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ABSTRACT
This is the first of a series of papers in which we derive simultaneous constraints on cosmo-
logical parameters and X-ray scaling relations using observations of the growth of massive,
X-ray flux-selected galaxy clusters. Our data set consists of 238 cluster detections from the
ROSAT All-Sky Survey, and incorporates follow-up observations of 94 of those clusters using
the Chandra X-ray Observatory or ROSAT . Here we describe and implement a new statistical
framework required to self-consistently produce simultaneous constraints on cosmology and
scaling relations from such data, and present results on models of dark energy. In spatially flat
models with a constant dark energy equation of state, w, the cluster data yield �m = 0.23 ±
0.04, σ8 = 0.82 ± 0.05 and w = −1.01 ± 0.20, incorporating standard priors on the Hubble
parameter and mean baryon density of the Universe, and marginalizing over conservative
allowances for systematic uncertainties. These constraints agree well and are competitive with
independent data in the form of cosmic microwave background anisotropies, type Ia super-
novae, cluster gas mass fractions, baryon acoustic oscillations, galaxy redshift surveys and
cosmic shear. The combination of our data with current microwave background, supernova,
gas mass fraction and baryon acoustic oscillation data yields �m = 0.27 ± 0.02, σ8 = 0.79 ±
0.03 and w = −0.96 ± 0.06 for flat, constant w models. The combined data also allow us to
investigate evolving w models. Marginalizing over transition redshifts in the range 0.05–1, we
constrain the equation of state at late and early times to be respectively w0 = −0.88 ± 0.21
and wet = −1.05+0.20

−0.36, again including conservative systematic allowances. The combined data
provide constraints equivalent to a Dark Energy Task Force figure of merit of 15.5. Our results
highlight the power of X-ray studies, which enable the straightforward production of large,
complete and pure cluster samples and admit tight scaling relations, to constrain cosmology.
However, the new statistical framework we apply to this task is equally applicable to cluster
studies at other wavelengths.

Key words: cosmological parameters – cosmology: observations – large-scale structure of
Universe – X-rays: galaxies: clusters.

1 IN T RO D U C T I O N

Clusters of galaxies have a long history as cosmological laborato-
ries, beginning with the discovery of dark matter (Zwicky 1937)
through studies of cluster galaxy orbits, and providing early evi-
dence for a low matter density universe (White et al. 1993) through
studies of their baryonic and dark matter content. These break-
throughs rested on observations of the properties of individual sys-
tems, but the population of clusters as a whole also contains a great

�E-mail: amantz@slac.stanford.edu

deal of cosmological information. Clusters represent the most mas-
sive gravitationally bound systems in the Universe, and as such their
abundance probes the amount of structure in the Universe and its
growth over cosmic time.

The local cluster population has been used to jointly constrain
the average density of matter, �m, and the amplitude of density
perturbations, σ8 (recently by Henry et al. 2009; Rozo et al. 2010, but
see also Reiprich & Böhringer 2002; Allen et al. 2003; Schuecker
et al. 2003 and additional references in Mantz et al. 2008, hereafter
M08). Most recently, the construction of X-ray flux-limited cluster
samples out to redshift z = 0.5 and beyond has enabled studies
of the growth of structure (M08; Vikhlinin et al. 2009b). Such
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studies provide an important new window on cosmology, as various
dark energy and modified gravity models designed to explain the
acceleration of the cosmic expansion are potentially distinguishable
by their effects on structure formation (e.g. Rapetti et al. 2009, 2010;
Schmidt, Vikhlinin & Hu 2009).

The key ingredients for investigations of the cluster population
are (1) a cluster survey with a well-understood selection function,1

and (2) scaling relations that link cluster mass to observable quan-
tities. Currently, the most successful approach to finding massive
clusters over a range of redshifts is through the X-ray emission of
the hot intracluster gas, although Sunyaev–Zel’dovich and optical
surveys are also making significant progress. Because Malmquist
and Eddington biases are ubiquitous in current X-ray flux-limited
samples, great care is warranted in their analysis. In particular,
precise, robust cosmological constraints can only be obtained by
simultaneously fitting the X-ray luminosity–mass relation, as we
do here. Conversely, rigorous analysis of the scaling relations must
take into account the cluster mass function and the selection func-
tion of the data set, as discussed by Mantz et al. (2010a, hereafter
Paper II; see also Stanek et al. 2006; Pacaud et al. 2007).

While a flux-limited sample, combined with more detailed
follow-up observations of a subset of clusters in that sample, may
contain the necessary information to provide simultaneous con-
straints on cosmology and scaling relations, a fully self-consistent
statistical framework for this analysis has been lacking to this point.
By ‘self-consistent’, we mean that a single likelihood function ap-
plying to the full data set (survey + follow-up observations) and
encompassing the entire theoretical model (cosmology + scaling
relations) should be derived from first principles, ensuring that the
covariance among all the model parameters is fully captured and
that the effects of the mass function and selection biases are properly
accounted for throughout.

This is the first of a series of papers in which we address these
issues. Paper II contains details of the follow-up X-ray observations
and their reduction, presents the constraints on scaling relations
from our simultaneous analysis, and discusses their astrophysical
implications. In this paper, we present the statistical methods applied
to the problems described above and the resulting cosmological
constraints. The dark energy models we address here include the
simple cosmological constant model; models with a constant dark
energy equation of state, w; and simple evolving w models. As we
will show, our analysis produces some of the tightest constraints
on dark energy parameters of any experiment to date. In Papers III
(Rapetti et al. 2010) and IV (Mantz, Allen & Rapetti 2010b), we
respectively apply our analysis to investigations of modified gravity
and neutrino properties.

In Section 2, we briefly review the cluster data set, which is more
fully described in Paper II. Section 3 contains a full description of
the theoretical model fit to the data, including the cosmology, cluster
mass function and scaling relations. The new, self-consistent analy-
sis method is presented in Section 4.1. Sections 5 and 6 respectively
contain the cosmological results of our analysis and a discussion of
relevant systematics.

In this paper, we adopt the conventional definition of cluster
radius in terms of the critical density of the Universe; thus, r� is
the radius within which the mean density of the cluster is � times

1Throughout this paper, we use the term ‘selection function’ to refer to
the probability that a cluster be detected by a survey and included in the
resulting data set, as a function of that cluster’s physical properties (redshift,
flux, etc.). See Section 4.1.

the critical density at the cluster’s redshift, ρcr(z). An alternative
convention, used particularly in the literature relevant to the mass
function, is to define the overdensity with respect to the mean matter
density at redshift z. We will consistently use the former convention,
and so, for example, an overdensity of 300 with respect to the matter
density will be written as � = 300�m(z), where �m(z) is the ratio
of the mean matter density to the critical density.

2 DATA

The galaxy cluster data used in this work, as well as their selec-
tion and reduction, are discussed in detail in Paper II. Using three
wide-area cluster samples drawn from the ROSAT All-Sky Sur-
vey (RASS; Trümper 1993) – the ROSAT Brightest Cluster Sample
(BCS; Ebeling et al. 1998), the ROSAT-ESO Flux-Limited X-ray
sample (REFLEX; Böhringer et al. 2004) and the bright subsample
of the Massive Cluster Survey (Bright MACS; Ebeling, Edge &
Henry 2001; Ebeling et al. 2010) – we select a statistically com-
plete sample of 238 X-ray luminous clusters covering the redshift
range z < 0.5. Of these 238 clusters, 94 have follow-up Chandra
or ROSAT observations that we incorporate into the analysis. To
distinguish it from cluster data used in other cosmological work
(e.g. optically selected clusters), we refer to this data set as the clus-
ter X-ray luminosity function (XLF), although in fact the data set
contains a great deal more information than the luminosity function
alone. From the follow-up observations, we measure X-ray lumi-
nosity, average temperature and gas mass within r500. The gas mass
is used as a proxy for total mass, using the finding of Allen et al.
(2008, hereafter A08) that the gas mass fraction, fgas = Mgas/Mtot, is
a constant for the hot, massive clusters being studied.2 The system-
atic uncertainty associated with the fgas measurement is accounted
for by simultaneously constraining the full fgas model of A08, which
includes generous systematic allowances for instrument calibration,
non-thermal pressure support, the depletion of baryons in clusters
relative to the cosmic mean and evolution in the baryon depletion
and stellar content of clusters. We use only the six lowest redshift
clusters from A08 (z < 0.15), which are sufficient to constrain the
gas mass fraction at low redshift without directly producing a con-
straint on dark energy by themselves. In our analysis of the XLF
data, we also use Gaussian priors to constrain the Hubble parameter
and the mean baryon density, based on the results of the Hubble
Key project (h = H0/100 km s−1 Mpc−1 = 0.72 ± 0.08, Freedman
et al. 2001) and big bang nucleosynthesis studies (�bh2 = 0.0214 ±
0.002, Kirkman et al. 2003).

