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Synopsis 49 

Uncertainty in ocean analysis methods and deficiencies in the observing system are 50 

major obstacles for the reliable reconstruction of the past ocean climate. The variety of 51 

existing ocean reanalyses is exploited in a multi-reanalysis ensemble to improve the 52 

ocean state estimation and to gauge uncertainty levels. The ensemble-based analysis of 53 

signal-to-noise ratio allows the identification of ocean characteristics for which the 54 

estimation is robust (such as tropical mixed-layer-depth, upper ocean heat content), 55 

and where large uncertainty exists (deep ocean, Southern Ocean, sea-ice thickness, 56 

salinity), providing guidance for future enhancement of the observing and data 57 

assimilation systems. 58 
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 67 

Introduction 68 There is increasing demand for historical records of the ocean climate1,2. These are 69 needed as a reference for monitoring the current state of the climate, and also to 70 initialize and validate long-range (e.g. seasonal and decadal) forecasts. Observations 71 alone are often inadequate to generate the required estimate of the ocean variables. 72 Ocean model simulations can provide some insight on the ocean variability, but they are 73 affected by biases due to errors in model formulation, specification of initial states and 74 forcing, and are not directly constrained by observations.  Ocean reanalyses are the 75 combination of ocean models, atmospheric forcing fluxes and ocean observations via 76 data assimilation methods and have the potential to provide more accurate information 77 than observation-only or model-only based ocean estimations.    78 The production of ocean reanalyses (ORAs hereafter) is now an established activity in 79 several research and operational centres. ORAs are revisited every so often, and new 80 ‘vintages’ are produced at intervals of about five years, as improvements in ocean 81 models, data assimilation methods, forcing fluxes or ocean observations become 82 available.   The previous vintage of ORAs (produced around 2006) has already been 83 documented3,4. A new vintage has recently been generated, which has come about 84 through the availability of new surface forcing fluxes (from new atmospheric 85 reanalyses), improved quality-controlled ocean datasets, including important 86 corrections to the observations5,6, as well as the steady improvement in the ocean 87 models and data assimilation methods. There are lower resolution reanalyses (~1 88 degree horizontal resolution), spanning a long time-period of typically 50 years, as well 89 



 

 

as higher resolution products (about ¼ of degree), available for shorter records, usually 90 the altimeter period 1993-onwards. 91 Although new reanalysis vintages are produced relatively infrequently, some of the 92 ORAs are continuously updated in quasi-real-time, with the model and data assimilation 93 methodology kept fixed. This is the case for the ORAs produced in operational centres to 94 initialize coupled forecasts. These real-time ORAs have the additional advantage that 95 they allow monitoring of relevant climate variables7. The monitoring of the tropical 96 Pacific conditions with a multi ocean reanalysis system (multi-ORA) is now a reality, as 97 can be seen in the NCEP ocean monitoring pages ( 98 http://www.cpc.ncep.noaa.gov/products/GODAS/multiora_body.html ) 99 In spite of the continuous improvements in methodology, the estimation of the historical 100 ocean state with reliable error estimates is a major challenge.  In addition to the 101 estimation of the three-dimensional ocean state at a given time (the analysis problem), 102 an ocean reanalysis also provides an estimation of the time evolution. The time 103 evolution represented by an ORA will be sensitive to the temporal variations of the 104 observing system, to the errors of the ocean model, atmospheric fluxes and assimilation 105 system, which are often flow-dependent, and not easy to estimate8. All these factors 106 contribute to the so-called structural uncertainty, i.e. the uncertainty associated with the 107 methodology and that cannot be sampled with a single system. A crude but pragmatic 108 way of estimating the current uncertainty in our ability to measure key ocean variables 109 

is to carry out an intercomparison of ORAs within the framework of a multi-reanalysis 110 ensemble approach.  For it to work, it is necessary that the individual components are 111 sufficiently distinct while at the same time have similar levels of error (i.e. equally 112 likely). The multi-analysis ensemble approach has already been successfully used to 113 study the ocean heat content9,10, and to initialize seasonal11,12 and decadal13,14 forecasts. 114 The ensemble approach is also used in the framework of the EU funded MyOcean 115 project15 using eddy-permitting reanalyses over the satellite period (1993-onwards). 116 The operational oceanographic community continuously carries-out coordinated inter-117 comparison of ocean forecasting systems16,17,18,19,20,21. In the same way, there is also 118 need for routine coordinated evaluation of ORAs, which would exploit the existing 119 information for a variety of purposes, namely  i) quantifying uncertainty, ii) measuring 120 progress in the quality of the reanalyses and iii)  producing indices for ocean monitoring 121 with associated error estimates.  These are the motivations for the current Ocean 122 Reanalyses Intercomparison Project (ORA-IP). This paper offers just a first glimpse of 123 the emerging results, with focus on the benefits of the ensemble approach both to 124 improve the estimation of the signals and to provide uncertainty ranges. 125 

The current ORA-IP project 126 

 127 

The joint GODAE OceanView/CLIVAR-GSOP (Global Synthesis and Observation Panel) 128 

workshop in Santa Cruz (13-17 June 2011)22 called for a community action on 129 

exploitation of the latest ORAs for real time climate monitoring and intercomparison. 130 



 

 

