalization today.

Constant AF may lead to severe or even fetal consequences

(e.g., ischemic stroke). But in case of early diagnosis, AF

could be controlled or even cured with medications and other

treatments, such as electrical cardioversion. Unfortunately the

AF in early stage is less symptomatic for some people,

who may miss the opportunity of early intervention. Remote

examination of AF in a convenient mean, e.g., with a camera

at home, could increase the chance of early intervention and

cut a substantial expenses in treatment and hospitalization of

suspected AF patients.

C. Contribution of the current study

In this paper, we introduce the OBF database. OBF database

includes large number of face videos and synchronized refer-

ence physiological signals recorded from both healthy subjects

and AF-diagnosed patients. The OBF database can be used as

a benchmark for:

1) Evaluating the methods of physiological signal deriva-

tion (HR, HRV and RF) from facial videos (of resting-

state vs. post-exercise; or of three groups of different

skin tones);

2) Training computational models to use video-extracted

physiological features for AF detection.

We also carry out experiments on OBF database to:

1) Evaluate the accuracy of HR, HRV and RF measurement

from face, and report the performance as baseline results

for future comparison with other proposed methods;

2) Use the face-extracted HRV features for detecting AF

cases [16].

III. OULU BIO-FACE (OBF) DATABASE

A. Equipment and setup

The data collection was first carried out for healthy subjects

at the University of Oulu, and then at the Oulu University Hos-

pital for AF patient’s recording. The recording environment

and setups were strictly controlled so that data achieved at

both sites are of the same properties. A multi-modal setup was

arranged for synchronized recording of two video channels and

three channels of physiological signals from each participant.

The recording set includes a computer, a color (RGB) camera,

a near infra-red (NIR) camera, a biosignal data acquisition

(BIO) device with three sets of sensors, and two LED lights.

Detailed information of all equipment are listed in Table II.

The software used for recording physiological signals is Bio

Trace+ NX10 1, which is provided by the device company. We

also used a free software VirtualDubMod 2 for the recording

of NIR videos.

TABLE I
STATISTICAL INFORMATION OF THE PARTICIPANTS.

Healthy (n=100) Patient (n=63)

Age (y) 31.6± 8.8, [18, 68] 68.1± 13.2, [43, 81]
Gender 61% M , 39% F 50% M , 50% F
Ethnic Caucasian:32%,

Asian:37%,
Others:31%.

Caucasian: 100%

Weight (Kg) 71± 16 88± 13
Wear eyeglasses 39% 50%

RGB videos recorded using the color camera are the core

data of OBF database. Most commercial oximeters use NIR

bandwidth light sources for contact BVP measurements, while

the NIR face videos haven’t been studied yet for the same

purpose in non-contact video-extracted context. Thus we also

added an additional NIR video set to explore the feasibility of

physiological signal derivation from the NIR facial videos.

The recording environmental setup is illustrated in Figure

2. A chair was placed in front of cameras at one meter

distance. Two lights standing on both sides of the cameras

and illuminate the faces at 45 degree angle with a distance of

1.5 meters. As OBF is the first database built for evaluating

methods for remote measurement of physiological signals,

including very challenging HRV features, there is possibility

that the video-extracted HRV features are too poor for the

AF detection at this stage. We intentionally design the setup

to make sure the videos could be of relatively high quality,

so that future studies can explore methods on the data as a

fundamental starting point. More challenging data (recorded

in wild condition) will be considered as the next step.

Fig. 2. The setup of the OBF database collection.

1https://www.mindmedia.com/downloads/
2http://www.virtualdub.org/
3More patients data are being collected for a target number of 100. Statistic

info are based on current 6 patients.



TABLE II
EQUIPMENT AND SPECIFICATIONS AND SETTINGS.

