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1. Introduction. In [1], Stallings considers the following question.
When does a 3-manifold fiber a circle? Browder and Levine general-
ized Stallings’ result to differentiable and piecewise linear manifolds
M of dimension greater than five under the restriction that m(M)=2Z.
Their theorem is purely homotopic in nature. Thatis if h: M'—M is a
homotopy equivalence and f: M—S! is a smooth fiber map then there
always exists a smooth fiber map f’: M’—S*such that f’ is homotopic
to foh.

This result is false if we drop their restriction on the fundamental
group. In particular let N be the cartesian product of a 3-dimensional
lens space L with fundamental group Z,% and the torus 7%~ where
n=5. Let M =NXS!'and f: M—S* denote projection onto the second
factor. Then there exists a manifold M’ and a homotopy equivalence
h: M'—M (in fact we may take M’ to be k-cobordant to M) such that
a smooth fiber map f": M’—S! homotopic to f o & cannot exist. This
example is based on recent deep results of Bass and Murthy [3] con-
cerning the structure of the projective class group. In a joint paper
with W. C. Hsiang [4] we use this example to construct an k-cobord-
ism (W, M, M') which is not homeomorphic to M X [0, 1].

In this paper we will state necessary and sufficient conditions, in
terms of a new obstruction theory, for a manifold M* (n = 6) to fiber a
circle. No restrictions will be placed on the fundamental group of M.
We will always work in the differential category, but the correspond-
ing theorem is also true in the piecewise-linear category.

2. Description of obstructions. Let M" be a closed connected
smooth manifold with = 6. Let f: M—S" be a continuous map. (Re-
call that the homotopy class of f is an element of H'(M, Z).) We will
state three properties about f which are necessary and sufficient to
guarantee the existence of a smooth fiber map f: M—S! homotopic to
f. For convenience we restrict our attention to maps f such that
Sy m(M)—m1(S) is onto. (This is equivalent to considering only indi-
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visible elements in H'(M, Z).) This corresponds geometrically to con-
sidering fibrations with connected fiber. Let G =ker f; and X denote
the covering space of M corresponding to G. If f exists then it is clear
that the fiber of f is homotopically equivalent to X. But the fiber of f
would be a closed smooth manifold. In particular it would be a finite
C.W. complex. Hence we obtain

ConpiTioN 1. X is dominated by a finite C.W. complex.

Let (N1, v) be a framed submanifold of M which represents f
under the Pontrjagin-Thom construction. Let My denote the mani-
fold obtained by “cutting” M along N. Then dMy consists of two
copies of N which we label N’ and N”'. (See Figure 1.)

Y
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FiGure 1

My is a cobordism from N’ to N”'. The pair (N, v) is called a split-
ting of M. Let 1 <s<n—2, s an integer. When Condition 1 holds it is
always possible to find a splitting (IV, v) such that (My, N’) has a
handlebody decomposition with handles of only two dimension s and
s+1. The proof of this uses essentially the same arguments as in [2].
Note that the existence of a smooth fiber map is equivalent to the
existence of a splitting (N, v) such that My is diffeomorphic to
NX [0, 1]. Conditions 2 and 3 will guarantee the existence of such a
splitting. Condition 2 will hold if and only if there exists a splitting
(N, 9) such that (My, N’, N”’) is an h-cobordism. Condition 3 will
hold if and only if some such k-cobordism is a product.

We proceed to formulate Condition 2. From the exact sequence
0—G—om(M)—Z—0 we see that w1 (M) is a semidirect product of G
and Z with respect to an automorphism « of G. (« is only well defined
up to an inner automorphism but this is all right for our purposes.) If
Condition 1 is satisfied then we can define an element ¢(f) in an abe-
lian group C(Z(G), @). c(f) has the following property: ¢(f) =0 if and
only if there exists a splitting (N, v) such that (My, N, N'') is an
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h-corbodism. The proof of this fact is quite long and relies heavily on
handle body theory.

ConpITION 2. ¢(f) =0.

If Condition 2 is satisfied then 7(My, N') EWh(G) is defined. But it
may be possible to have a second splitting (N1, 71) such that (My,,
N{, N{’) is an h-cobordism and 7(My,, N{)=7(My, N’). Let ax de-
note the automorphism of Wh(G) induced by « (see [5]). Let 7(f) be
the image of 7(Mxy,N’) in the group Wh(G)/{x—a*(x){xEWh(G)}
under the quotient homomorphism. We can show that 7(f) is well
defined. (i.e. 7(f) is independent of the splitting (V, v)). Also 7(f) =0 if
and only if there exists a splitting (IV, v) such that 7(My, N’) =0. The
proof of this fact makes use of Stallings’ realizability theorem for
h-cobordisms (see [6]). But the s-cobordism theorem of Barden-
Mazur-Smale states that My is diffeomorphic to N X [0, 1] if and only
if 7(My, N')=0. Therefore

ConbpiTioN 3. 7(f) =0.

Summarizing we have the following theorem.

THEOREM. There exists a smooth fiber map f: M—S! homotopic to f if
and only if

1. X is dominated by a finite C.W. complex,
2. ¢(f)=0,
3. 7(f) =0.

Note. There exists a version of this theorem for manifolds with
boundary where the boundary already fibers a circle.

3. Properties of C(R, «). If R is a ring with identity and « is an
automorphism of R then by a Grothendieck construction we can
define an abelian group C(R, a). Ky(R) is a direct summand of
C(R, @). Denote by C(R, a) the complementary summand. Write
c(f) =a(f) +&(f) where o (f) € Ko(R) and &(f) EC(R, @). Then o (¥) is the
Novikov-Siebenmann-Wall obstruction to X splitting differentiably
as a cartesian product NXR.

R is called regular if it is Noetherian and every finitely generated R
module has a resolution of finite length by projective R modules. If
R is regular then C(R, a)=0. But this is not the general situation
since Bass and Murthy have shown that C(Z(G), id) 0 for certain
finitely generated abelian groups G. A particular example is

As an example of the fibering theorem consider the case where
G=2r. Then Z(G) is regular and hence C(Z(G), a)=0. Also it is
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known that K,(Z(G)) =0 and Wh(G) =0 (see [5]). Therefore Condi-
tions 2 and 3 become vacuous. Also observe that Condition 1 is only a
homotopy theoretic condition. In particular if M and M’ are homo-
topically equivalent manifolds such that m (M) is free abelian then
M fibers a circle if and only if M’ fibers a circle.
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