Although the ultimate goal is the near real-time monitoring of the ocean through indices 131 

based on an ensemble of reanalyses, the first stage was to complete an ORA-IP.  A viable 132 

proposal was put forward in Santa Cruz. The reanalyses producers were to provide 133 

relevant information (gridded fields of basic primary variables) in agreed formats and 134 

grids (where applicable), to enable the agreed intercomparison procedure to be carried 135 

out.  A “processing centre” would take responsibility for the intercomparison of a 136 

particular variable in which they had a strong interest and expertise. The processing 137 

centres would analyse ensemble statistics based on the input from the individual 138 

reanalyses, and create relevant indices, metrics or graphics that could be directly 139 

compared.  140 

 141 

Table 1:  List of ocean variables inter-compared, and responsible processing institution 142 

Table 2:  List of Ocean Reanalysis products entering the inter-comparison.  143 

 144 

Table 1 provides a list of the variables chosen for intercomparison. Table 2 lists the 145 

ORAs included in the study, and provides some details about the product name, 146 

associated institution, surface forcing, the ocean model, its resolution*, assimilation 147 

method and observations assimilated. The real-time ORAs are shown in blue. The data 148 

assimilation column lists the observation types used for their estimation (T/S for 149 

temperature and salinity; SLA: altimeter-derived sea level anomalies; SSH: sea surface 150 

height -from tide gauges; SST: sea surface temperature, MDT: mean dynamic 151 

topography, SIC: sea-ice concentration), as well as assimilation techniques used for 152 

reanalysis: Optimal Interpolation (OI), Ensemble Kalman Filter (EnKF), Kalman Filters 153 

and Smoothers (KF-FS), Ensemble OI (EnOI), variational methods (3D-var and 4D-var). 154 

Some of the observational products also use statistical techniques such as Empirical 155 

Orthogonal Functions (EOFs). In addition to ORAs, the table also lists products named 156 

Obs-only (OO in what follows), meaning that they are observation-only products that do 157 

not include a dynamical ocean model. The OOs provide sea surface height (SSH) or its 158 

anomaly (SLA), and/or temperature and salinity (T/S) estimates, and sometimes 3D 159 

velocities (U,V), as in the case of ARMOR3D. The atmospheric surface forcing is usually 160 

provided by atmospheric reanalyses, using either direct daily fluxes, or different bulk 161 

formulations. Sometimes the atmospheric reanalysis forcing is corrected (suffix corr in 162 

Table 2), using a variety of methodologies. There are also systems that use fluxes from 163 

coupled data assimilation systems (Coupled DA), which come in multiple flavours 164 (parameter estimation, EnKF, weakly coupled). The section on “Surface Heat Fluxes” 165 

below provides additional discussion. The detailed description of the analysis systems 166 

joining ORA-IP and their differences is beyond the scope of this paper.  However, more 167 

details about the products can be found in the references given in the table.  168 

                                                             
*
 Even the low resolution models resolve the Equatorial Rossby Radius of deformation by including meridional 

grid refinement close to the Equator. 

 



 

 

The production centres provided monthly-mean fields interpolated to the standard 1 × 169 

1 degree latitude-longitude grid used by the World Ocean Atlas 200923  (WOA09). Heat 170 

and salinity content, their steric contribution, and assimilation increments of 171 

temperature were provided as vertically integrated quantities from the surface down to 172 

a number of depths: 0-100m; 0-300m; 0-700m; 0-1500m; 0-3000m; and 0-4000m.  173 

The ORAs can be exploited, among other purposes, to assess the strengths and 174 

weakness of the different systems, to identify of gaps in the observing systems, and to 175 

identify robust quantities to use in climate monitoring.. The focus of the results 176 

presented is to identify the commonalities and differences among the existing 177 

reanalyses. To this end, a multi-system ensemble approach is followed, where the signal 178 

and its associated uncertainty are measured by the ensemble mean EM(t) and the 179 

ensemble standard deviation (ESD(t)) respectively, defined as: 180 

         ∑               and          √     ∑                   )                 (1) 181 

where       denotes an individual reanalysis product. Let us denote the different 182 

signals in a time series (mean, seasonal cycle, interannual variability, etc,...) as the action 183 

of a temporal filter F, and EMF(s) and ESDF(s) the ensemble mean and ensemble 184 

standard deviation of the filtered signal†. We define      as the temporal standard 185 

deviation of the filtered ensemble mean EMF(s), and         as the quadratic mean of 186 

ensemble spread of the filtered ESDF(s) as follows:   187 

      √(      ∑ (          )        ) ;        √(    ∑ (       )        ),          (2) 188 

with       the time mean of the filtered EM,  and MF is the number of independent 189 

temporal samples in the filtered timeseries. The signal-to-noise ratio, defined as the 190 

ratio           ⁄ , provides guidance on whether the estimation is robust. For instance, 191 

estimations with signal-to-noise less than unity are usually not considered robust. 192 

In what follows, we will use the term EM-ORA, EM-OO to refer respectively to the 193 

ensemble mean of ORAs and OOs. The rest of the article presents a brief overview of the 194 

preliminary results of the intercomparison of the variables listed in Table 1.   195 

Heat Content 196 

Monthly-mean depth integrated potential temperatures (K*m) were used in this study. 197 

The vertically integrated temperature was converted to ocean heat content (OHC) per 198 

unit of area by multiplying by reference values for density (1025 kg m-3) and specific 199 

heat capacity (3985 J Kg-1 K-1). This quantity, further integrated in the horizontal 200 

global domain, and computed relative to a common reference period of 1993-2007, has 201 

been used to estimate changes in the global OHC.  Note that when the timeseries are 202 

dominated by trends, the choice of reference period impacts the time evolution of the 203 

                                                             
†Here s is a generic temporal index associated to the temporal filter.  