In addition, we compare and combine results from our own
analysis with those of independent cosmological data, including
the full cluster fgas data set (A08, 42 clusters at z < 1.1), as
well as cosmic microwave background (CMB), type Ia supernova
(SNIa) and baryon acoustic oscillation (BAO) data. Our analysis of
the CMB anisotropies uses 5-yr Wilkinson Microwave Anisotropy
Probe (WMAP) data (Hill et al. 2009; Hinshaw et al. 2009; Nolta
et al. 2009) with the March 2008 version of the WMAP likelihood
code3 (Dunkley et al. 2009). The SNIa results are derived from

2We prefer to use Mgas as a proxy for total mass rather than the thermal
energy, YX = MgaskT , because Mgas can be measured more precisely than
temperature for a given exposure time, and because Mgas measurements at
r500 are minimally affected by background and emission weighting uncer-
tainties. In addition, Mgas displays exceptionally small scatter with mass (see
A08 and Paper II) in the mass range considered here, M > 3 × 1014 M�.
3http://lambda.gsfc.nasa.gov
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the Union compilation (Kowalski et al. 2008), which includes data
from a variety of sources (307 SNIa in total; Hamuy et al. 1996;
Garnavich et al. 1998; Riess et al. 1998, 1999, 2004, 2007; Schmidt
et al. 1998; Perlmutter et al. 1999; Krisciunas et al. 2001, 2004a,b;
Knop et al. 2003; Tonry et al. 2003; Barris et al. 2004; Astier et al.
2006; Jha et al. 2006; Miknaitis et al. 2007; Wood-Vasey et al.
2007), including the treatment of systematic errors employed by
Kowalski et al. Our analysis of BAO data uses the constraints
on the ratio of the sound horizon to the distance scale at z =
0.25 and z = 0.35 derived by Percival et al. (2007) from the
galaxy correlation function in 2dF (Colless et al. 2001, 2003)
and Sloan Digital Sky Survey (Adelman-McCarthy et al. 2007)
data.

When fitting CMB data, we allow the scalar spectral index, ns,
and optical depth to reionization, τ , to vary as free parameters, and
marginalize over a plausible range in the amplitude of the Sunyaev–
Zel’dovich signal due to galaxy clusters (0 < ASZ < 2; introduced
by Spergel et al. 2007). The combination of CMB and fgas data
places tight constraints on both h and �bh2 in addition to other
parameters of interest (see A08), so the Hubble Key project and
big bang nucleosynthesis priors are unnecessary in analyses of the
combined data sets. This applies as well to the combination of CMB
and XLF data, since we always use the z < 0.15 subset of the fgas

data to calibrate the cluster mass scale for the XLF analysis.

3 MO D EL

In this section, we detail the various pieces of the model being
fit to the XLF data. Section 3.1 reviews the important cosmologi-
cal parameters and the dark energy models to be addressed, while
Section 3.2 focuses on the predicted mass function and its cosmo-
logical dependence. In Section 3.3, we outline the model for the
cluster scaling relations. Sections 3.4 and 3.5 describe the sampling
model, i.e. the model for how a set of parameters predicts the mea-
sured data, including measurement errors and their correlation, and
implicit dependencies on reference cosmological values. The model
parameters are summarized in Table 1.

3.1 Cosmological models

The simplest cosmological model considered in this study con-
tains dark energy in the form of a spatially uniform and non-
evolving energy density, i.e. a cosmological constant (�CDM).
In this model, the cosmological parameters relevant for the growth
of structure are the mean baryon density, �b; the mean total mat-
ter density, �m; the Hubble parameter, h; and the matter power
spectrum normalization, σ8. Here the mean densities refer to red-
shift zero, since their values at other times are then determined
by the Friedmann equation, and σ 2

8 is the z = 0 variance in the

Table 1. Parameters and priors used in the analysis. The nuisance parameters associated with the fgas model
(A08) are not shown, although they are also marginalized over. When no entry appears in the prior column, the
prior was uniform and significantly wider than the marginal posterior for that parameter. N (μ, σ ) represents the
normal distribution with mean μ and variance σ 2, and U (x1, x2) the uniform distribution with endpoints x1 and
x2. For brevity, N4(μ, . . .) represents the multivariate normal prior used for the Tinker et al. (2008) mass function
parameters, where μ is the marginal mean for each parameter and the covariance matrix is not explicitly shown.

Type Symbol Meaning Prior

Cosmology (Section 3.1) h Hubble parametera,b N (0.72, 0.08)
�bh2 Baryon densityb N (0.0214, 0.002)
�ch2 Cold dark matter density

ln(1010 As) Scalar power spectrum amplitude
ns Scalar power spectrum slopeb,c = 0.95
τ Optical depth to reionizationc

ASZ Sunyaev–Zel’dovich signal amplitudec U (0, 2)
w Constant dark energy equation of state
w0 Evolving w: current value

wa, wet Evolving w: value at early times
at Evolving w: transition scale factor U (0.5, 0.95)

Mass function (Section 3.2) A Global amplitude N4(0.20, . . .)
a Low mass amplitude N4(1.52, . . .)
b Low mass slope N4(2.25, . . .)
c Exponential cut-off scale N4(1.27, . . .)
ε Evolution strength N (1.0, 0.1)

Scaling relation (Section 3.3) β�m
0 , β�m

1 Nominal luminosity–mass relation
β tm

0 , β tm
1 Nominal temperature–mass relation

σ�m, σ tm Marginal scaling relation scatters
ρ�tm Scaling relation scatter correlation

Other (Sections 3.4 and 3.5) — Chandra temperature calibration 10% Normal
ηg Cluster gas mass profile logarithmic slope N (1.092, 0.006)
ηL Cluster luminosity profile logarithmic slope N (0.1135, 0.0005)
κ r500-to-survey flux conversiond

ξ Completeness/purityd U (0.95, 1.05)

aWhen using CMB data, the angular size of the sound horizon at last scattering replaces h as a free parameter;
bIndicates priors that are not used when CMB data are included in the analysis; cIndicates parameters that are free
only when CMB data are included; dIndicates that there is an independent parameter of this type for each cluster
sample.
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density field at scales of 8 h−1 Mpc, defined explicitly in equa-
tion (4). Because the mass range of our data corresponds to a small
range in scale, we do not simultaneously fit for the spectral index of
scalar density perturbations, ns, but rather fix its value at 0.95 (e.g.
Komatsu et al. 2009), except when simultaneously fitting CMB data
(see Section 2 and Table 1). This assumption does not significantly
affect our results; see Section 5.1. We assume that the Universe is
spatially flat on large scales throughout.

We additionally consider models in which dark energy is a fluid
parametrized by a constant equation of state, w (constant w mod-
els). Unlike the cosmological constant scenario, such a fluid will
not in general have uniform density, and thus it contributes to some
degree to the evolution of density perturbations, in addition to in-
fluencing the expansion history of the Universe. Due to theoretical
uncertainties on the behaviour of the dark energy fluid on the non-
linear scales that determine the mass function, numerical simula-
tions of the mass function have to date been done only for models
in which dark energy is uniform, even when w �= −1. Our approach
is to straightforwardly propagate the influence of non-uniform dark
energy on linear scales but to leave the mass function unaltered,
while continuing to use our standard systematic allowances on the
mass function and its evolution (Section 3.2). We have verified
that the value of the dark energy sound speed (assumed to be con-
stant with time) has no effect on our results. Preliminary theoretical
work indicates that the effect of dark energy perturbations on the
mass function might be readily measurable (Abramo, Batista &
Rosenfeld 2009; Park et al. 2009; Alimi et al. 2010; Creminelli
et al. 2010), in which case our approach likely underestimates the
ability of the data to discriminate among these models.

Finally, we consider models in which the dark energy equation of
state is a function of time, according to two parametrizations. The
first is the commonly used model of Chevallier & Polarski (2001)
and Linder (2003),

w(a) = w0 + wa(1 − a), (1)

where a = 1/(1 + z) is the scalefactor, in which the equation of
state makes a smooth transition from value w0 at z = 0 to w0 + wa

at high redshift. A generalization due to Rapetti, Allen & Weller
(2005),

w(z) = wetz + w0zt

z + zt
, (2)

has the advantage that the transition redshift, zt, can be marginal-
ized over. (Equation 1 is a special case of equation 2 with zt = 1
and wa = wet − w0.) This model has greater applicability to cur-
rent data, which primarily constrain w at z < 1, resulting in more
commensurate constraints on the current and early-time equation of
state, w0 and wet. In practice, we marginalize over the scale factor
of the transition, at, within the range 0.5 < at < 0.95.

