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The occurrence and effects of wave impacts

G. Müller Dipl-Ing, MSc, PhD, W. Allsop BSc, CEng, MICE, T. Bruce MSc, PhD, A. Kortenhaus Dr-Ing, Dipl-Ing,
A. Pearce MSc, PhD and J. Sutherland PhD

The determination of design parameters for coastal

structures has historically often involved the definition of

maximumwater levels, the highest significant wave height

and the longest wave periods. The design then proceeds

with these values using numerical models, direct design

methods or physical model studies. Design studies have

often been conducted with maximum water levels, using

random seas with previously determined parameters, a

chosen wave spectrum and a sufficiently large number of

waves. Parametric analysis methods using multiple

parameters have identified that different combinations of

water level; wave condition; perhaps fluvial discharge; or

sea bed condition; may all influence the response. Recent

research into the most important responses of vertical

structures (plunging wave impact, toe scouring,

overtopping and overtopping-induced loading) indicates

that these mechanisms are all linked to the occurrence of

violent wave impacts. Wave breaking is a depth-limited

phenomenon, with plunging breakers occurring only for a

limited range of wave height to water depth ratios. For

given storm wave heights, but tidally varying water levels,

this wave-breaking regime will often only prevail for a

limited amount of time, leading to the conclusion that the

duration ofmaximum exposure, namely the length of time

that a coastal structure is exposed to the most important

wave-induced damage mechanisms, is a function of the

combined probability of (at least) water level (tidal C

storm surge) and wave height/storm profile

characteristics. Thismay have significant consequences for

the definition of critical design parameters and the

parameter variations employed in model tests.

1. INTRODUCTION

Many vertical coastal structures such as seawalls and vertical
breakwaters are exposed to violent wave action during storm
events, in which the main forms of wave-induced exposure can
be classified as listed here.

(a) Direct wave impact loads and their less direct consequences
(pressure propagation into joints and fissures).

(b) Toe scouring: the wave-induced formation of a scour hole at
the toe of a structure.

(c) Overtopping: water masses thrown over the crest of the
structure by wave action.

(d ) Vertical impact of water masses: pressures generated by
down-falling water from wave overtopping.

Figure 1 illustrates these wave effects on a coastal structure. Since
all these forms of exposure to violent wave action are stochastic,
the duration of exposure will strongly influence the magnitude of
the maximum response.

Direct wave impacts, vertical (downfall) pressures and toe scour
affect the stability/integrity of the structure, whereas overtopping
will affect its functionality (by preventing access, creating
hazards for users, inducing waves inside a harbour, etc.). The
design recommendations for three exposure types have recently
been improved1,2 whereas recommendations for toe scour are still
under development. In the context of vertical composite
breakwaters, seaward loading that is a result of wave overtopping
and downfall as well as impact-induced uplift pressures can
affect the stability of the structure.1,3 These mechanisms are also
linked to breaking wave impact but will not be considered further
in this paper.

Common practice for the determination of design conditions has
historically often been to assume the highest water level
(astronomical tide plus surge plus sea level rise) as being critical,
and then to determine a maximum (significant) wave height for a
given return period assuming that the highest wave generates the
most critical conditions. The four critical conditions listed above
and their effect on the design and performance of a structure are
then considered more or less individually. Even if there is a high
probability that the maximum water depth and wave
height/period will occur together, the assumption that the
maximum response/exposure will occur for that condition may
not necessarily be correct, as this paper will demonstrate.

For more important structures, physical model tests—mostly
employing random seas with spectra appropriate to the location
of a structure and with a specified number of waves (usually 500
to 1000)—are conducted to determine key responses such as wave
pressures or overtopping rates. Again, and in accordance with the
design philosophy stated above, the focus has often been on
maximum water levels and wave heights. Only occasionally are
lower water levels investigated, sometimes leading to surprising
results. An investigation of overtopping on an S-shaped
revetment on Norderney Island, Germany was conducted to
assess the effectiveness of a proposed wave return wall.4 The
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results indicated that for increasing freeboard and constant wave
heights, the overtopping volumes for a lower mean water level
(MWL) exceeded those for design water level significantly. This
was attributed to waves breaking onto the revetment at lower
water levels, leading to a high shoreward velocity and waves
actually ‘jumping’ over the revetment.