 

 

spread among the timeseries‡. The apparent increase in spread among analyses during 204 

the 2000s is substantially reduced if one chooses the 2003-2007 reference period (not 205 

shown).  206 

Time series of global OHC change (Fig. 1) show best agreement for the upper levels and 207 

the products start to diverge as the integration is carried out to deeper levels. The 208 

largest rates of 0-4000m OHC rise during the 1990s exceed 3 Wm-2 (expressed relative 209 

to Earth’s surface area) for some products initialized in the early 1990s and cannot be 210 

considered physical. They are most likely artefacts of system spin-up or “shocks” related 211 

with introduction of the altimeter data. Trends over the period 2000-2009 for 0-4000m 212 

OHC give values between about 0.1 and 0.8 Wm-2. The OOs products ARMOR3D and EN3 213 

are both near the upper end of this range. Ocean heat uptake below 300m appears to 214 

increase markedly in the early 2000s for most products54, qualitatively supporting the 215 

results from the ORAS4 system55, although there is still a large spread in the amplitude 216 

of the OHC, and spatial patterns of change below 300m vary among ocean data 217 

assimilation products (not shown).  The OO products ARMOR3D and EN3 both show a 218 

similar signal of deep ocean heat uptake to ORAS4, illustrating that this signal is 219 

inherent to the observations54. 220 

Fig. 1 also shows that the ensemble spread of the multi-ORA is larger than the ensemble 221 

spread of the ORAS4 system55. Whether this holds for other individual ensemble-based 222 

ORA would need to be evaluated. A more difficult question is whether the multi-ORA 223 

spread is a good estimator of the existing uncertainty. It appears similar to the spread 224 

obtained with observation-only estimations56 . 225 

 Steric Sea Level 226 

Steric sea level (SSL) refers to the change of sea level due to ocean density variations 227 

associated with thermal and haline expansion or contraction of sea-water. SSL rise is 228 

responsible for about 30% to 40% of the total sea level rise during the last decades, 229 

according to recent estimates57,58. The ORA-IP is being used to investigate the steric sea 230 

level variability, by: i) quantifying the global SSL, its uncertainty and consistency with 231 

respect to independent estimates; ii) assessing the regional SSL change and the 232 

agreement among ocean reanalyses; iii) quantifying the relative contributions of the 233 

thermal and haline components and iv) quantifying the relative contributions of 234 

different vertical depth ranges59. Some of these aspects are clearly related with the 235 

ocean heat content variations and with the attribution of sea-level changes, but are not 236 

discussed here. Instead, this section focuses on the performance of the EM-ORA 237 

compared to EM-OO. 238 

SSL can be diagnosed in two different ways: i) as normalized vertical integration of 239 

density anomalies (SSL-density), and ii) as the differences between sea-level and 240 

bottom pressure anomalies (SSL-residual).  The latter is not easy to infer from models, 241 

which are volume-preserving by virtue of the Boussinesq approximation60. Instead, 242 

temperature and salinity monthly means from the ORA and OO products, containing 243 

information from in-situ observations, are used to diagnose SSL-density. Satellite-244 

products are used to derive SSL-residual, thus providing an independent validation data 245 

                                                             
‡
 In the case of linear trends, the spread will increase with the distance to the center of 

the reference period. 



 

 

set.   Here we use monthly means of altimetric sea-level anomaly (from AVISO) minus 246 

gravimetric ocean bottom pressure anomaly (from GRACE RL0561, available from 2005).  247 

The top-left panel of Fig.2 depicts the 2005-2009 map of temporal anomaly correlations 248 

between SSL-density from EM-ORA and SSL-residual (altimetry minus gravimetry). The 249 

high values of the correlation suggest high consistency in SSL between two independent 250 

estimates of SSL over most of the Global Ocean. In the Southern Ocean, south of 251 

approximately 60S, where the availability of in situ observations is poor, the correlation 252 

is lower. The top-right panel shows the temporal anomaly correlations, calculated after 253 

the seasonal signal has been removed (i.e. inter-annual signal retained). Although 254 

removing the seasonal cycle decreases the correlation value (especially in the Atlantic 255 

Ocean and at high latitudes), EM-ORA still exhibits high correlations for the inter-annual 256 

signal in the tropical areas and at mid-latitudes. 257 

The correlation between SSL-dens and SSL-residual is higher for EM-ORA (0.84) than 258 

for any individual product (0.77 at the maximum), and also higher than for EM-OO 259 

(0.74, not shown). The latter  is especially evident in areas where the in-situ observing 260 

network is poor and/or where there is impact of deep and bottom waters. The bottom 261 

panels of Fig. 2 show the difference of the anomaly correlation with respect to the 262 

validation dataset between the EM-ORA and the EM-OO for the full (left) and inter-263 

annual (right) signals. The high correlation obtained by EM-ORA emphasizes the added 264 

value of the dynamical constraints and atmospheric forcing included in the ORAs. This is 265 

evident in the full fields (in the Southern Ocean, in the South Atlantic and just south of 266 

the Bering Strait), and especially noticeable for the inter-annual signal. 267 

Although the EM-ORA proves to be a good estimator of total steric height,  uncertainty 268 

still remains regarding the partition into thermal and haline components, and the 269 

contribution of different depth ranges. Preliminary results over a longer 270 

intercomparison period (1993-2009)59 show a large spread regarding the contribution 271 

of deep layers (below 700 m of depth) to SSL trends, with a low signal-to-noise ratio in 272 

the trend estimation of less than 1.  273 

Sea Level 274 

The sea level from the ORAs in Table 2 and two OO products (ARMOR3D and LEGOS) 275 

have been evaluated. (The sea level ARMOR3D is effectively the delayed gridded 276 