3.2 Mass function

Cosmological analyses of the kind presented here are enabled by
the fact that, to a good approximation, the expected number density
of dark matter haloes as a function of mass, M, can be expressed as
a relatively simple function of cosmological parameters,

dn(M, z)

dM
= ρ̄m

M

d ln σ−1

dM
f (σ ). (3)

Here ρ̄m is the mean comoving matter density and σ 2 is the variance
of the linearly evolved density field, smoothed by a spherical top-hat

window of comoving radius r, enclosing mass M = 4πρ̄mr3/3,

σ 2(M, z) = 1

2π2

∫ ∞

0
k2P (k, z)|WM (k)|2 dk, (4)

where P(k, z) is the linear power spectrum evolved to redshift z
and WM(k) is the Fourier transform of the window function. In the
formulation of equation (3), the mass function depends on cosmo-
logical parameters and redshift only through σ 2(M, z). The function
f (σ ) may be an analytic or semi-analytic approximation (Press &
Schechter 1974; Bond et al. 1991; Sheth & Tormen 1999) or a fit to
cosmological N-body simulations.

The applicability of this ‘universal’ form of the mass function
was first demonstrated in numerical dark matter simulations of flat
�CDM and open (�� = 0) cosmologies by Jenkins et al. (2001)
and confirmed by Evrard et al. (2002). It has since been verified that
the fitting function provided by Jenkins is approximately accurate
(within ∼20 per cent) among models with constant w �= −1 and
some evolving w models (Klypin et al. 2003; Linder & Jenkins
2003; Łokas et al. 2004; Kuhlen et al. 2005).4 Other authors have
studied the dependence of f (σ ) on redshift beyond that implicit in
σ 2(M, z) (Lukić et al. 2007; Reed et al. 2007; Cohn & White 2008),
replacing f (σ ) with f (σ , z). The most recent and relevant work is
that of Tinker et al. (2008), which we adopt here.

The Tinker fitting function has the form

f (σ, z) = A

[(σ

b

)−a

+ 1

]
e−c/σ 2

, (5)

where each of the fitted parameters has a redshift dependence of the
form

x(z) = x0(1 + z)εαx , x ∈ {A, a, b, c}. (6)

The various parameters x0 and αx are given in Tinker et al. (2008) as
a function of the spherical overdensity, �, used to define the cluster
radius. Unlike the z = 0 mass function, this additional redshift de-
pendence has not been tested in simulations of cosmologies beyond
the simple, flat �CDM model. We therefore introduce the parame-
ter ε, which controls the overall strength of the evolution given by
the αx, in order to marginalize over the remaining uncertainties in
the redshift dependence of the mass function in exotic cosmologies.
We also choose to work with the � = 300�m(z) fit to f (σ , z) (a
relatively large cluster radius) because the evolution parametrized
by the αx becomes more pronounced with increasing overdensity
(smaller radius).

To address the uncertainty in the normalization and shape of
f (σ , z = 0), we marginalized over each of the fitted parameters in
equation (5) using the covariance matrix of the fit (Jeremy Tinker,
private communication). The statistical error of this fit is <5 per
cent; however, this figure does not reflect systematic uncertainties
due to the presence of baryons (e.g. Stanek, Rudd & Evrard 2009),
evolving dark energy, etc. We therefore scaled the covariance matrix
when defining this prior on the mass function parameters such that
the marginal uncertainty at fixed log10(σ−1) = 0.2 (M ∼ 1015 M�
in the concordance model) is a conservative 10 per cent.5

4We reiterate that these works include the effects of dark energy on the
mass function through the cosmic expansion rate, but not the effects of dark
energy density perturbations (Section 3.1).
5There is no reason, a priori, that the systematic uncertainty in the mass
function should have a similar form to the statistical covariance. At mini-
mum, however, this procedure provides a straightforward way to marginalize
over a family of functions that are similar to the mass function, while still
allowing differences in the shape as well as the normalization. As we show

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 406, 1759–1772

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/406/3/1759/977554 by U
.S. D

epartm
ent of Justice user on 17 August 2022



Cluster growth: methods and cosmology 1763

3.3 Scaling relations

To perform the cosmological analysis, we need to relate cluster mass
to the observable that determines cluster detection, in this case X-
ray flux. Given a redshift, z, a cluster’s unabsorbed, soft X-ray flux,
F, is determined by its intrinsic X-ray luminosity, L, temperature,
kT , and metallicity, Z, as

F (z, L, kT , Z) = L

4πd2
L(z)K(z, kT , Z)

, (7)

where dL(z) is the luminosity distance to the cluster, and K(z, kT , Z)
is the required K-correction. For intracluster medium temperatures
kT > 3 keV and luminosities and fluxes in the soft (ROSAT) X-ray
band (0.1–2.4 keV), K has only a weak dependence on temperature
and negligible dependence on metallicity; we hereafter fix Z to the
typical value of 0.3 times the solar value.

As discussed in Paper II, a simple prescription for how L and
kT are related to the total mass, M, is given by the self-similar
model (Kaiser 1986). We define nominal luminosity–mass and
temperature–mass relations at r500 of the form

〈�(m)〉 = β�m
0 + β�m

1 m,

〈t(m)〉 = βtm
0 + βtm

1 m, (8)

where

� = log10

(
L500

E(z)1044 erg s−1

)
,

m = log10

(
E(z)M500

1015 M�

)
,

t = log10

(
kT500

keV

)
, (9)

and E(z) is the normalized Hubble parameter, H(z)/H0. The fac-
tors of E(z) appearing explicitly in equation (9) follow from the
definition of cluster radius using a fixed overdensity with respect
to the critical density (Bryan & Norman 1998). To describe the
intrinsic scatter in � and t given m about the nominal relations, we
adopt a simple, bivariate normal distribution parametrized by the
marginal luminosity–mass and temperature–mass lognormal scat-
ters, σ �m and σ tm, and a coefficient of correlation, ρ�tm.

There are various ways of adding complexity to this scaling
relation model, including departures from self-similar evolution in
the normalization of the nominal relations, evolution in the scatter,
and asymmetry in the scatter. In Paper II, we show that the data
are consistent with the simple model defined above, and do not
require or prefer any such additions, even when the cosmological
parameters are extremely restricted by external data. We therefore
adopt the simple model above in this work.

Motivated by the results of Evrard et al. (2008), we have defined
the scaling relations for quantities within r500, which also corre-
sponds to our measurements of mass, luminosity and temperature
from follow-up observations (Paper II). To convert the mass defini-
tion used by the mass function, � = 300�m(z), to � = 500, we use
the procedure of Hu & Kravtsov (2003), assuming a Navarro, Frenk
& White (1997, hereafter NFW) mass distribution with concentra-
tion parameter c = 4. This conversion is negligibly sensitive to the
assumed concentration parameter, since both r500 and r300�m(z) are
well beyond the NFW scale radius for reasonable values (c > 3;
Zhao et al. 2003, 2009; Gao et al. 2008).

in Section 6.2, uncertainty on the mass function at this level has negligible
impact on our results, in any case.

3.4 Sampling model: follow-up observations

The next component of the model connects quantities predicted from
the cosmology, mass function and scaling relations to quantities
measured from the follow-up X-ray observations. Because some of
our measurements are made with respect to a reference cosmology
(see Paper II), this procedure is not entirely trivial.

In particular, the mass, luminosity and temperature determined
from the follow-up X-ray observations are measured within r500,
itself determined via the implicit equation

M(r500) = Mgas(r500)

fgas(r500)
= 4π

3
(500)ρcr(z)r3

500, (10)

which can be rewritten as

Mgas(r) ∝ ρcr(z)r3fgas(r) ∝ rηg , (11)

where ηg is the logarithmic slope of the gas mass profile at large
radius. Using that ρcr(z) ∝ H2(z), the expression

r500 ∝ [
fgas(r500)H 2(z)

]1/(ηg−3)
(12)

relates the ‘true’ value of r500 predicted by a set of model parameters
to the value of r500 that we would have inferred assuming our
reference cosmology and reference fgas value. The gas mass profiles
measured in Paper II are self-similar, consistent with a constant
value of ηg; for simplicity, we therefore adopt ηg = 1.092 ± 0.006,
determined from a fit to the entire sample from 0.7–1.3r500, and
marginalize over the uncertainty.

