## THE OBSTRUCTION TO FIBERING A MANIFOLD OVER A CIRCLE

BY F. T. FARRELL<sup>1</sup>

Communicated by S. Smale, April 6, 1967

1. Introduction. In [1], Stallings considers the following question. When does a 3-manifold fiber a circle? Browder and Levine generalized Stallings' result to differentiable and piecewise linear manifolds M of dimension greater than five under the restriction that  $\pi_1(M) \cong Z$ . Their theorem is purely homotopic in nature. That is if  $h: M' \to M$  is a homotopy equivalence and  $f: M \to S^1$  is a smooth fiber map then there always exists a smooth fiber map  $f': M' \to S^1$  such that f' is homotopic to  $f \circ h$ .

This result is false if we drop their restriction on the fundamental group. In particular let N be the cartesian product of a 3-dimensional lens space L with fundamental group  $Z_{p^2}$  and the torus  $T^{n-3}$  where  $n \ge 5$ . Let  $M = N \times S^1$  and  $f : M \to S^1$  denote projection onto the second factor. Then there exists a manifold M' and a homotopy equivalence  $h : M' \to M$  (in fact we may take M' to be h-cobordant to M) such that a smooth fiber map  $f' : M' \to S^1$  homotopic to  $f \circ h$  cannot exist. This example is based on recent deep results of Bass and Murthy [3] concerning the structure of the projective class group. In a joint paper with W. C. Hsiang [4] we use this example to construct an h-cobordism (W, M, M') which is not homeomorphic to  $M \times [0, 1]$ .

In this paper we will state necessary and sufficient conditions, in terms of a new obstruction theory, for a manifold  $M^n$   $(n \ge 6)$  to fiber a circle. No restrictions will be placed on the fundamental group of M. We will always work in the differential category, but the corresponding theorem is also true in the piecewise-linear category.

2. **Description of obstructions.** Let  $M^n$  be a closed connected smooth manifold with  $n \ge 6$ . Let  $f : M \to S^1$  be a continuous map. (Recall that the homotopy class of f is an element of  $H^1(M, Z)$ .) We will state three properties about f which are necessary and sufficient to guarantee the existence of a smooth fiber map  $\overline{f} : M \to S^1$  homotopic to f. For convenience we restrict our attention to maps f such that  $f_{\overline{f}} : \pi_1(M) \to \pi_1(S^1)$  is onto. (This is equivalent to considering only indi-

<sup>&</sup>lt;sup>1</sup> The author holds a National Science Foundation Graduate Fellowship. This note is a summary of a doctoral dissertation written under the direction of Professor Wu-Chung Hsiang and submitted to Yale University in partial fulfillment of the requirements for the Ph.D. degree.

visible elements in  $H^1(M, Z)$ .) This corresponds geometrically to considering fibrations with connected fiber. Let  $G = \ker f_{\bar{f}}$  and X denote the covering space of M corresponding to G. If  $\bar{f}$  exists then it is clear that the fiber of  $\bar{f}$  is homotopically equivalent to X. But the fiber of  $\bar{f}$  would be a closed smooth manifold. In particular it would be a finite C.W. complex. Hence we obtain

CONDITION 1. X is dominated by a finite C.W. complex.

Let  $(N^{n-1}, v)$  be a framed submanifold of M which represents f under the Pontrjagin-Thom construction. Let  $M_N$  denote the manifold obtained by "cutting" M along N. Then  $\partial M_N$  consists of two copies of N which we label N' and N''. (See Figure 1.)



FIGURE 1

 $M_N$  is a cobordism from N' to N''. The pair (N, v) is called a splitting of M. Let 1 < s < n-2, s an integer. When Condition 1 holds it is always possible to find a splitting (N, v) such that  $(M_N, N')$  has a handlebody decomposition with handles of only two dimension s and s+1. The proof of this uses essentially the same arguments as in [2]. Note that the existence of a smooth fiber map is equivalent to the existence of a splitting (N, v) such that  $M_N$  is diffeomorphic to  $N \times [0, 1]$ . Conditions 2 and 3 will guarantee the existence of such a splitting. Condition 2 will hold if and only if there exists a splitting (N, v) such that  $(M_N, N', N'')$  is an h-cobordism. Condition 3 will hold if and only if some such h-cobordism is a product.

We proceed to formulate Condition 2. From the exact sequence  $0 \rightarrow G \rightarrow \pi_1(M) \rightarrow Z \rightarrow 0$  we see that  $\pi_1(M)$  is a semidirect product of G and Z with respect to an automorphism  $\alpha$  of G. ( $\alpha$  is only well defined up to an inner automorphism but this is all right for our purposes.) If Condition 1 is satisfied then we can define an element c(f) in an abelian group  $C(Z(G), \alpha)$ . c(f) has the following property: c(f) = 0 if and only if there exists a splitting (N, v) such that  $(M_N, N', N'')$  is an

h-corbodism. The proof of this fact is quite long and relies heavily on handle body theory.