AVISO52 product, also called DUACS). This comparison focuses mainly on the 277 

interannual variability and regional distribution of the trend, and it uses globally-278 

detrended monthly means of sea level anomalies. For each product, the seasonal cycle 279 

was removed at each location of the ocean domain. The global mean sea level for each 280 

month was also removed. 281 

Two reference data sets have been used for the evaluation:  sea level from tide gauges, 282 

and the newly reprocessed altimeter-derived sea level from the ESA Climate Change 283 

Initiative (SLCCI)53.  The latter is a gridded dataset where the original altimeter data has 284 

been reprocessed with improved algorithms (orbit, wet tropospheric corrections, 285 

among others) and ancillary data (using improved atmospheric fields  for instance)  in 286 

order to produce consistent time series of sea level for climate studies.  SLCCI has not 287 

been assimilated by any of the products in Table 2, although many of these products 288 

assimilate along-track satellite altimetry (usually AVISO). Only two products (ECCO-v4 289 

and LEGOS) use information from tide gauges.  290 



 

 

The tide gauges used for the evaluation are the same as the subset from the Global Sea 291 

Level Observing System (GLOSS, see http://www.gloss-sealevel.org/) chosen for 292 

evaluation of sea level reconstructions41. Monthly means of sea-level anomaly at the tide 293 

gauge locations were created after removing the effects of tides and inverse barometer 294 

from the original tide gauge data.  This allows a relevant comparison with sea level 295 

anomalies from the reanalysis products because tides and inverse barometer are not 296 

represented in the reanalysis products. The ORAs and OOs were spatially interpolated 297 

to the tide gauge locations. All the time series involved in the analyses were detrended 298 

at each location by removing the product-specific local linear trend. 299 

The comparison with tide gauges appears in the top panels of Fig.3. The statistics are for 300 

the period 1993-2009. Fig. 3a shows the scatter diagram for the individual products 301 

(top-left), with the temporal correlation (x-axis) and the rms error (cm, in the y-axis). A 302 

large scatter in the scores is seen among different products, with the best fit generally 303 

obtained by the products assimilating SLA, and in particular by those with higher 304 

horizontal resolutions, with scores comparable to those obtained by the altimeter-305 

derived SLCCI and AVISO. This result indicates that not all the ORAs are equally likely, 306 

and therefore the grand ensemble mean may not be appropriate to estimate coastal sea-307 

level variations. In this case, the ensemble approach is limited to those products that 308 

assimilate altimeter EM-ORAalti.  Fig. 3b shows the correlation map between tide 309 

gauges and EM-ORAalti. Even with the reduced ensemble, the correlation is higher in 310 

the open ocean than in the continental shelves, and it appears higher in the tropics than 311 

at higher latitudes.  312 

A different application of the multi-ORA ensemble is the definition of climate indices 313 

relevant for regional climate monitoring, which is illustrated in the following (although 314 

more work is needed to define relevant indices).  The sea level variability averaged over 315 

the Eastern North Tropical Pacific region (0-12°N, 84-108°W) has been chosen as an 316 

example, because although different from the traditional equatorial El Niño index, it 317 

reflects the impact El Niño in the Western Coast of Mexico related with the coastal 318 

propagation of Kelvin waves.  In this case, ESACCI is used as validation data set.  All 319 

products show a coherent interannual variability (Fig. 3d), even when altimeter data 320 

are not assimilated, and there is very small spread around EM-ORA (black).  The 321 

variability is dominated by the El Niño 1997-98, and a significant negative trend of ~3-4 322 

mm/y, consistent with the lack of Eastern Pacific ENSO in the last decade, and with the 323 

recently reported strengthening of the Pacific trade winds 55,62,63. Fig. 3c shows the 324 

corresponding Taylor diagram for the different ORAs and OOs averaged over this 325 

region. In contrast with the tide-gauge evaluation, here the scores of the ORAs versus 326 

SLCCI are quite similar (sixteen of the nineteen products show correlations higher than 327 

0.95 and rms differences lower than 1.5 cm). The smallest rms error (around 0.5 cm 328 

rms error, y-axis in Taylor diagram) is achieved by the EM-ORA. The EM-ORA score is 329 

comparable to that achieved by the best members (which assimilate satellite altimetry) 330 

and by AVISO, and is larger than 0.99. EM-ORA has a weaker signal than SLCCI (4.8 331 

instead of 5.2 cm of standard deviation, x-axis in Taylor diagram), a natural 332 

consequence of the ensemble averaging.  333 

In other areas, like the North Atlantic (not shown), there are more discrepancies among 334 

the reanalysis products and weaker signal-to-noise ratios.  Discrepancies can arise from 335 

different choices in the assimilation systems64.  It has been shown that products 336 

assimilating altimeter data can be distinguished from those that do not. The different 337 



 

 

methods used to assimilate altimeter information can also introduce spread. For 338 

instance, the altimeter can be used to constrain only the baroclinic mode, or only the 339 

barotropic mode, or to constrain the fresh water budget, or the three aspects 340 

simultaneously. The altimeter can be assimilated in anomaly mode (using anomaly 341 

values relative to a reference period) or using the absolute values (which implies the 342 

use of an external mean dynamic topography (MDT), which differs between systems).  343 