To see how the measurements of total cluster mass depend on
model parameters, we first write

M ref (r)

M(r)
= M ref

gas(r)/f ref
gas (r)

Mgas(r)/fgas(r)
RNFW

= d ref
A (z)2.5fgas

dA(z)2.5f ref
gas

RNFW, (13)

where Mref is the prediction for what mass would be measured for
a cluster of true mass M using our assumed reference parameter
values, and dA(z) is the angular diameter distance to redshift z.
dref

A (z) and f ref
gas are not predictions for measured values, but they

depend directly on the reference cosmology and fgas value. The first
term in this expression accounts for the dependence of the mass
measured within a fixed angular aperture on distance and fgas, given
that the mass is estimated via the gas mass and gas mass fraction,
and where we have used the scaling Mgas ∝ dA(z)2.5. The dependence
on the angular size corresponding to physical radius r is handled by
RNFW, which we evaluate assuming that the shape of the total mass
distribution near r500 is well approximated by the NFW profile; in
this case the scaling factor is straightforward to compute using the
scaling of r500 given in equation (12):

RNFW = ln(1 + xc500) − xc500/(1 + xc500)

ln(1 + c500) − c500/(1 + c500)
, (14)

where x = rref
500/r500. To evaluate this factor, we assume a concen-

tration parameter c = 4,6 although we note that RNFW is extremely
insensitive to this assumption provided that c > 3 (i.e. provided r500

is well beyond the scale radius).
Similarly, we can write the scaling of the luminosity as

L500(r) ∝ d2
L(z)

(
r500

dA(z)

)ηL

, (15)

6Note that, by convention, c without a subscript refers to c200, defined as
r200 in units of the NFW scale radius; c = 4 corresponds to c500 ≈ 2.6.
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where dL(z) is the luminosity distance and the first term is the scaling
of the luminosity measured within a fixed angle; the second term
is simply the angular size of r500 raised to the power of ηL, the
logarithmic slope of the integrated luminosity profile. As with the
gas mass profiles, we fit this slope between 0.7 and 1.3r500, finding
ηL = 0.1135 ± 0.0005 from the entire sample, and marginalize over
the uncertainty.

Since the emission-weighted, average temperature within r500 is a
weak function of r500 compared to a typical statistical error bar, and
considering the relative insensitivity of the cosmological analysis
to the precise kT values, we do not similarly model any dependence
of the measured temperatures on model parameters. However, we
marginalize over a global 10 per cent Gaussian systematic uncer-
tainty on the temperature measurements to account for residual
uncertainty in instrument calibration.

Since the masses, luminosities and temperatures from the follow-
up observations are determined from the same data, their statistical
error bars are correlated. The masses and luminosities are inte-
grated within r500, so their errors are primarily correlated via the
uncertainty in r500. The luminosity and temperature errors are also
somewhat correlated, since the K-corrections that convert flux to
luminosity have a weak temperature dependence. (There is no cor-
relation between mass and temperature errors using our method;
see Paper II.) Since these measurement errors were propagated via
Monte Carlo, it is straightforward to compute the error correlations
from the samples; we find ρm̂�̂ = 0.29±0.19 and ρ�̂t̂ = −0.4±0.3,
averaged over the cluster sample. Note that the latter quantity is not
related to ρ�tm, defined in Section 3.3, which quantifies the corre-
lation between departures in luminosity and temperature from the
nominal scaling relation, not the correlation of measurement errors.

3.5 Sampling model: survey

The final ingredient is a sampling model for the selection of our
clusters from the RASS, incorporating the selection function of
each cluster sample, the survey flux measurement errors, and the
relation between the flux measurements reported in each cluster
sample and F500, the flux within r500 from follow-up observations
(in the same energy band). The fluxes reported for each cluster
sample are measured differently (see Ebeling et al. 1998, 2001;
Böhringer et al. 2004) and none corresponds to a flux measurement
within a fixed-overdensity radius such as r500. Fortunately, we find
a good empirical correlation between the reported survey fluxes and
our fluxes measured from the follow-up observations for clusters
well above the flux limit.7 We include a simple linear conversion
between survey flux, Fs, and follow-up observation flux, F500, in
the model,

Fs = κF500, (16)

where the slope, κ , is allowed to be different for each cluster sam-
ple. Because the survey fluxes suffer from Malmquist and Edding-
ton biases, the κs must be constrained simultaneously with the full
model, including the cosmology and scaling relation. These param-
eters also trivially account for any residual uncertainties in the flux
cross-calibration between ROSAT and Chandra (see Paper II).

The flux measurement error as a function of reported flux for
each sample is consistent with Poisson scaling,

σF ∝
√

Fs, (17)

7For true fluxes near or below the flux limit, the Malmquist bias distorts the
relation.

although the normalization varies by sample due to the different
algorithms used to measure the flux. We approximate the survey
flux sampling distribution as Gaussian, centred on the true flux, with
width determined via equation (17), fitting a separate normalization
for each cluster sample directly from the reported fluxes and errors.

Finally, the selection function of each cluster sample, the prob-
ability that a cluster is included in the sample as a function of
redshift and measured survey flux, is modelled by interpolating the
look-up tables provided for each sample (Ebeling et al. 1998, 2010;
Böhringer et al. 2004). Conservatively, we include an additional
nuisance parameter to marginalize over possible uniform incom-
pleteness or impurity at the 5 per cent level,

Psel(z, F̂s) ∝ ξ, (18)

where each sample can have a different value of ξ .

4 A NA LY S I S ME T H O D

4.1 Likelihood

Early cosmological work using galaxy cluster samples used an
approach based around binning the detected clusters in redshift
and flux (or luminosity) and either adopting external priors on the
luminosity–mass relation (e.g. Borgani et al. 2001) or simultane-
ously fitting an external luminosity–mass data set without account-
ing for selection effects (e.g. Allen et al. 2003).8 In M08, we took
this approach to its logical limit by deriving the likelihood for bins of
infinitesimal volume; however, that work still suffered from the fact
that it used an external data set to constrain the luminosity–mass
relation without explicitly accounting for selection bias. Conse-
quently, it was necessary to restrict that external data set (Reiprich
& Böhringer 2002) to low redshifts and high fluxes in order to min-
imize the effects of selection bias, making it impossible to test for
departures from self-similar evolution in the scaling relation. More
recently, Vikhlinin et al. (2009a, b) binned their detected clusters in
redshift and mass (again with infinitesimally small bins) and used
the same cluster sample to constrain the scaling relations; however,
their procedure still does not produce a self-consistent fit for both
scaling relations and cosmology.

In this section, we show that our procedure from M08 can be
generalized to allow such a simultaneous and self-consistent fit,
using follow-up observations of flux-selected clusters to constrain
the scaling relations over the full redshift range of the data, and
accounting fully for the presence of Malmquist and Eddington bi-
ases. We also show that the corresponding likelihood function can
be derived from first principles, beginning with a simple Bayesian
regression model. For simplicity, we derive the likelihood for the
general problem of counting sources as a function of their proper-
ties. This general picture includes the following components.

(i) A population function,9 〈dN/dx〉, which provides a theoret-
ical prediction for the underlying distribution of sources (i.e. their
number, N) as a function of properties, x (see below).

8We note that some authors have followed the (in principle) equivalent
approach of using a scaling relation to transform the predicted mass function
into, e.g. the baryonic mass function (Voevodkin & Vikhlinin 2004) or X-
ray temperature function (Henry 2004; Henry et al. 2009). Although the
statistical formalism discussed in this section is considered as an extension
of the flux-redshift binning approach, it also underlies these methods.
9Note that this nomenclature is not widely used. We adopt the term ‘pop-
ulation function’ to imply an analogy to the mass function used in this
study.
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(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume �x̂j�ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (�x̂j�ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, �x̂j�ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(�x̂j�ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N ) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏
i=1

Pdet(x̂i , ŷi , I )
Nmis∏
j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) = 〈dN/dx〉
〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

= 〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N ) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏
i=1

〈ñdet,i〉. (27)
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The first factor above is unity, and the second is a normalization
term independent of model predictions. The third term is a Pois-
son density which sums to unity when L is marginalized over N
from Ndet to infinity (equivalently, Nmis from zero to infinity). The
remaining terms are exactly equivalent to those in equation (21).10

4.1.3 Application to the growth of structure

The formalism of the last sections can be straightforwardly applied
to observations of the growth of cosmic structure. The population
variables describing clusters are redshift, z, and mass, m, and the
population function is simply the product of the mass function and
the comoving volume element, dN/dz dm = (dn/dm)(dV/dz) (see
definitions in Section 3). The response variables are luminosity,
�, and temperature, t, which scale with mass and redshift as de-
scribed in Section 3.3. The observations include spectroscopically
determined redshifts (for which we neglect the measurement errors
in practice), the masses, luminosities and temperatures determined
from follow-up observations, and the survey fluxes. Their sampling
distributions, which account for the correlations among m, � and t
measurements from the same follow-up data, are discussed in Sec-
tions 3.4 and 3.5. The selection functions of the cluster samples
are given as functions of redshift and observed survey flux, and
incorporate the appropriate sky coverage fraction.