Device Specifications Settings Output

Computer HP EliteDesk Windows 7 OS N/A
RGB camera Blackmagic URFA mini ISO 400, FPS 60, HD 1920 x 1080 RGB video
NIR camera Customized USB 2.0 Camera box (SN9C201&202) 640 x 480, FPS 30 NIR video

LED lights (2) Aputure, LightStorm LS 1c Brightness: 3500 lux, Temperature: 5500 k N/A
Biosignal Acquisition NeXus-10 MKII N/A N/A

ECG sensor NX-EXG2B 256Hz ECG Signal
Respiratory Belt NX-RFP1B 32Hz RF Signal

BVP sensor NX-BVP1C 128Hz BVP Signal

TABLE III
DATA COMPOSITION OF THE OBF DATABASE.

Modalities
Data length / person

Total(min)
Healthy (n=100) AF (n=6)

RGB Video,
NIR Video

ECG, BVP, RF

Resting state:
5min

Prior-treatment:
5min 10600

Post-exercise:
5min

Post-treatment:
5min

B. Participants

Healthy participants were recruited from University of Oulu

through internal email calls. The research content and data

collection procedure were explained in the emails, and alto-

gether 100 healthy (no heart disease history) volunteers were

recruited. AF patients were recruited from Oulu University

Hospital by cardiologists and nurses. Most of the patients were

reserved on a list to receive cardioversion treatment, while

the rest were acute patients recruited from emergency center.

The collection of AF patients data is ongoing at the moment.

Already six patients participated before the experiment, while

more patients are reserved and data of altogether 100 patients

of diverse ethnicities will be collected in the following months

and published as another database. General statistical informa-

tion of the participants are summarized in Table I. The healthy

group covers a wide range of age, and owns a diverse ethnicity.

Ethical issues: The study was performed according to the

Declaration of Helsinki, and the local committee of research

ethics of the Northern Ostrobothnia Hospital District approved

the protocol. All the subjects gave written informed consent.

The patients were accompanied and arranged by professional

cardiologists and nurses through the whole measurement.

C. Acquisition procedure

Before the execution of the recording, each participant read

and signed the consent agreement. Then the participants were

guided to seat in front of the cameras, and bio-sensors were

attached to them. The participants were instructed to remain

comfortable and seated facing the cameras. There were two

sections of recording, each lasts for five minutes. Healthy

participants were asked to exercise (climbing the stairs) for

about five minutes between the two sessions in order to record

higher heart rate for the next session. Thus, in session one we

recorded the resting state, and in session two we recorded

post-exercise state of elevated HR and RF.

For AF patients, session one was recorded after they were

examined by the doctor prior to the cardioversion treatment

(with the AF symptom), while session two was recorded three

hours later after the cardioversion treatment (with recovered

sinus heart rhythm).

Regarding the data synchronization, for each session, the

cameras and the bio-sensors were synchronized by passing

a visual cue (for both of the cameras) and pressing a trigger

button (on the bio-signal data acquisition) simultaneously, both

at the start and at the end of the recording.

D. Data composition

Table III lists the data included in the database. There are

data from 100 healthy participants and currently six AF pa-

tients (ongoing collection). For each participant, multi-modal

data were recorded simultaneously for two sessions of five

minutes. Sample data of each modality is shown in Figure 3.

For healthy participants, session one is resting state and session

two is post-exercise with elevated HR; for AF patients, session

one is recorded before the cardioversion treatment (with AF)

while session two is after the treatment (with recovered healthy

heartbeat rhythm for most cases). The total data sum up to

10600 minutes so far for each of the five modalities.

IV. METHOD

We propose a framework to measure average HR, HRV

features, and RF for AF detection. The main steps of the

framework is shown in Figure 4. Our framework was inspired

by paper [2], while adjustments were made in several steps

through our prior testing and hence, the current framework

achieves superior performance than the original method.

A. Facial ROI tracking

Given an input video of n frames, we use discriminative

response map fitting (DRMF) method [17] to detect the face

and locate 66 landmarks on the first frame. Then a customized

region of interest (ROI) was defined by the facial contour

landmarks. The defined ROI was tracked through the video

using the Kanade-Lukas-Tomasi (KLT) algorithm [18] (see

Figure 4 A). The raw heartbeat signals (raw RGB signals)

are calculated by averaging the pixel values within the ROI of

the three color channels of each frame, as Rraw, Graw and

Braw, which all are vectors of length n.
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Fig. 3. Samples of raw data of the OBF database.