In the context of toe scour, it is currently assumed that maximum
scour occurs during the peak of the storm, but that the receding
storm tends to refill the scour hole, explaining why—although
many structures fail due to scouring—any actual evidence of
scour holes is rare.5

In this paper, the authors present the argument for a different
approach to determining the exposure duration or probability for
vertical coastal structures. Based on the synthesis of recent
research results, exposure duration or probability will be linked
to the combined probabilities of storm wave heights and water
level variations rather than to the maximum values of either. The
conclusions from this synthesis could be relevant for design of
coastal structures, and may change current design philosophies.
The purpose of this paper is to highlight and discuss these
changes and conclusions.

2. RECENT RESEARCH

Research into the four topics listed above has advanced our
understanding of key physical processes and prediction methods
significantly over recent years. These advances have however
progressed more or less independently in each subject area, so
that possible linkages have not become immediately obvious. The
most recent results on the occurrence of toe scour have, however,
highlighted a common feature of all four damage mechanisms,
which forms the central theme of this paper—the linkage of
exposure to particular breaker types, and therefore to the ratio of
wave height to water depth at the structure. Wave action on
Lomener Breakwater in Brittany (Fig. 2) can be seen to cause
maximum exposure at mid-tide, with very violent wave
breaking. At high tide, the critical wave height/depth ratio has
not been reached and the high waves are mostly reflected. This
behaviour is seen very clearly also on Alderney Breakwater
where overtopping is often greatest at mid-tide, and was

explained in relation to overtopping at Samphire Hoe.6 In the
following, the four different exposure mechanisms and their
connection with breaker types are re-presented.

3. IMPACT PRESSURES

Impact pressures and impulsive loads are generated by waves
breaking directly onto a coastal structure. The most advanced
design method for identifying the type of wave loadings on
vertical breakwaters is the parameter map developed in the MAST
PROVERBS project (Fig. 3), which links a wave parameter, H�

s ,
with the type of wave and wave-generated pressure—that is,
either pulsating, impact or broken wave loadings—where

Hs�ZHsi=hs

where Hsi is the significant wave height near the structure and hs
is the water depth in front of the berm.

Further parameters employed in Fig. 3 are: hb, the height of the
berm; Beq, the equivalent length of berm (distance from centre of
slope to structure); Fh, the horizontal force per m width; r, the
density of water; gg, the acceleration of gravity (9$81 m/s3).

For vertical structures without or with a small berm in front of the
wall, impact loads occur for H�

s O0$35. No upper limit of H�
s is

given to indicate the onset of the significantly smaller broken
wave loadings.

Overtopping

Wave impact

Downfall
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Seaward
pressures

Downfall
pressures

Bursting
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Portland cement
concrete
hearting

Concrete blocks
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Fig. 1. Wave effects on a coastal structure

(a)

(b)

Fig. 2. Different exposure conditions: Lomener Breakwater
(Brittany): (a) mid-tide (qV. Hache, with permission); (b) high-tide
(q J.-M. Sinquin, http://www.photosjeanmarc.info/index.html,
with permission)
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For composite breakwaters this method differentiates between low
mound/highmound, and smallwaves/largewaves and (in the case of
highmound) between narrow,moderate andwide berm to determine
whether pulsating, impact or broken wave pressures occur.

Other ‘discriminators’ between breaking and non-breaking wave
loading conditions exist, for example the method of Calabrese
and Buccino,7 which offers a predictor of the proportion of
waves breaking onto a simple or composite vertical structure. In
the related area of wave overtopping, current UK guidance uses
an ‘impulsiveness parameter’ to distinguish conditions under
which the overtopping process becomes ‘violent’ as opposed to
the ‘green water’ process seen under non-breaking wave
conditions.8

In model tests of breaking wave-induced impact pressures, the
sensitivity of impact pressure occurrence and magnitude to wave
height variations has been demonstrated by several
researchers.9,10 Fig. 4 shows the wave impact pressures from five
identical waves for each of the 32 different offshore wave heights,
H0, on a vertical wall, plotted against H0. The water depth at the
structure was 100 mm, the seabed slope 1:10, and position four is
located 25 mm below MWL (this location showed the highest
pressures). It can be seen that pressures increase dramatically from
H0 O 65 mm, when the wave is breaking right against the
structure, indicating the step function in exposure from
the previously reflected or pulsating wave. For H0 O 75 mm, the
waves break before reaching the structure and pressures are again
reduced significantly.