It is important to note that this analysis method does not re-
quire all the potentially observed values {x̂, ŷ} to be available for
each source, apart from those which determine whether a source
is included in the sample.11 This is perhaps most apparent from
considering how equation (25) would be modified if a particular
observable, ŷ0, were unavailable: an additional integration over ŷ0

would be required, which would result in P (ŷ0|x, y) being replaced
by unity.12 In the binning derivation, this is analogous to the bin
containing that cluster being unbounded rather than constrained in
the ŷ0 direction. This result is intuitive, as it simply means that the
integral over y0 for that cluster is not weighted by the information
gained from a measurement.

Thus, our analysis makes use of the available information for all
the 238 clusters meeting our selection criteria. For the 144 clus-
ters without follow-up data, only the redshift and survey fluxes
are available; following the argument above, the terms associated
with follow-up luminosity, mass and temperature measurements for
each of these clusters integrate to unity. In effect, the likelihood for
these clusters (here we refer to the terms 〈ñdet,j 〉) simplifies to the
form used in M08, which depends only on observations of redshift
and survey flux. For the 94 clusters with follow-up measurements,
the analysis uses the redshift and survey flux, in addition to the
(independently measured) follow-up luminosity, mass and temper-
ature. The latter are, of course, crucial for obtaining simultaneous
constraints on the scaling relations.

The ability to use partial follow-up in a statistically rigorous
way has significance for the planning of large, future cluster sur-

10The normalization factors presented in equations (20) and (27) are different
because the two likelihood functions are formally defined over different
domains. What is significant is that both functions have the same dependence
on model predictions.
11However, the observations do have to span the range of values present
in the sample reasonably well, in order to adequately probe the scaling
relations.
12This simplification occurs because the selection function is necessarily not
dependent on ŷ0. Similarly, in practice, equation (26) needs to be integrated
only over observables that influence selection.

veys. In particular, it reveals as overly simplistic the choice between
strategies employing exhaustive follow-up observations to calibrate
scaling relations over a relatively small mass range and those using
‘self-calibration’, which use many more sources but rely exclusively
on the shape of the mass function to provide information about the
scaling relations. Indeed, obtaining follow-up data for a fair sub-
sample of the detected clusters potentially allows robust calibration
of the scaling relations over a wide mass range, without unnecessar-
ily limiting the size of the sample used for cosmology.13 However,
we note that this attractively simple strategy is not necessarily the
best; a more complete analysis, including an optimization proce-
dure similar to that employed by Wu, Rozo & Wechsler (2010), is
warranted in planning the follow-up of future surveys.

Finally, we notice that the procedure described above is a concep-
tually simple generalization of that of M08. In fact, equation (21)
is identical to equation (18) in M08, with the exception that our
bins are now defined in the higher-dimensional space including all
observable quantities, rather than only survey flux and redshift.

4.2 Mechanics and priors

Using the likelihood function detailed in Section 4.1, cosmological
constraints were obtained via Markov chain Monte Carlo (MCMC),
employing the Metropolis sampler embedded in the COSMOMC code14

of Lewis & Bridle (2002). The 2008 May COSMOMC release includes
the 5-yr WMAP and Union supernova data and analysis codes; an
additional module implementing the fgas analysis has also been
publicly released (Rapetti et al. 2005, A08).15 Further modifica-
tions were made to include the likelihood codes for the XLF and
BAO data. The CMB and matter power spectrum calculations were
performed using the CAMB package of Lewis, Challinor & Lasenby
(2000),16 suitably modified to incorporate the evolving w models
of Section 3.1 (Rapetti et al. 2005).

The set of parameters describing the complete model is summa-
rized in Table 1, along with the priors used in our analysis.

4.3 Improvements over M08

Compared to our previous work in M08, the constraints on flat
�CDM and constant w models reported below are tighter by a
factor of 2–3. Given that we have used essentially the same cluster
samples in the two studies, it is sensible to address the specific
differences in the two analyses that result in these improvements.
We attribute the change to several closely related improvements in
our analysis.

(i) Cluster mass determination. In M08, we calibrated the X-ray
luminosity–mass relation using the HIFLUGCS data of Reiprich
& Böhringer (2002), for which masses were estimated from X-ray
data, assuming hydrostatic equilibrium. This procedure is known to
underestimate the mass by tens of per cent (e.g. Nagai, Vikhlinin &
Kravtsov 2007; Mahdavi et al. 2008), since the intracluster medium
is not supported solely by thermal pressure. However, the overall
size of this effect is not well established, nor is the variation in non-
thermal pressure from cluster to cluster. Consequently, that earlier
work was forced to incorporate a large systematic uncertainty in the

13Sahlén et al. (2009) demonstrate the improvement in cosmological con-
straints available to future surveys by incorporating follow-up observations.
14http://cosmologist.info/cosmomc/
15http://www.stanford.edu/∼drapetti/fgas_module/
16http://www.camb.info
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Cluster growth: methods and cosmology 1767

Figure 1. Left: joint 68.3 and 95.4 per cent confidence regions for parameters of the �CDM cosmology from the BCS (blue), REFLEX (green) and Bright
MACS (red) cluster samples individually, including all systematic allowances in Table 1. Note that only the 95.4 per cent confidence regions are visible for
BCS and REFLEX. Right: constraints from the full XLF data set (purple) and 5-yr WMAP data (blue; Dunkley et al. 2009, marginalized over the SZ signal).
Results from the combination of the XLF and WMAP5 data are shown in grey.

mass measurements, which significantly degraded constraints on the
scaling relation and its intrinsic scatter, resulting in a corresponding
degradation in cosmological constraints.

This work avoids this issue by using gas mass as a proxy for total
mass (see details in Paper II). Unlike total mass, gas mass can be
measured from X-ray data with very little bias. The relation between
gas mass and total mass is provided by A08; ultimately, the cluster
mass scale is set using the hydrostatic method for the clusters in that
work, i.e. the class of hot, dynamically relaxed clusters for which
the bias due to non-thermal pressure is minimal.

(ii) Follow-up data over a range of redshifts. The statistical meth-
ods employed in M08 lack the internal consistency of our new pro-
cedure (Section 4.1), making it impossible to rigorously incorporate
follow-up data at redshifts much greater than zero.17 As a result, we
could not directly constrain the evolution of the scaling relations,
and instead marginalized over a range of possibilities, using con-
servative priors. With our new method, follow-up data spanning the
full redshift range of cluster detections can be included, allowing
evolution in the scaling relations to be tested directly (Paper II).
Relatedly, the distribution of follow-up data over a range in redshift
improves the constraints on the dark energy equation of state.

(iii) Use of fgas data. As discussed by Vikhlinin et al. (2009b),
the method used to estimate masses has an effect on the constraints
obtained because different mass proxies have different dependen-
cies on distance, with gas mass (Mgas ∝ d 2.5) being more sensitive
than temperature or YX . Our results are therefore sensitive to this
choice at some level.

Another way to look at this is to notice that the A08 data that
we use to constrain fgas inherently contain information about �m

in addition (given a bound on the baryonic depletion of clusters).
Thus, our results on �m are primarily, though not entirely, driven
by these fgas data. With the value of fgas constrained, the XLF data
then determine σ8 and w. Note that, as mentioned in Section 2, we
use only six clusters from A08 at redshifts z < 0.15; due to this
redshift restriction, these fgas data do not produce a constraint on w

by themselves.

17In detail, the follow-up data were restricted to low redshifts (z < 0.11)
where the HIFLUGCS discovery space was large, i.e. where many clusters
were found well above the flux limit. This procedure reduces the biasing
effects of flux selection, although it does not eliminate them.

Although it is not stated explicitly above, we emphasize that the
new statistical method outlined in this section is ultimately the most
important advantage over M08, since the improvements in follow-
up data and mass determination cannot be fully or fairly exploited
without it.