The ORA-IP can be used to gain insight into the sensitivity arising from the assimilation 344 

methods, but this is beyond the scope of this paper. 345 

Surface Heat Fluxes 346 

The purpose of this comparison is to assess the global heat closure in ORAs, the 347 

consistency of the seasonal cycle and interannual variability between the products, and 348 

to compare with other heat fluxes from a variety of sources (primarily satellite, ships, 349 

buoys and atmospheric reanalysis). These other sources are not completely 350 

independent (with the exception of satellite based radiative fluxes) because they may 351 

also use SST or near surface meteorological data to generate products. Nevertheless, 352 

they enable some assessment of the uncertainty introduced by the reanalysis methods 353 

themselves. Additional datasets include the OAFlux latent and sensible heat flux 354 

product65 combined with ISCCP satellite based radiation66, the ship-based NOC2.0 355 

product67, the Large and Yeager68 hybrid flux dataset CORE.2, and two atmospheric 356 

reanalysis products, the ECMWF ERA-Interim reanalysis69 (referred to as ERAi) and the 357 

NCEP/DOE reanalysis R270 (referred to as NCEP-R2).  358 

Most ORAs are forced with bulk formulae using an atmospheric dataset taken from an 359 

atmospheric reanalysis product. In these cases, assimilation of sea surface temperature 360 

(SST) observations directly influences the net surface heat flux, as the turbulent latent 361 

and heat fluxes, computed from bulk formulae, and the outgoing long wave radiation, 362 

computed using the Stefan-Boltzmann Law, depend on the SSTs. The ORAs can also 363 

close their heat budget through the temperature assimilation increments, since the 364 

vertically integrated temperature assimilation increments, with the appropriate unit 365 

transformation, are equivalent to a heat flux55.  Fig. 4 shows the 17-yr mean globally 366 

integrated heat fluxes for 15 individual ORAs and for the ensemble mean, as well as for 367 

the other global flux products. The interannual variability over the same period is 368 

shown by the error bars.  Most ocean reanalyses have a positive surface imbalance 369 

(mean net surface heat flux into the ocean), usually considerably smaller than for the 370 

observational products, e.g., ISCCP/OAFlux and NOC2.0, and smaller than for 371 

atmospheric reanalyses in some cases. The largest interannual variability is seen for the 372 

PEODAS product which uses ERA-4071 forcing fields until 2002, and NCEP-R2 based 373 

forcing thereafter. Interannual variations over 1993-2009 are only ~1 Wm-2 for the 374 

ensemble of 15 flux estimates. The contributions from the assimilation increments are 375 

mostly negative (removing heat from the ocean on the global average), resulting in a 376 

reduction of the net heat flux. The total net heat flux applied (i.e., surface plus 377 

assimilation) is still positive and mostly smaller than ±2 Wm-2, consistent with reported 378 

warming in global ocean heat content42,55,56. 379 

The seasonal cycle in surface heat fluxes closely agrees in most regions between the 380 

reanalysis products (not shown), with monthly spreads generally being smaller than 381 

10Wm-2 over most of the global ocean, exceptions being the subpolar gyres, the 382 

Southern Ocean and some eastern subtropical basin areas72. Interannual signal-to-noise 383 



 

 

ratios for the surface heat fluxes over the period 1993-2009 show strong signals (2+) in 384 

the ENSO affected regions and perhaps some signals at higher latitudes, but with 385 

signal/noise ~1, longer analysis periods may be needed to identify this variability more 386 

clearly. Regional comparisons are being extended to include individual flux components 387 

(representing radiative and turbulent transfers), and also validation against in situ flux 388 

measurements at a number of OceanSITES moorings72, which provide an independent 389 

check that is not reliably gained from any other source.  390 

Mixed Layer Depth 391 

Mixed layer depth (MLD) is one of the most important variables for both the dynamical 392 

process of climate variation and for biogeochemistry.  Intercomparison of the seasonal 393 

to interannual variability in the global MLD provides a useful gauge of the value of ORAs 394 

for the study of climate variability.   395 

The MLD used in this study is defined as the depth where potential density exceeds the 396 

10-m depth value by Δρ = 0.03 or 0.125 kg m-3 (MLDr003/MLDr0125). Similarly, the 397 

isothermal layer depth (ILD) is defined as the depth where potential temperature 398 

differs from the 10-m depth value by ΔT = 0.2 or 0.5˚C (ILDt02/ILDt05). Different 399 

criteria are used because it is not easy to find a unique threshold that defines the mixed 400 

layer depth at all latitudes. As MLD/ILD verification we use the MILA-GPV73 and 401 

deBoyer74 datasets, also estimated from the individual TS profiles, following the 402 

definitions above.  In particular, MILA-GPV uses only the Argo profiles without 403 

interpolation between grid points, although the spatio-temporal coverage of the dataset 404 

is limited. deBoyer provides the monthly climatological fields (MLDr003 and ILDt02).  405 

The MLD/ILD are calculated from monthly-means of temperature-salinity (TS) fields on 406 

the individual native grids of three OO products (EN3v2a, ARMOR3D, WOA09) and 16 407 

ORAs; these are then interpolated to the regular global longitude-latitude common grid. 408 

EM-ORA is estimated as the ensemble average of individual MLD/ILD on the common 409 

grid (this will differ from the MLD/ILD calculated from the ensemble mean of TS).  The 410 

MLD/ILD from the individual ORAs exhibit various biases in the mean fields depending 411 

on the diversity of model configurations and assimilation systems (not shown). Here we 412 

focus on the evaluation of EM-ORA rather than on the detailed representations of the 413 

individual reanalysis fields, which will be described in future work. 414 

Fig. 5 presents the zonal-mean monthly MLD/ILD normalized differences of EN3v2a, 415 

ARMOR3D, deBoyer, WOA09 and EM-ORA with respect to the MILA-GPV as reference. 416 

Note that values averaged over the Argo-rich 2005-2011 period are plotted for MILA-417 