We use ROI tracking instead of face detection on each

frame as [2], since our method is able to avoid including

background pixels and acquire smoother raw signal. Besides,

in [2] the independent component analysis (ICA) was utilized

to decompose the three signals of RGB channels for reducing

motion artifacts. Here we use the green channel signal Graw

(see Figure 4 B), because in our prior testing we found the ICA

output component sometimes might include unaccountable

signal patterns, especially for the cases that contain short but

dramatic fluctuations.

B. Temporal filtering and interpolation

The raw green signal (Graw) is then filtered and interpo-

lated. We first use a detrending filter [19] with the smoothing

parameter Λ = 300 (cutoff frequency of 0.66 Hz) to remove

the slow floating trend of the raw signal. After that the signal is

normalized by subtracting its mean and divided by its standard

deviation. Then the normalized signal is smoothed using a five-

point moving average filter.

The aim of these three steps of filtering are to remove

irrelevant noise and acquire a smoother signal. Since the

reference ECG signal were recorded at 256Hz, the smoothed

signal is interpolated with a cubic spline function at a sampling

frequency of 256 Hz. In paper [2] a bandpass filter was

applied. We did not include any bandpass filter, as we found

that it might over-smooth the signal and alter the pulse peak

locations. The filtered and interpolated signal is defined as

Gsmooth (see Figure 4 C) for the next step of IBI signal

computing and HRV analysis.

Fig. 4. Framework proposed for HRV measurement from facial videos.

C. Quantification of physiological parameters

Subsequently, we developed a customized peak detection

function for detecting pulse peaks from Gsmooth and compute

the IBI signal (see Figure 4 D). The average HR (expressed

as HR) of the input video can be calculated from the average

IBI (known as IBI and in second unit) as HR =
60

IBI
in

beat-per-minute (bpm) unit.

In this study, we perform standard spectral analysis of

HRV (a.k.a.,the IBI signals), as an important indicator of

autonomic nervous system activity [20]. According to the

literature, there are three main frequency components in HRV

signals, including very low frequency (VLF), low frequency

(LF) and high frequency (HF) components. However, the

justification of existence and explanation of VLF components

are still under question and thus, we consider only LF and HF

components in this study. We measured those two components

in normalized units (n.u.), which represent the relative value

of each component to the total power. These two branches of

spectrum indicate the controlled and balanced behavior of the

autonomic nervous system.

For the sake of stationarity of the signals, we segmented

the five-minute-long signals into segments of 30 seconds.

Then we applied Lomb-Scargle periodogram which returns

the power spectral density (PSD) estimation and can handle

irregularly spaced time series, as in our case the IBI signal is

not equidistant. Thus, the LF and HF in n.u. and their ratio,

extracted from PSD is reported as well as the extracted RF

and HR. Our results are reported with the same style as the



results reported in [2].

However, for the AF detection, we use some of IBI standard

features [20], including

• Time-domain: mean IBI, standard deviation of IBI, root

mean square of successive differences (RMSSD), square

root of the sum of the squares of differences of individual

values compared to the mean value, divided by the

number of RRI in a period (RMSM) and percentage

of samples with more than 50ms difference from the

consecutive beat (pNNI50),

• Geometrical-domain: Poincar plot standard deviations

(SD1, SD2)

• Spectral-domain: LF, HF and their ratio in normalized

unit (n.u.).

V. EXPERIMENTS AND RESULTS

There are two parts of experimental results. First, we

evaluate the accuracy of our framework on OBF database by

comparing physiological signals (HR, HRV features, and RR)

measured from facial videos with reference ECG and BVP

signals. Second, we use the face-extracted HRV features to

perform AF detection.