5 R ESULTS

5.1 Constraints on the �CDM model

For a spatially flat, cosmological constant (w = −1) model, the
joint constraints on �m and σ8 obtained from the BCS, REFLEX
and Bright MACS cluster samples individually are displayed in the
left panel of Fig. 1. Results from combining the three samples appear
as purple contours in the right panel; the constraints, marginalized
over the systematic allowances listed in Table 1, are �m = 0.23 ±
0.04 and σ8 = 0.82 ± 0.05 (Table 2). These results agree well with
the tight constraints obtained from WMAP5 data (Dunkley et al.
2009) for this model (blue contours in the right panel). Results
from the combination of WMAP5 and the XLF (grey contours) are
somewhat improved: �m = 0.26 ± 0.02 and σ8 = 0.80 ± 0.02.
Our XLF results are in agreement with recent estimates based on
other X-ray selected (Henry et al. 2009; Vikhlinin et al. 2009b) and
optically selected (Rozo et al. 2010) cluster samples, and a variety
of independent cosmological data (Percival et al. 2007, 2010; A08;
Fu et al. 2008; Ho et al. 2008; Kowalski et al. 2008; Hicken et al.
2009; Reid et al. 2010, see also references in M08).

As mentioned in Section 3.1, the scalar spectral index, ns, is fixed
at 0.95 in our analysis of the XLF data alone. The only parameter
that is significantly degenerate with ns is σ8; our results for values
of ns other than 0.95 can be adequately described by shifting the σ8

constraints along the linear relation σ8 = 0.82 + 0.25(ns − 0.95).
The marginalized posterior distribution for �m obtained from

the XLF data is compared with those obtained from the analysis of
WMAP5, fgas (A08), SNIa (Kowalski et al. 2008) and BAO (Percival
et al. 2007, also using our standard priors on h and �bh2) data in
Fig. 2. The agreement among all the data sets is good, though note
that the XLF and fgas results are not independent (Sections 2 and
4.3).

In Paper II, we show that this simple cosmological model (and the
simple scaling relation model of Section 3.3) provides an acceptable
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Table 2. Marginalized 68.3 per cent confidence intervals on cosmological parameters from our analysis,
including all systematic uncertainties in Table 1. The various cosmological models are discussed in
Section 3.1. ‘All’ refers to the combination of XLF, cluster fgas, WMAP5, SNIa and BAO data.

Data Model �m σ8 w, w0 wa, wet

XLF �CDM 0.23 ± 0.04 0.82 ± 0.05 – –
XLF+WMAP5 �CDM 0.26 ± 0.02 0.80 ± 0.02 – –

All �CDM 0.257 ± 0.015 0.80 ± 0.02 – –

XLF Constant w 0.23 ± 0.04 0.82 ± 0.05 −1.01 ± 0.20 –
XLF+WMAP5 Constant w 0.27 ± 0.04 0.78 ± 0.04 −0.95 ± 0.14 –

XLF+fgas Constant w 0.22 ± 0.04 0.83 ± 0.05 −1.06 ± 0.15 –
All Constant w 0.272 ± 0.016 0.79 ± 0.03 −0.96 ± 0.06 –

XLF+WMAP5 Evolving w (wa) 0.26 ± 0.04 0.79 ± 0.05 −0.77 ± 0.31 −0.34+0.72
−1.42

All Evolving w (wa) 0.256 ± 0.016 0.80 ± 0.03 −0.93 ± 0.16 −0.13+0.47
−0.73

XLF+WMAP5 Evolving w (wet) 0.26 ± 0.04 0.79 ± 0.05 −0.73 ± 0.40 −1.10+0.59
−0.39

All Evolving w (wet) 0.257 ± 0.016 0.80 ± 0.03 −0.88 ± 0.21 −1.05+0.20
−0.36

Figure 2. Marginalized posterior distributions for �m in the �CDM model
from analysis of the XLF data (purple, short dashed line; including system-
atic allowances in Table 1); 5-yr WMAP data (blue, solid line; Dunkley et al.
2009, marginalized over the SZ signal); cluster fgas (red, long dashed line;
A08, including conservative systematic allowances); SNIa (green, 3-dot-
dashed line; Kowalski et al. 2008, including their treatment of systematics);
and BAO (brown, dot-dashed line; Percival et al. 2007, also using our stan-
dard priors on h and �bh2). Note that the XLF and fgas results are not
independent (Sections 2 and 4.3).

fit to the XLF data. Constraints on the parameters describing the
scaling relations are also presented in that work.

5.2 Constraints on constant w models

For models in which the dark energy equation of state, w, is con-
stant in time, the joint constraints on �m and w from the XLF
are shown in the left panel of Fig. 3 (purple contours). The con-
straint on the equation of state from the XLF alone, which is driven
by the evolution in the cluster mass function, is w = −1.0 ±
0.2 (including systematics), a factor of 3 improvement over M08.
Our results on �m and σ8 are nearly identical to the �CDM case
(Table 2); these constraints are driven by the cluster data at low red-
shift and are thus largely insensitive to the properties of dark energy.

Fig. 3 also demonstrates the agreement of our results with indepen-
dent constraints from other cosmological data (Section 2), including
WMAP5 (blue), SNIa (green), cluster fgas (red) and BAO (brown).
The combination of these data sets appears as gold contours in the
figure; the improved, marginalized constraints from this combina-
tion are �m = 0.27 ± 0.02, σ8 = 0.79 ± 0.03 and w = −0.96 ±
0.06. Our results are also consistent with those derived indepen-
dently by Vikhlinin et al. (2009b) from X-ray flux-selected clusters.

The constraints in the σ8-w plane from the XLF and WMAP5
data are shown in the right panel of Fig. 3. The complementarity of
the two data sets is evident, with the XLF constraint on σ8 breaking
an important degeneracy affecting the CMB data. The combination
of only the XLF and WMAP5 data yields the grey contours in
the figure, corresponding to the one-dimensional constraints �m =
0.27 ± 0.04, σ8 = 0.78 ± 0.04 and w = −0.95 ± 0.14.

We note that the combination of the two types of cluster data used
here, XLF and fgas (with standard priors on h and �bh2), also places
competitive constraints on dark energy: w = −1.06 ± 0.15 (Fig. 4).
Interestingly, this result is comparable to that of the combination
of XLF with WMAP5 data, or fgas with 3-yr WMAP, Cosmic Back-
ground Imager, Arcminute Cosmology Bolometer Array Receiver
and BOOMERanG data (w = −1.00 ± 0.14; A08).

As discussed in Section 3.1, our evaluation of the linear matter
power spectrum for models with w �= −1 includes the effects of
dark energy density perturbations. For comparison with other works
where dark energy perturbations are neglected, we also performed
an analysis where dark energy affects only the expansion of space
(i.e. where it has uniform density) despite not being a cosmological
constant. In this case, we obtain from the XLF the slightly larger
constraint w = −0.97 ± 0.25, including all systematic uncertainties
in the usual way.

5.3 Constraints on evolving w models

Constraints on the two evolving w models discussed in Section 3.1
(equations 1 and 2), (w0, wa) and (w0, wet), are shown respectively
in the left and right panels of Fig. 5. Results from the combina-
tion of XLF and WMAP5 data are shown as grey contours, and
the combination of those two with fgas, SNIa and BAO data is
shown in gold. In both cases, there is no evidence for evolution
in the dark energy equation of state, and the results are consis-
tent with the cosmological constant model (indicated by a cross
in the figure). Marginalized constraints are listed in Table 2. For
the more general (w0, wet) model, we find w0 = −0.88 ± 0.21 and
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Figure 3. Joint 68.3 and 95.4 per cent confidence regions for parameters of the constant w model. Left: constraints on �m and w from the XLF (purple,
including all systematic allowances in Table 1) are compared with those from cluster fgas data (red; A08, including conservative systematic allowances); 5-yr
WMAP data (blue; Dunkley et al. 2009, marginalized over the SZ signal); SNIa data (green; Kowalski et al. 2008, including their treatment of systematics);
and BAO observations, (brown; Percival et al. 2007, also using our standard priors on h and �bh2). Results from combining these five data sets are shown in
gold. Right: constraints on σ8 and w from XLF and WMAP5 data. The combination of the XLF and WMAP5 yields the grey contours; adding the other data
listed above produces the gold contours.