GPV, EN3v2a, ARMOR3D and EM-ORA, while the climatological fields are provided by 418 

deBoyer and WOA. The differences between deBoyer and MILA-GPV (MLDr003 and 419 

ILDt02) are generally small, since MILA-GPV and deBoyer are comparable datasets that 420 

use individual TS profiles. The larger differences appear in high latitudes, where the 421 

availability of ocean observations is limited. MLDs/ILDs for EN3v2a and ARMOR3D are 422 

biased-shallow due to the use of gridded and monthly mean TS fields. ILDt02s in WOA 423 

are 20 to 40% shallower than MILA-GPV globally, due to the use of the climatological TS 424 

field74. Using larger values for criterion (Δρ = 0.125 kg m-3 and ΔT= 0.5˚C) reduces 425 

the shallow biases. The shallow biases in MLDr0125 and ILDt05 for EN3v2a and 426 

ARMOR3D are generally less than 20% except at high latitudes. We found that a large 427 

portion of these shallow biases result from the coarser vertical resolution of the OO 428 



 

 

gridded TS products at relevant depths compared with the model based reanalyses75. 429 

Model biases do cancel in most areas in the EM, although large positive biases remain in 430 

regions where common biases are well known from coarse resolution models76 (e.g., the 431 

Kuroshio Extension and Antarctic Circumpolar Current regions). In addition, ILDt05 432 

values from WOA, EN3v2a, ARMOR3D and EM-ORA are commonly larger than those 433 

from MILA-GPV in the subarctic regions and Southern Ocean around spring. This is 434 

likely due to the fact that MILA-GPV is the only product that does not use monthly 435 

means of TS when deriving MLD/ILD. This specific topic will be described in future 436 

work. 437 

 438 

Salinity in the top 700m 439 

Salinity variability has a significant impact on the density structure and dynamics of the 440 

ocean. However, it is only in the past few years that assimilation of salinity has received 441 

attention, largely because of the advent of Argo (see http://argo.jcommops. org, which 442 

has significantly improved the sampling of the global ocean salinity), and because of its 443 

importance in obtaining balanced ocean states.  For instance, recent studies on seasonal 444 

forecasts77,78 demonstrate that the assimilation of salinity observations results in 445 

improving ocean states density and T/S properties, resulting in better ENSO prediction. 446 

This study evaluates the averaged salinity in the top 700m of the ocean (S700) as 447 

represented by the EM-ORA and compared it with the EM-OO. As discussed, the ESD-448 

ORA gives an indication of uncertainty, and the signal-to-noise ratio provides guidance 449 

on where the signal measured by the ensemble mean dominates over the noise 450 

measured by the ensemble spread. 451 

Fig. 6a shows the difference of annual mean S700 between EM-ORA and EM-OO in Table 452 

2 over the period 1993-2010. The difference is largest (~0.2 psu) in regions of strong 453 

frontal variability such as the Gulf Stream, Southern Ocean along the Antarctic 454 

Circumpolar Current (ACC) region, and to a lesser extent the Kuroshio region. In the 455 

tropics the difference is generally less than 0.05 psu. 456 

Fig. 6b shows the ESD-ORA of the S700 1993-2010 mean (or      , where M denotes 457 

1993-2010 temporal mean). In general the largest spread, up to 0.15 psu, is also 458 

associated with the areas of strong variability or greatest mean difference compared to 459 

the EM-OO analyses. Around most of the ACC, the ESD-ORA is just large enough to 460 

encompass the large differences between EM-ORA and EM-OO. The spread is relatively 461 

large in the eastern equatorial Atlantic and the western equatorial Indian Ocean, where 462 

the spread reaches up to 0.1 psu 463 

Fig. 6c shows the correlation of S700 interannual anomalies between the EM-ORA and 464 

EM-OO for the period 1993-2010. Correlations are relatively high, greater than 0.75, in 465 

the equatorial and sub-equatorial Pacific, particularly in the centre and west. They are 466 

also high in the eastern equatorial Indian Ocean, and throughout parts of the sub-467 

tropical and mid-latitude oceans. Correlations are relatively low, less than 0.5, around 468 

the northern edge of the ACC, Western Indian Ocean and parts of the sub-tropical 469 

Atlantic, particularly downstream of the Mediterranean outflow. Each individual ORA 470 

can be correlated with the EM-OO. Then the spread in this correlation gives an 471 

indication of the disagreement in the estimate of variability between the different 472 



 

 

systems. This is shown in Fig. 6d. There is some correspondence between areas with 473 

large spread and low correlation in Fig.6c, e.g., the northern edge of the ACC in the 474 

Pacific Sector and the northern part of the tropical Atlantic. Equally, the high correlation 475 

in the Tropical Pacific, Eastern Indian Ocean, North East Pacific and North East Atlantic, 476 

where the spread is low, is indicative of consistency between the different estimates. 477 

The Southern Ocean is an exception, presenting relatively large values of the correlation 478 

and large values of spread. 479 

Fig.6e shows the standard deviation of the interannual S700 anomalies (seasonal cycle 480 

removed) of EM-ORA (    , where I stands for “interannual”). This gives an estimate of 481 

the amplitude and geographical distribution of the S700 interannual signal, which 482 

appears highest in subduction areas close to the edge of strong boundary currents. It is 483 

also high in the western equatorial Pacific and central Indian Ocean, probably 484 

associated with changes in the fresh-water fluxes. Fig. 6f shows the spread in the S700 485 

monthly anomalies of the ORAs (or      ). The spread is largest in the sub-tropics and 486 

mid-latitudes, particularly associated with western boundary currents and the Southern 487 