A. Physiological signals measured from facial videos

100 healthy participants data from OBF database are used

for the evaluation of the proposed framework. All data are

cut into 30 seconds long segments, in which each participant

yields 20 segments of the data and there are entirely 2000

units of sample data.

Using the proposed framework, we first compute HR of

each segment and compare it with the corresponding reference

ECG. BlandAltman plot [21] is used to evaluate the HR mea-

sured from RGB videos as shown in Figure 5, and statistical

results are listed in Table IV. It can be seen that by using

the proposed method framework we can measure HR from

RGB videos with high accuracy on most of the cases, with the

average error of −0.03± 2.16bpm. We also implemented the

original method proposed in [2] which includes the process of

ICA and bandpass filtering, but the accuracy (average error =

6.55±11.69 bpm) is significantly lower than our results for the

HR measurement. One possible reason might be that the ICA

is not very effective for some of the cases, as we mentioned

in the method. In the following experiments, the IBI signal

computing will completely be based on the heartbeats derived

in the current step, since our framework outperformed [2]’s

method by acquiring more accurate HR.

HR measured from NIR videos are shown in Figure 6, and

statistical results are listed in Table V. The results show that

heartbeat information can also be extracted from NIR facial

videos, but with poorer performance than those from RGB

videos. The average error is −1.66± 6.60bpm.

For HR measurement from RGB videos, there are a few

cases with large errors. One sample of those erroneous cases

is illustrated in Figure 7. One possible reason of the large error

for this case (and several other similar cases) is the darker skin

tone. Although on general the accuracy of HR measurement
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on NIR videos is lower comparing to RGB videos, one note

worth being pointed out is that, NIR videos might provide

supplementary information for some challenging RGB cases

of dark skin tone. As for the sample shown in Figure 7, the

heartbeat signal extracted from NIR video is superior than the

corresponding RGB video, as NIR image is more robuster

to skin tone. How to use the complimentary information

from RGB and NIR videos for remote physiological signal

measurement is worthy of exploration in future, and the OBF

database provides a decent platform for this study.

We further computed IBI signals to extract HRV features

(LF, HF and LF/HF). Figure 8 shows the video-measured

signals and features and compared them with those of the

reference ECG. The statistical results of remote HRV measure-

ment from RGB videos are reported in Table IV, and those

of NIR videos are reported in Table V. The RF is computed

using the peak location of the HF component from the PSD of



TABLE IV
SUMMARY RESULTS ON OBF RGB VIDEOS USING THE PROPOSED

FRAMEWORK.

HR
(bpm)

RF
(Hz)

HRV
LF (n.u.) HF(n.u.) LF/HF

Error Mean -0.03 0.13 0.17 0.17 1.2

Error SD 2.16 0.17 0.19 0.19 2.2

RMSE 2.16 0.22 0.26 0.26 2.5

R 0.99 0.23 0.55 0.55 0.38

TABLE V
SUMMARY RESULTS ON OBF NIR VIDEOS USING THE PROPOSED

FRAMEWORK.

HR
(bpm)

RF
(Hz)

HRV
LF (n.u.) HF(n.u.) LF/HF

Error Mean -1.66 0.15 0.24 0.24 1.4

Error SD 6.60 0.17 0.23 0.23 2.3

RMSE 6.80 0.23 0.33 0.33 2.8

R 0.87 0.09 0.25 0.25 0.20

the IBI signal. According to the reported figures, the HR can

be measured at a higher accuracy, while basically the HRV

features are more challenging with larger error margin and

much lower correlation efficiency R (mostly less than 0.5).

As mentioned in Section II, the primary focus of the

current paper is to introduce OBF database as a benchmark

database to facilitate investigation of remote physiological

signal measurement. The proposed framework only includes

basic steps of HRV analysis, which could serve as a foundation

for future work. Results in Table IV and V are listed as

baseline results for later evaluation on OBF database. More

advanced methods will be explored in future for more reliable

physiological signal derivation, especially HRV features.