Figure 4. Joint 68.3 and 95.4 per cent confidence regions for parameters of
the constant w model, including conservative systematic allowances. Purple
contours indicate constraints from the XLF (which includes six z < 0.15 fgas

clusters; see Sections 2 and 4.3), while constraints from all 42 fgas clusters
alone are shown in red. Results combining the XLF data with all 42 fgas

clusters appear in green. The combination of these two types of cluster data
with standard priors on h and �bh2 yields a competitive constraint on dark
energy, w = −1.06 ± 0.15.

wet = −1.05+0.20
−0.36 from the combination of all the data (Fig. 6). These

results are a significant improvement over previous constraints on
this model from the combination of fgas, CMB and SNIa data (w0 =
−1.05+0.31

−0.26, wet = −0.83+0.48
−0.43; A08).

Adding spatial curvature as a free parameter and fixing the tran-
sition redshift to 1 (equation 1), we obtain constraints equivalent to[
σ (wp)σ (wa)

]−1 = 15.5, using the notation and definitions of the
Dark Energy Task Force (DETF; Albrecht et al. 2006).

6 INVESTIGATION O F SYSTEMATICS

6.1 Sensitivity to priors

Our analysis of the XLF data alone includes priors to constrain
the Hubble parameter and mean baryon density, and to marginalize
over systematic allowances on the mass function, cluster sample

completeness and cluster gas mass fraction (Table 1). To investigate
the influence of each prior individually, we importance sampled the
Markov chains produced in the XLF analysis for the constant w

model, reducing the width of each prior in turn by a factor of 2.
If importance sampling a particular prior in this way changes the
posterior distribution for parameters of interest, we can conclude
that the prior is influential.

Of the priors listed above, only the systematic allowances asso-
ciated with the determination of fgas are significant. Since the gas
mass fraction determines the overall mass scale when Mgas is used
as a proxy for total mass, its systematic uncertainty affects primarily
the constraints on �m and σ8, as shown in Fig. 7. Following A08,
our standard analysis uses conservative systematic allowances for
Chandra calibration (10 per cent), non-thermal pressure support
(10 per cent), the depletion of baryons in clusters with respect to the
cosmic mean (20 per cent) and evolution with redshift in the baryon
fraction and stellar content of clusters (10 and 20 per cent). The
most significant ones for this work are on the depletion of baryons
in clusters, which determines the width of the �m constraint, and the
amount of non-thermal pressure and overall calibration of Chandra
for temperature measurements, which determine the constraint on
σ8 at fixed �m.

In contrast, none of the priors affects the constraint on w signifi-
cantly. This was confirmed by an additional analysis in which all of
the systematic uncertainties were eliminated, i.e. every nuisance pa-
rameter was fixed rather than being marginalized over. Ordinarily,
this would indicate that our constraints on dark energy are statisti-
cally limited, and this may plausibly be the case; however, we note
that our constraints may also be limited by the fact that the effect
of dark energy perturbations on the mass function is not yet under-
stood. If these perturbations produce changes in the high-mass tail
of the mass function at the few tens of per cent level, there may be
additional constraining power available from the current XLF data.

6.2 Choice of mass function

In our standard analysis, we have used the mass function of
Tinker et al. (2008) with cluster radius defined by an overden-
sity of 300�m(z). One could also justify using the mass func-
tion determined at a cluster radius closer to the radius where the
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Figure 5. Joint 68.3 and 95.4 per cent confidence regions, including conservative systematic allowances, for parameters of the evolving w models. Left:
constraints on the (w0, wa) model (equation 1) from the combination of XLF and 5-yr WMAP data are shown in grey, as well as the combination of XLF,
WMAP5 (Dunkley et al. 2009), cluster fgas (A08), SNIa (Kowalski et al. 2008) and BAO (Percival et al. 2007) data (gold). Right: constraints on the (w0, wet)
model (equation 2). The transition scalefactor is marginalized over the range 0.5 < at < 0.95. Crosses in each panel indicate the �CDM model, with constant
w = −1.

Figure 6. Joint 68.3 and 95.4 per cent confidence regions from the com-
bination of XLF, fgas, WMAP5, SNIa and BAO data, including systematic
uncertainties, for parameters of the (w0, wet) model (equation 2). The results
are the same as in the right panel of Fig. 5, but with both w0 (green contours)
and wet (blue) shown on the y-axis, against the dark energy density, �DE, on
the x-axis. The transition scalefactor is marginalized over the range 0.5 <

at < 0.95. The horizontal, dotted line indicates the cosmological constant
model (w0 = wet = −1).

follow-up mass measurements are made, r500. We therefore repeated
the XLF analysis using the mass function given by Tinker et al. for
overdensity 1600�m(z). For �m values of 0.2–0.3 and z < 0.5, this
corresponds to overdensities of 300–1000, compared to 50–200
for 300�m(z). Our results with this alternative mass function were
virtually identical to the standard results.

Similarly, we repeated the analysis using the older mass function
of Jenkins et al. (2001) at overdensity 324�m(z). Here we used a
20 per cent Gaussian systematic allowance on only the normaliza-
tion of the mass function and fixed the shape, as in M08. Again,
the cosmological results were essentially identical to our standard
results, despite the fact that the Jenkins function does not include
evolution with redshift, while the Tinker function does. This indif-
ference to the details of the mass function is consistent with the
observation in Section 6.1 that the current results are insensitive to
the systematic allowances on the mass function and its evolution.

Figure 7. Joint 68.3 and 95.4 per cent confidence regions for �m and σ8 in
the constant w model from the XLF data, including the standard systematic
allowances in Table 1, are shown in purple. The blue contours result from
reducing the width of all of the allowances associated with the fgas model of
A08 by a factor of 2. The figure demonstrates that our results on �m and σ8

are limited by the systematic uncertainty in fgas. (These allowances have no
effect on the w constraint.) Improvements in hydrodynamical simulations
and the incorporation of gravitational lensing mass measurements offer
the possibility of significantly reducing the uncertainty in fgas, and thus
improving the constraints.

6.3 Note on Chandra calibration

A major, recent (2009 January 21) update to the Chandra ACIS
effective area at soft energies is accounted for in our analysis of
follow-up Chandra observations for the XLF data (see Paper II).
However, the raw data analysis in A08 predates this calibration up-
date, which in our tests typically results in an increase in the inferred
gas fraction of ∼10 per cent. We have accounted for this correction
by shifting the centre of the ‘Chandra calibration’ nuisance param-
eter in the A08 model such that the preferred value of fgas increases
correspondingly by 10 per cent. The Gaussian prior on this param-
eter also has a width of 10 per cent, so this systematic allowance
encompasses both the old value and the new value expected from
the calibration update.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 406, 1759–1772

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/406/3/1759/977554 by U
.S. D

epartm
ent of Justice user on 17 August 2022



Cluster growth: methods and cosmology 1771

The effect of this higher gas mass fraction is to shift the �m

constraint from the fgas analysis to lower values by approximately
0.02. A corresponding shift appears in the XLF results, since the
�m constraints are partially driven by our use of a subset of the fgas

data to set the overall cluster mass scale. The correction additionally
results in a shift of similar magnitude towards lower σ8 values, but
has no effect on the determination of w. While we expect that the
10 per cent Gaussian allowance adequately reflects the systematic
uncertainty in the overall Chandra calibration, these trends should
be kept in mind in interpreting our results. For example, if we
have overestimated the effect that the calibration update has on the
value of fgas, our best-fitting results will shift slightly to higher �m

and σ8.

7 C O N C L U S I O N

We have presented cosmological constraints obtained from an X-
ray flux-limited sample of 238 massive galaxy clusters spanning
the redshift range z < 0.5. Follow-up Chandra or ROSAT X-ray
observations of 94 of these clusters are incorporated, as detailed
in Paper II. Our analysis accounts for all selection biases, includes
conservative allowances for systematic uncertainties, and, for the
first time, produces simultaneous constraints on cosmology and the
cluster scaling relations using a rigorous and fully self-consistent
statistical method. The incorporation of follow-up data and our
improved analysis method results in cosmological constraints that
are a factor of 2–3 better than our previous results in M08, which
were based on the same flux-limited sample of clusters. The results
presented here are among the tightest and most robust constraints
on cosmological parameters available from current data.