4. DOWNFALL PRESSURES

Substantial downfall pressures generated by water masses
thrown up by wave breaking/overtopping, and then falling onto
the deck of a coastal structure have been demonstrated in small-
and large-scale experiments.12 Figure 5 shows the results from
large-scale experiments conducted in the Large Wave Channel
(GWK) in Hanover, Germany.

The simultaneous (same wave, but slight time delay)
measurements of impact and downfall pressures (Pimpact and
Pdown, respectively) as shown in Fig. 5(a) indicate that maximum
downfall pressures occur for near impacting conditions. It
appears that high downfall pressures are only generated when a
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relatively compact water mass is thrown up and falls down. For
lower wave heights, the uprush height is insufficient to generate
large pressures. For larger wave heights, the impact itself is more
violent, with higher air entrainment. This leads to increased uprush
velocities and the disintegration of the uprushing water mass into
spray, and causes a significant reduction in downfall pressures. The
negative downfall pressures recorded in these experiments were
attributed to pressure drops caused by the high horizontal velocity
of the fluid particles occurring after the impact (pressures close to
zero) and possibly due to cavitation (downfall pressures
approachingK100 kPa). Figure 5(b) shows the downfall pressures
(Pdown) as a function of the uprush velocity, Vup (which is a near
linear function of the wave impact pressure magnitude12) for a
constant water depth, hb. The negative pressures have been omitted
in this analysis and therefore fewer measurement points are
present. The highest downfall pressures occur for uprush velocities
of 12–13 m/s, not for the maximum uprush velocities of 25 m/s,
again indicating that the ‘compactness’ of the water mass thrown
up by the wave affects the pressure.

5. OVERTOPPING

Most prediction methods for wave overtopping suggest that
maximum overtopping rates occur for high waves and small
freeboard/maximum water depth, hb, at the structure, with
overtopping rates decreasing with decreasing wave height. In

contrast, careful examination of wave overtopping responses2,6

has shown that the change from non-impulsive to impulsive
conditions may substantially increase overtopping even when
the water level is reducing. Fig. 6 gives predicted overtopping
discharges as a function of water depth (x-axis) and wave
heights. The overtopping discharge is determined using two
formulae: one for impulsive (violent, breaking wave-induced)
overtopping (for lower water levels; to the left of the chart), and
one for non-impulsive (green water) overtopping (for higher
water levels; to the right of the chart). The formula to be used is
determined according to the h* parameter used in UK guidance.8

For lower wave heights (e.g. HS Z 2$5, 2$0 and 1$5 m) it is
striking that the curves coming from the left (impulsive
conditions) have a different gradient to the curves coming from
the right (green water overtopping), and a jump or switch occurs
at this point (again assuming a reducing water level and coming
from the right). The previously non-breaking waves start to
break, giving (for these parameter combinations) a significant
step-up in overtopping discharge. Overtopping rates are
therefore strongly determined by the occurrence of violent wave
breaking at the structure.

It should be noted that the dashed lines in Fig. 6 are
extrapolations of prediction tools outside their validated ranges.
These are not large extrapolations, however, and even with some
uncertainty, the existence of a significant switch between the two
sets of lines remains clear.

6. TOE SCOURING

Toe scouring, namely the formation of a scour hole at the toe of a
structure which may lead to undermining and failure, has until
recently been attributed to

(a) wave reflections which increase wave heights, velocities and
turbulence

(b) currents trained along a seawall
(c) cross-shore flows under the base of the structure and vertical

flows through the beach which increase mobility.

Maximum scour depths were assumed to occur at the height of the
storm, but it was generally accepted that they tend to fill in (at
least partially) during the receding period. This assumption could,
however, not be confirmed since measurements under storm
conditions were impossible. As most toe scour studies were
conducted for a particular structure or location and consequently
had limited parameter ranges, no complete view of the scouring
process as a function of wave height has been reported until very
recently. In recent physical model tests, it was found that
maximum toe scour depths, St, occur for breaking wave
conditions, namely plunging breakers.13 Fig. 7 shows the ratio of
toe scour depth and significant wave height, St/Hs, plotted against
relative water depth at the structure, hb/Lm, where Lm is the deep
water wavelength based on the mean period, Tm. The experimental
results and field measurements (‘Blackpool data’) indicate that
water thrown into the air by the impact then falls down,
exacerbating the scour hole right at the structure toe. For smaller
wave heights and pulsating conditions, flow velocities at the toe
are minimal and an erosion hole forms at the quarter wave length
distance; and material is deposited at the toe. Larger waves, or
shallow water depth, lead to less fully-developed breakers and the
potential for sediment accretion at the toe.
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7. SYNTHESIS