B. AF detection using video-extracted HRV features.

We also explore whether it is possible to use video-extracted

HRV features for detecting AF cases against healthy ones. The

five-minute resting-state recording of each healthy participant,

and the five-minute prior-treatment recording of each AF

patient are utilized for a binary classification test. Data are also

divided into segments of 30-second length. Entirely, there are

60 AF segments (of six AF patients) and 1000 healthy control

samples (of 100 healthy participants).

For the task of AF detection, we only considered the

variation of IBIs, derived from ECG and RGB videos. A set of

features explained in IV-C are extracted first from the IBI data

of reference ECG, and then from the IBI data of RGB videos.

Radial-basis function (RBF) kernel support vector machine

(SVM) is used as the classifier and the kernel parameters are

optimized using MATLAB heuristic procedure optimization.

About the testing protocol, we run 100 rounds of classification

tests and summarize the average accuracy. For each round, We

randomly select six (out of 100) healthy subjects as the control

group so that we have balanced samples of the two categories.

The data is divided into two halves, each contains 30 healthy

samples from three healthy subjects, and 30 AF samples from

three patients. We first train on one half and test on the other

half, and then exchange for cross validation.

Fig. 7. One error sample. HR signal computed from RGB video is noisy due
to the dark skin tone; while HR signal computed from NIR is superior, as
NIR video is less prone to skin color. The black curve is the reference ECG.

TABLE VI
THE PERFORMANCE OF AF DETECTION USING ECG- AND RGB-DERIVED

IBI SIGNALS.

ACC SP
ECG-derived features 88.8% 89.1%

RGB-video-derived features 78.3% 78.8%

The accuracy (ACC =
TP+TN

TP+TN+FP+FN
) and specificity

(SP =
TN

TN+FP
) are used as the validation metrics. The

average ACC and SP of the 100 rounds classification are

reported in Table VI for both ECG-derived features and video-

derived features. We achieved accuracy of about 78.3% using

video-extracted HRV features for AF detection. ECG-derived

features of course performed better, as ECG is the golden

standard employed by doctors for AF diagnosis. Our results

using video-extracted features are quite promising, since this is

the first work that ever demonstrated using remotely measured

HRV features for AF detection. We are gathering more data of

AF patients, and more advanced methods will be explored in

future to reduce errors of video-extracted features and further

improve the AF detection performance.

VI. CONCLUSION

In this paper we introduce the OBF database, which includes

large number of facial videos with corresponding reference

physiological signals as a benchmark database for validating

methods on remote physiological signals measurement. OBF

includes data recorded from 100 healthy subjects and six

patients diagnosed with AF, which is the most widespread

sustained cardiac arrhythmia in clinical settings. This new

database fills the gap between remote physiological signal

analysis and demonstration of the new technology for medical

applications. Accuracy of HR, HRV and RF measured from

OBF videos are provided as the baseline results using a

proposed framework method. We also demonstrated that the

video-extracted HRV features can achieve promising perfor-

mance for AF detection, which has never been studied before.
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Fig. 8. Data measured from facial videos versus the reference ECG. Three
sets of subplots are depicted. Set A are the heartbeat signals recorded from
reference ECG and extracted from RGB and NIR face videos. Set B shows
the IBI signals derived from corresponding heartbeat signals from the set A.
Set C is the PSD of the IBI signals depicted in the set B.

The OBF database can provide sufficient amount of data

for future explorations regarding remote physiological signal

measurement from face. More data of AF patients is under

collection, and will be released later as an extended dataset

which includes 100 AF patients with different ethnicities.

More advanced methods will be explored in future (e.g.,by

combining RGB and NIR videos) to achieve more accurate

HRV features for AF detection.

VII. ACKNOWLEDGMENTS

This work was supported by Academy of Finland, Tekes

Fidipro program (Grant No. 1849/31/2015) and Tekes project

(Grant No. 3116/31/2017), Infotech, Tekniikan Edistamissaa-

tio Foundation, National Natural Science Foundation of China

(No. 61772419).