The constraints on spatially flat, cosmological constant mod-
els from our XLF data are �m = 0.23 ± 0.04 and σ8 = 0.82 ±
0.05. Introducing a constant dark energy equation of state, w, as
a free parameter, we find w = −1.0 ± 0.2, obtaining the same
tight constraints on �m and σ8. These results confirm at higher
precision the first constraints on the dark energy equation of state
from the analysis of XLF data reported by M08, and are consis-
tent with independent findings based on cluster gas mass fractions,
CMB anisotropies, type Ia supernovae, baryon acoustic oscillations,
galaxy redshift surveys and cosmic shear. We also find good agree-
ment with recent, independent analyses of X-ray selected galaxy
clusters (Henry et al. 2009; Vikhlinin et al. 2009b) and optically
selected clusters (Rozo et al. 2010).

Using the combination of XLF, fgas, WMAP5, SNIa and BAO
data, we investigate evolving w models, including the standard (w0,
wa) model as well as a (w0, wet) model in which the transition
scalefactor, at, is marginalized over. In both cases, the best cur-
rent cosmological data remain consistent with a constant value of
w = −1. The constraints on the non-flat (w0, wa) model from the
combination of current data are equivalent to DETF figure of merit
[σ (wp)σ (wa)]−1 = 15.5. Compared to the figure of merit of 8.3
reported by Wang (2008) from the combination of WMAP5, SNIa
and BAO data, this result highlights the contribution of cluster data
(XLF and fgas), and their complementarity to other cosmological
information.

Currently, the most significant systematic limitation on our re-
sults for �m and σ8 is systematic uncertainty in the cluster gas mass
fraction, fgas. Specifically, the dominant uncertainty in the deter-
mination of �m is in the depletion of baryons in clusters relative
to the cosmic mean, for which a 20 per cent systematic allowance
is adopted in the present work. The prospect of significant im-
provement here exists, as numerical simulations incorporate more

complete treatments of baryonic physics, especially feedback and
star formation processes in the centres of clusters. The results on
σ8 are limited by our knowledge of the non-thermal pressure in
clusters and the overall calibration of X-ray temperature measure-
ments; cluster mass measurements via gravitational lensing provide
an observational means of circumventing this issue, by directly
constraining the overall mass scale of the data.

XLF results on dark energy remain statistically limited. The in-
corporation of additional X-ray, SZ (e.g. Planck, the South Pole
Telescope and the Atacama Cosmology Telescope) and optical/near-
infrared (e.g. the Dark Energy Survey and Pan-STARS) cluster sur-
veys could lead to significant near-term improvements, although we
stress that these surveys must have well-understood selection func-
tions, sampling models and scaling relations. The possibility also
remains that cosmological simulations of the mass function includ-
ing the effects of dark energy perturbations will reveal additional
constraining power. It is therefore important to pursue a theoreti-
cal understanding of the effects of fluid dark energy on non-linear
structure formation, even as much larger X-ray (eROSITA18), and
optical (e.g. the Large Synoptic Survey Telescope) cluster surveys
promise to increase the data available for cluster cosmology by
orders of magnitude.

We note that the statistical approach described in this work has
significance for the planning of follow-up observations for future
cluster surveys. Our method permits the use of partial follow-up,
allowing scaling relations to be directly and robustly constrained
over a wide range in mass without raising the cost in exposure
time prohibitively, as would be the case for a complete, exhaustive
follow-up campaign. At the same time, the incorporation of follow-
up data provides a significant advantage over pure self-calibration
approaches. In detail, any plan for X-ray follow-up observations
of future surveys should also account for the additional benefit of
observing dynamically relaxed clusters suitable for the fgas test;
as we have shown, the combination of cluster fgas data, which di-
rectly probe the expansion of the Universe, and the XLF, which
measures the growth of structure, can provide precise cosmological
constraints independent of CMB and SNIa observations.

Readers interested in the simultaneous constraints on cluster scal-
ing relations produced in this work should refer to Paper II. MCMC
samples encoding the results of these two papers will be made
available for download on the web.19

AC K N OW L E D G M E N T S

We thank the reviewer for a very careful reading of the manuscript,
and Jeremy Tinker for sharing details of his mass function work. We
are also grateful to Glenn Morris, Stuart Marshall and the SLAC
unix support team for technical support. Calculations were car-
ried out using the KIPAC XOC and Orange compute clusters at
the SLAC National Accelerator Laboratory and the SLAC Unix
compute farm. We acknowledge support from the National Aero-
nautics and Space Administration (NASA) through LTSA grant
NAG5-8253, and though Chandra Award Numbers DD5-6031X,
GO2-3168X, GO2-3157X, GO3-4164X, GO3-4157X, GO5-6133,
GO7-8125X and GO8-9118X, issued by the Chandra X-ray Obser-
vatory Center, which is operated by the Smithsonian Astrophysical
Observatory for and on behalf of NASA under contract NAS8-
03060. This work was supported in part by the U.S. Department
of Energy under contract number DE-AC02-76SF00515. AM was

18http://www.mpe.mpg.de/projects.html#erosita
19http://www.stanford.edu/group/xoc/papers/xlf2009.html

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 406, 1759–1772

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/406/3/1759/977554 by U
.S. D

epartm
ent of Justice user on 17 August 2022



1772 A. Mantz et al.

supported by a William R. and Sara Hart Kimball Stanford Graduate
Fellowship.

REFER ENCES

Abramo L. R., Batista R. C., Rosenfeld R., 2009, J. Cosmology Astropart.
Phys., 7, 40

Adelman-McCarthy J. K. et al., 2007, ApJS, 172, 634
Albrecht A. et al., 2006, preprint (astro-ph/0609591)
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Böhringer H. et al., 2004, A&A, 425, 367
Bond J. R., Cole S., Efstathiou G., Kaiser N., 1991, ApJ, 379, 440
Borgani S. et al., 2001, ApJ, 561, 13
Bryan G. L., Norman M. L., 1998, ApJ, 495, 80
Chevallier M., Polarski D., 2001, Int. J. Modern Phys. D, 10, 213
Cohn J. D., White M., 2008, MNRAS, 385, 2025
Colless M. et al., 2001, MNRAS, 328, 1039
Colless M. et al., 2003, preprint (astro-ph/0306581)
Creminelli P., D’Amico G., Noreña J., Senatore L., Vernizzi F., 2010,

J. Cosmol. Astropart. Phys., 3, 27
Dunkley J. et al., 2009, ApJS, 180, 306
Ebeling H., Edge A. C., Bohringer H., Allen S. W., Crawford C. S., Fabian

A. C., Voges W., Huchra J. P., 1998, MNRAS, 301, 881
Ebeling H., Edge A. C., Henry J. P., 2001, ApJ, 553, 668
Ebeling H., Edge A. C., Mantz A., Barrett E., Henry J. P., Ma C. J., van

Speybroeck L., 2010, in press (doi:10.1111/j.1365-2966.2010.16920.x)
(arXiv:1004.4683)

Evrard A. E. et al., 2002, ApJ, 573, 7
Evrard A. E. et al., 2008, ApJ, 672, 122
Freedman W. L. et al., 2001, ApJ, 553, 47
Fu L. et al., 2008, A&A, 479, 9
Gao L., Navarro J. F., Cole S., Frenk C. S., White S. D. M., Springel V.,

Jenkins A., Neto A. F., 2008, MNRAS, 387, 536
Garnavich P. M. et al., 1998, ApJ, 509, 74
Gelman A., Carlin J. B., Stern H. S., Rubin D. B., 2004, Bayesian Data

Analysis. Chapman & Hall/CRC, Boca Raton, FL
Hamuy M. et al., 1996, AJ, 112, 2408
Henry J. P., 2004, ApJ, 609, 603
Henry J. P., Evrard A. E., Hoekstra H., Babul A., Mahdavi A., 2009, ApJ,

691, 1307
Hicken M., Wood-Vasey W. M., Blondin S., Challis P., Jha S., Kelly P. L.,

Rest A., Kirshner R. P., 2009, ApJ, 700, 1097
Hill R. S. et al., 2009, ApJS, 180, 246
Hinshaw G. et al., 2009, ApJS, 180, 225
Ho S., Hirata C., Padmanabhan N., Seljak U., Bahcall N., 2008, Phys. Rev.

D, 78, 043519
Holder G., 2006, preprint (arXiv:0602251)
Hu W., Kravtsov A. V., 2003, ApJ, 584, 702
Jenkins A., Frenk C. S., White S. D. M., Colberg J. M., Cole S., Evrard A.

E., Couchman H. M. P., Yoshida N., 2001, MNRAS, 321, 372
Jha S. et al., 2006, AJ, 131, 527
Kaiser N., 1986, MNRAS, 222, 323
Kelly B. C., 2007, ApJ, 665, 1489
Kirkman D., Tytler D., Suzuki N., O’Meara J. M., Lubin D., 2003, ApJS,

149, 1
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