Condition 2. c(f) = 0.

If Condition 2 is satisfied then  $\tau(M_N, N') \in \operatorname{Wh}(G)$  is defined. But it may be possible to have a second splitting  $(N_1, v_1)$  such that  $(M_{N_1}, N_1', N_1')$  is an h-cobordism and  $\tau(M_{N_1}, N_1') \neq \tau(M_N, N')$ . Let  $\alpha_*$  denote the automorphism of  $\operatorname{Wh}(G)$  induced by  $\alpha$  (see [5]). Let  $\tau(f)$  be the image of  $\tau(M_N, N')$  in the group  $\operatorname{Wh}(G)/\{x-\alpha_*(x) \mid x \in \operatorname{Wh}(G)\}$  under the quotient homomorphism. We can show that  $\tau(f)$  is well defined. (i.e.  $\tau(f)$  is independent of the splitting (N, v)). Also  $\tau(f) = 0$  if and only if there exists a splitting (N, v) such that  $\tau(M_N, N') = 0$ . The proof of this fact makes use of Stallings' realizability theorem for h-cobordisms (see [6]). But the s-cobordism theorem of Barden-Mazur-Smale states that  $M_N$  is diffeomorphic to  $N \times [0, 1]$  if and only if  $\tau(M_N, N') = 0$ . Therefore

Condition 3.  $\tau(f) = 0$ .

Summarizing we have the following theorem.

THEOREM. There exists a smooth fiber map  $\tilde{f}: M \rightarrow S^1$  homotopic to f if and only if

- 1. X is dominated by a finite C.W. complex,
- 2. c(f) = 0,
- 3.  $\tau(f) = 0$ .

NOTE. There exists a version of this theorem for manifolds with boundary where the boundary already fibers a circle.

3. Properties of  $C(R, \alpha)$ . If R is a ring with identity and  $\alpha$  is an automorphism of R then by a Grothendieck construction we can define an abelian group  $C(R, \alpha)$ .  $\widetilde{K}_0(R)$  is a direct summand of  $C(R, \alpha)$ . Denote by  $\widetilde{C}(R, \alpha)$  the complementary summand. Write  $c(f) = \sigma(f) + \widetilde{c}(f)$  where  $\sigma(f) \in \widetilde{K}_0(R)$  and  $\widetilde{c}(f) \in \widetilde{C}(R, \alpha)$ . Then  $\sigma(f)$  is the Novikov-Siebenmann-Wall obstruction to X splitting differentiably as a cartesian product  $N \times R$ .

R is called regular if it is Noetherian and every finitely generated R module has a resolution of finite length by projective R modules. If R is regular then  $\tilde{C}(R, \alpha) = 0$ . But this is not the general situation since Bass and Murthy have shown that  $\tilde{C}(Z(G), id) \neq 0$  for certain finitely generated abelian groups G. A particular example is  $G = Z \oplus Z \oplus Z_4$ .

As an example of the fibering theorem consider the case where  $G = Z^n$ . Then Z(G) is regular and hence  $\tilde{C}(Z(G), \alpha) = 0$ . Also it is

known that  $\widetilde{K}_0(Z(G)) = 0$  and Wh(G) = 0 (see [5]). Therefore Conditions 2 and 3 become vacuous. Also observe that Condition 1 is only a homotopy theoretic condition. In particular if M and M' are homotopically equivalent manifolds such that  $\pi_1(M)$  is free abelian then M fibers a circle if and only if M' fibers a circle.

## **BIBLIOGRAPHY**

- 1. J. Stallings, On fibering certain 3-manifolds, Topology of 3-manifolds, Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 95–100.
- 2. W. Browder and J. Levine, Fibering manifolds over a circle, Comment. Math. Helv. 40 (1966), 153-160.
- 3. H. Bass and M. P. Murthy, Grothendieck groups and Picard groups of abelian group rings, (to appear).
- 4. F. T. Farrell and W. C. Hsiang, H-cobordant manifolds are not necessarily homeomorphic, Bull. Amer. Math. Soc. 73 (1967), 741-756).
  - 5. J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426.
- 6. J. Stallings, On infinite processes leading to differentiability in the complement of a point, Differential and Combinatorial Topology, Princeton Univ. Press, Princeton, N. I.
  - 7. F. T. Farrell, Ph.D. Thesis, Yale University, New Haven, Conn.,
- 8. L. Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greater than five, Ph.D. Thesis, Princeton University, Princeton, N. J.
- 9. C. T. C. Wall, Finiteness conditions for C. W. complexes, Ann. of Math. 81 (1965), 56-69.

YALE UNIVERSITY