The four different exposure types presented all occur under
near-breaking and fully-developed breaking conditions; with
maxima for different responses/exposure types occurring for
somewhat different conditions (e.g. near-breaking waves give
rise to maximum downfall pressures whereas fully-developed
breakers result in maximum impact pressures, overtopping and
toe scouring). Breakers at a vertical wall are a depth-limited
phenomenon and occur for H�

s O0$35, as was demonstrated in
a series of experiments,1 but disappear when the breaker
height increases such that the breaking point moves seaward,
leading to broken wave impacts at the wall. Little direct
information is available on the occurrence and height of
broken waves at vertical walls. It might therefore be assumed
that broken wave impacts could occur for most of the
incoming waves when the average wave height, Hav, exceeds
the water depth at the structure. With Hs z 1$6Hav,

20 this gives
an upper limit for the occurrence of wave impacts of

H�
s %0$625. The graphs

indicate that H�
s is also a

function of seabed slope and
wave steepness,20 assertions
supported in the
literature.21,22 These effects
require further investigation,
particularly for steeper bed
slopes.

These considerations suggest
that the maximum exposure a
structure will experience
during a storm is a function of
the breaker type, and therefore
a function of the combined
probability of wave height and
water level, and hence of the
proportion of impacts and their
intensity.

Simplifying, severe exposure
conditions may therefore
exist for a window of 0$35!
H�

s !0$625 in which the
impact pressure, downfall
pressures and overtopping, as
well as toe scour, all occur,
possibly simultaneously. The
duration of this window
determines the degree of
exposure. For conditions
outside the window, the
potential for violent breaking
responses will be significantly
reduced.

In order to illustrate the effect
of tidal elevation of the
duration of the exposure
window, a theoretical study
was performed with a water

depth hb Z 1$50 m, a wave height Hsi Z 0$80 m, an assumed
storm profile of 4 h ramp-up, 4 h constant wave height and 4 h
ramp-down and two different tidal ranges (Fig. 8). The
‘exposure window’, defined as the period of time when
0$35!H�

s !0$625, decreases from 6$6 h for a tidal range of
0$5 m, to 4$6 h for 1$0 m tidal range and 1$4 h for 2$0 m tidal
range. The duration of the critical wave height to water depth
ratio shortens as the tidal range increases, indicating that the
combined probability of critical conditions is reduced. Fig. 8(b)
and (c) also indicate that critical conditions need not
necessarily occur during the height of the storm; breaking wave
conditions can also exist during ramp-up or ramp-down of
storm wave heights, for example Fig. 8(c) for T Z 9$9 to 10$4 h.
The theoretical study therefore illustrates the effect of the
combined probability of wave height and water depth for the
occurrence of maximum exposure; the probability reduces with
increasing variability of the parameters wave height and water
level.
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8. DISCUSSION

The authors suggest that, assuming that storms have a certain
characteristic wave height distribution (ramp-up, flat, ramp-
down), the existence of an exposure window means that
extreme exposure is very much dependent on tidal levels, and
the temporal relationship of storm and tidal cycles. Large tidal
variations mean that the maximum exposure window becomes
short, so that although very violent storm conditions may
prevail, the exposure duration itself is limited. Small tidal
variations on the other hand can lead to exposure windows
being open for prolonged periods, therefore maximising the
exposure. This might explain why storm damage to coastal
structures can occur frequently in the Mediterranean Sea,
where fetch lengths and storm durations are significantly

smaller than those in the North Atlantic but very small tidal
variations prevail.23

The design of vertical walls and related structures should
therefore consider exposure durations through the combined
probabilities of storm characteristics and variations in water level
at the structure, leading to different degrees of exposure for
structures subjected to the same wave condition but different
tidal ranges.

The same considerations should be included in the design of
physical model tests. It may be more important to include
variations of tidal levels (even if small) to ensure that the degree
and/or duration of exposure conditions are reproduced rather
than conducting experiments with large numbers of waves. This
might require model tests to reproduce both storm profiles (see
the discussion24) and appropriate tidal variations.