REFERENCES

[1] W. Verkruysse, L. O. Svaasand, and J. S. Nelson, “Remote plethysmo-
graphic imaging using ambient light,” Optics express, 2008.

[2] M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in non-
contact, multiparameter physiological measurements using a webcam,”
IEEE transactions on Biomedical Engineering, 2011.

[3] G. Balakrishnan, F. Durand, and J. Guttag, “Detecting pulse from head
motions in video,” in The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2013.
[4] X. Li, J. Chen, G. Zhao, and M. Pietikainen, “Remote heart rate

measurement from face videos under realistic situations,” in The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2014.
[5] S. Tulyakov, X. Alameda-Pineda, E. Ricci, L. Yin, J. F. Cohn, and

N. Sebe, “Self-adaptive matrix completion for heart rate estimation from
face videos under realistic conditions,” in The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016.
[6] M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated

cardiac pulse measurements using video imaging and blind source
separation,” Optics Express, 2010.

[7] G. de Haan and V. Jeanne, “Robust pulse rate from chrominance-based
rppg,” IEEE Transactions on Biomedical Engineering, 2013.

[8] A. Lam and Y. Kuno, “Robust heart rate measurement from video
using select random patches,” in Proceedings of the IEEE International

Conference on Computer Vision (ICCV), 2015.
[9] L. Shan and M. Yu, “Video-based heart rate measurement using head

motion tracking and ica,” in Image and Signal Processing (CISP), 2013

6th International Congress on. IEEE, 2013.
[10] M. A. Haque, R. Irani, K. Nasrollahi, and T. B. Moeslund, “Heartbeat

rate measurement from facial video,” IEEE Intelligent Systems, 2016.
[11] M. Hassan, A. Malik, D. Fofi, N. Saad, B. Karasfi, Y. Ali, and

F. Meriaudeau, “Heart rate estimation using facial video: A review,”
Biomedical Signal Processing and Control, 2017.

[12] D. McDuff, S. Gontarek, and R. Picard, “Remote measurement of cog-
nitive stress via heart rate variability,” in Engineering in Medicine and

Biology Society (EMBC), 2014 36th Annual International Conference of

the IEEE. IEEE, 2014.
[13] R.-Y. Huang and L.-R. Dung, “Measurement of heart rate variability

using off-the-shelf smart phones,” Biomedical engineering online, 2016.
[14] F. Zhao, M. Li, Y. Qian, and J. Z. Tsien, “Remote measurements of

heart and respiration rates for telemedicine,” PLoS One, 2013.
[15] M. Soleymani, J. Lichtenauer, T. Pun, and M. Pantic, “A multimodal

database for affect recognition and implicit tagging,” IEEE Transactions

on Affective Computing, 2012.
[16] P. Przystup, A. Poliński, A. Bujnowski, T. Kocejko, and J. Wtorek, “A

body position influence on ecg derived respiration,” in Engineering in

Medicine and Biology Society (EMBC), 2017 39th Annual International

Conference of the IEEE. IEEE, 2017.
[17] A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic, “Robust discrimina-

tive response map fitting with constrained local models,” in The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2013.
[18] C. Tomasi and T. Kanade, Detection and tracking of point features.

CMU, 1991.
[19] M. P. Tarvainen, P. O. Ranta-aho, and P. A. Karjalainen, “An advanced

detrending method with application to hrv analysis,” IEEE Transactions

on Biomedical Engineering, 2002.
[20] A. J. Camm, M. Malik, J. Bigger, G. Breithardt, S. Cerutti, R. J. Cohen,

P. Coumel, E. L. Fallen, H. L. Kennedy, R. E. Kleiger et al., “Heart rate
variability: standards of measurement, physiological interpretation and
clinical use. task force of the european society of cardiology and the
north american society of pacing and electrophysiology,” Circulation,
1996.

[21] J. M. Bland and D. G. Altman, “Measuring agreement in method
comparison studies,” Statistical methods in medical research, 1999.