Ocean. In the western boundary current regions and parts of the Southern Ocean it 488 

exceeds 0.1 psu. The signal-to-noise ratio is greater than 1 in the equatorial west Pacific, 489 

central Indian Ocean and small regions of the mid-latitude ocean. However, over most of 490 

the oceans the signal-to-noise ratio is less than 1.79 491 

An interesting question arising from this study is why the spread appears largest in the 492 

Gulf Stream than in other western boundary currents. One possible explanation is 493 

related to the stronger salinity fronts in this region, such that small variations in the 494 

Gulf Stream path can produce strong salinity anomalies. But other factors can 495 

contribute as well, such as the uncertainty associated with deep-water formation, sea 496 

ice, and a larger uncertainty in the representation of the Gulf Stream path itself 497 

(compared with other western boundary currents). The uncertainty introduced by the 498 

assimilation method cannot be discarded either, and it would be interesting to evaluate 499 

the uncertainty pattern of ocean-model simulations, as well as that of individual 500 

ensemble-based data assimilation systems.  501 

Depth of 20°C Isotherm 502 

Variations in the thermocline depth are associated with major modes of tropical climate 503 

variability. The depth of the 20°C isotherm (D20) has been considered as part of this 504 

intercomparison project as a proxy for thermocline depth and variability in the tropical 505 

oceans. D20 monthly means from the different ORAs in Table 2 and from two OO 506 

products (EN3v2a and ARMOR3D) have been used.   507 

The absolute value of D20 depends on the vertical discretisation of the model used in 508 

each reanalysis. Most of the products have between 16-25 levels in the upper 200-m-509 

depth. There is the small group of eddy-permitting, NEMO based reanalyses, 510 

characterized by high vertical resolution of the upper ocean (1-m in the first level, then 511 

31 levels for the first 200-m depth). There is also some ambiguity regarding the 512 

definition of D20 monthly means included in the evaluations: these can be either 513 “monthly means of D20 from instantaneous values” or “the D20 from the monthly 514 

means of the temperature field”. In this preliminary diagnostics, different groups have 515 

used different methods.80 516 



 

 

Fig.7 shows the spatial pattern of D20 in the EM-ORA (Fig.7a), the differences between 517 

the two OO products (Fig.7b), and the difference between EM-ORA and each of the OO 518 

products (Fig.7c and Fig.7d). On average, EM-ORA is shallower than the OO products in 519 

the centre of gyres, and deeper on both eastern and western boundaries of the ocean 520 

basins. There are also large differences at the western boundaries, especially along the 521 

Gulf Stream, which may be related with the misrepresentation of the path of western 522 

boundary currents by the models. However, differences along the western boundary 523 

currents are also large between the OO products EN3v2a and ARMOR3D (Fig.7b).  524 

Compared to the OO products, the D20 EM-ORA is slightly deeper in the Equatorial 525 

Indian, Atlantic and Eastern Pacific Oceans, and shallower in the Pacific Warm Pool. The 526 

reasons for this unexpected difference will be investigated in future work. 527 

 528 

Sea-Ice 529 

Several studies have suggested that sea ice thickness may be a predictor for seasonal 530 

sea ice extent81,82. This highlights a weakness in almost all ice forecasting systems in 531 that they don’t include the explicit assimilation of ice thickness observations. Moreover, 532 

it remains to be seen how the predictability of the seasonal ice cover depends on the 533 

representation of various physical processes and model details, such as spatial 534 

resolution and the inclusion of an ice thickness distribution. By intercomparing various 535 

properties of the sea ice cover in existing ice-ocean reanalyses, it may be possible to 536 

highlight deficiencies and best practises in these systems toward answering the 537 

question: Are current ice-ocean reanalyses suitable for initializing seasonal forecasts of 538 

the ice cover? Here we present preliminary results from this intercomparison. 539 

The ice-ocean reanalyses considered here use a variety of model resolutions, physics 540 

and analysis methods. Reanalysis details are provided in table 2. For the ECMWF 541 

reanalysis system, two additional versions of the system were considered whereby only 542 

the method of ice assimilation was varied (ERAL-linear, ERAN-non-linear83; note that 543 

these products do not appear in Table 2).  544 

Sea ice models used here include two community models, the Los Alamos Community 545 

Ice model (CICE84) and the Louvain sea Ice Model (LIM85), as well as independently 546 

developed models. While these models and their particular implementation details may 547 

vary widely, an important distinction is the representation of the ice thickness 548 

distribution. Some models include a sophisticated multi-category approach, while 549 

others use a single ice category. This different treatment of ice thickness impacts both 550 

ice dynamics and thermodynamics86.  551 

Another important distinction is in the application of ice assimilation. Many systems 552 

employ a simple nudging of ice concentration toward a gridded ice analysis product 553 

(e.g. OSISAF, NSIDC), while a few systems use more sophisticated ice assimilation 554 

methods (e.g. 3DVar, SEEK). However, perhaps the most important aspect of ice 555 

assimilation is in how the increments to concentration affect ice thickness. Two systems 556 

(ECMWF and Mercator) supplied different versions of their reanalyses with/without ice 557 

assimilation and the impact on ice thickness is non-negligible, albeit unconstrained (not 558 

shown). 559 



 

 

Fig. 8 shows an example highlighting the large range of mean ice thicknesses found for 560 

the various ice-ocean reanalyses in March 2007. Also shown is a satellite estimate of the 561 

ice thickness derived from ICESat87 for February/March 2007. In general, the reanalysis 562 

products all exhibit the basic feature of thicker ice cover north of the Canadian Arctic 563 

Archipelago and Greenland as seen in the observations, albeit to a varying degree. 564 