At the moment, however, it is difficult to establish clear
boundaries for actual exposure windows since, for example, the
point of transition from plunging wave impacts to
spilling/broken wave impacts cannot clearly be defined. The
effects of seabed slope on breaker type and breaking point for
situations with a vertical structure have also still to be
investigated thoroughly.

9. CONCLUSIONS

Vertical coastal structures are often exposed to violent wave
action. Recent research has shown that wave impact pressures,
toe erosion and overtopping/overtopping-induced pressures
are all caused by plunging or near plunging breakers. Since
wave breaking is a depth-influenced phenomenon, the
exposure of a coastal structure to extreme wave action
depends not only on wave characteristics but also on the
water level or, in other words, on the combined probability of
wave height and tidal elevation plus surges. A theoretical
study has shown here that, for an idealised storm, exposure
increases for decreasing tidal variation. This may explain the
extreme exposure of coastal structures in areas with small
tidal variations, as witnessed by frequent and severe damage,
and could have consequences for the design of physical model
tests and other forms of analysis.
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WHITEHOUSE R. Scour at a seawall—field measurements and
physical modelling. In Proceedings of the 30th International
Conference on Coastal Engineering, San Diego, CA, USA
(MCKEE SMITH J. (ed.)). World Scientific, Singapore, 2006,
vol. 3, pp. 2378–2390.

15. XIE S.-L. Scouring Patterns in Front of Vertical Breakwaters
and their Influence on the Stability of the Foundations of the
Breakwaters. Department of Civil Engineering, Delft
University of Technology, Delft, the Netherlands, 1981, 61 p.

16. FOWLER J. E. Scour Problems and Methods for Prediction of
Maximum Scour at Vertical Seawalls. US Army Corps of
Engineers, Waterways Experiment Station, Coastal
Engineering Research Center, Vicksburg, MS, USA, 1992,
Technical Report CERC-92-16.

17. KRAUS N. C. and SMITH J. M. (eds). SUPERTANK Laboratory
Data Collection Project. Volume 1: Main Text. US Army
Corps of Engineers Waterways Experiment Station, Coastal
Engineering Research Center, Vicksburg. MS, USA, 1994,
Technical Report CERC-94-3.

18. SUTHERLAND J. and OBHRAI C. Medium Scale 2D Physical Model
Tests of Scour at Seawalls. HR Wallingford, Wallingford,
2006, Technical Report CBS0726/06.

19. SUTHERLAND J. and OBHRAI C. Scour Monitor Deployment at
Blackpool. HR Wallingford, Wallingford, 2006, Technical
Report CBS0726/04.

20. GODA Y. Random Seas and Maritime Structures. Advanced
Series on Ocean Engineering, vol. 15. World Scientific
Publishing, Singapore, 2000.

21. ALLSOP N. W. H., DURAND N. and HURDLE D. P. Influence of steep
seabed slopes on breaking waves for structure design. In
Proceedings of the 26th International Conference on
Coastal Engineering, Copenhagen. ASCE, New York, 1998,
pp. 906–919.

22. DURAND N. and ALLSOP N. W. H., Effects of steep bed slopes
on depth-limited wave breaking. In Proceedings of the Waves
’97 Conference, Virginia Beach. ASCE, New York, 1997,
pp. 1400–1413.

23. FRANCO L. Vertical breakwaters: the Italian experience.
Coastal Engineering, 1994, 22, No. 1–2, 31–55.

24. OWEN M. W. and ALLSOP N. W. H. Hydraulic modelling of
rubble mound breakwaters. In Proceedings of the Conference
on Breakwater: Design and Construction. Thomas Telford,
London, 1983, pp. 71–78.

What do you think?
To comment on this paper, please email up to 500 words to the editor at journals@ice.org.uk

Proceedings journals rely entirely on contributions sent in by civil engineers and related professionals, academics and students. Papers
should be 2000–5000 words long, with adequate illustrations and references. Please visit www.thomastelford.com/journals for author
guidelines and further details.

Maritime Engineering 160 Issue MA4 The occurrence and effects of wave impacts Müller et al. 173


	Abstract
	1. Introduction
	Fig. 1

	2. Recent research
	Fig. 2

	3. Impact pressures
	Equation 
	Fig. 3

	4. Downfall pressures
	Fig. 4
	Fig. 5

	5. Overtopping
	6. Toe scouring
	Fig. 6
	Fig. 7

	7. Synthesis
	Fig. 8

	8. Discussion
	9. Conclusions
	References
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.