However, the thickness of ice in the central Arctic and along the Siberian coast varies 565 

widely. In particular, the reanalyses tend to cluster toward either overly thin ice (~1m) 566 

or overly thick ice (>3m), with perhaps only one or two showing realistic thicknesses of 567 

about 2m. These differences are larger than interannual variations and are on the scale 568 

of the decadal thinning of the ice cover (not shown). The relative contribution of the 569 

various factors (e.g. model physics and resolution, atmospheric forcing, data 570 

assimilation) that may be contributing to these differences is a topic of on-going study. 571 

Such large biases may limit the usefulness of these products for seasonal forecasting.  572 

Summary 573 

This paper presents the first results of the ORA-IP, which aims at exploiting the 574 

diversity of existing ocean reanalyses to identify those aspects that are robustly 575 

represented by the different products and those where there is a large level of 576 

discrepancy. The agreement can be exploited to define indices for monitoring or 577 

verification, while the discrepancies point towards areas for future enhancement of 578 

assimilation and observing systems. The paper also illustrates the use of independent 579 

evaluation metrics to measure the quality of the ensemble mean and individual 580 

products, thus providing guidance on the adequacy of the ensemble approach.  581 

The intercomparison has focused on a small set of ocean variables, interpolated into a 582 

common horizontal grid, and for a limited set of vertical levels (when applicable).  The 583 

intercomparison period is mainly 1993-2010, although shorter periods are also used. 584 

Where relevant (mixed layer, ocean heat content, steric height, sea level, salinity and 585 

thermocline depth) the ensemble mean of the ocean reanalyses was compared with 586 

observation-only estimates, to assess if the model-derived estimates show any 587 

systematic differences from the observation-only estimates. The ensemble spread is 588 

also used as a measure of the existing uncertainty.  589 

It is shown that in general the ensemble mean is usually a better estimation than any 590 

individual ocean reanalyses. However, in the case of coastal sea level variability, the 591 

evaluation with tide-gauge data indicates that ORAs with high-resolution models and 592 

assimilation of altimeter are more skilful, and the scores are better when using a sub-593 

ensemble including the subset of best ORAs instead of the grand ensemble.  594 

Systematic differences between OOs and ORAs are largest in the tropics, where model-595 

physics and the wind variability are key assets for the ORAs. These differences are seen 596 

in the thermocline and mixed layer depth. In addition, the ensemble of ORAs performs 597 

better than the OO products in the estimation of steric height variability at seasonal and 598 

interannual variability time scales in the Atlantic and outside the tropics.   599 

The surface heat flux estimates from ocean reanalyses were compared with other 600 

products, mostly based on atmospheric reanalyses. Although large uncertainty still 601 

exists, the ocean reanalyses global surface heat fluxes appear more balanced than the 602 

atmospheric-based products, especially when the contribution of the assimilation 603 



 

 

increments is taken into account. The results suggest that data assimilation methods 604 

and ocean observations can contribute to the estimation of surface heat fluxes. 605 

The estimation of interannual variability of salinity continues to be a challenge. Signal-606 

to-noise ratios larger than one are confined to the tropical western Pacific, dominated 607 

by the ENSO signal. This was the case in the previous intercomparison of reanalyses 608 

(circa 2006)3,4, and continues to be so now, in spite of the increased salinity 609 

observations in recent years. More work is needed to establish the source of uncertainty 610 

(changing observing system - e.g. differences before and after Argo, forcing fields, 611 

assimilation methods and error specification). 612 

The intercomparison of sea-ice showed a large uncertainty in the estimation of sea-ice 613 

thickness, which is largely unconstrained by the assimilation methods, highlighting the 614 

need for observations of ice thickness for both assimilation and validation.    615 

This ORA-IP has also identified areas where the uncertainty is large, thus providing a 616 

focus for future developments in the observing system and modelling/data assimilation. 617 

The deep ocean (below the top few hundred metres), the Southern Ocean (Antarctic 618 

Circumpolar Current region), coastal areas and the path of western boundary currents 619 

appear as the areas with largest uncertainty in the density, temperature and salinity 620 

fields. Not only are the differences between ORAs and OO products the largest, but there 621 

is also a large spread among ORAs (as expected from model error), and among OOs 622 

(likely because observation representativeness errors are large).  These are also 623 

important areas for climate.  624 

It is clear that we are still a long way from providing ocean estimations that can answer 625 

satisfactorily many fundamental questions, and that continuous development of the 626 

assimilation and observing system is needed. In the meantime, the multi-model 627 

ensemble strategy is a pragmatic approach to exploit the current resources.  It is also 628 

clear that the evaluation of successive vintages of ocean reanalyses should be a 629 

continuous process, since it is needed to assess progress and to identify gaps, thus 630 

contributing to setting the directions for future developments.  631 
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Tables 905 

Table 1:  List of ocean variables inter-compared, and responsible processing institution 906 

Variable 

Ocean Heat Content MetOffice 

Steric Height CMCC 

Sea Level Mercator Ocean 

Surface Heat Fluxes University Reading 

Mixed Layer Depth MRI/JMA 

Salinity CAWCR 

Depth of 20 degree Isotherm Mercator Ocean 

Sea Ice Env Canada 
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Table 2:  List of Ocean Reanalysis products entering the inter-comparison.  908 

Product Forcing Configuration Data Assim. Method 

ARMOR3D24,25 

CLS 

N/A 1/3° Obs-Only 

(T/S/SSH/U/V) 

OI (SLA/MDT/T/S/SST) 

CFSR26,27 

NOAA NCEP 

Coupled DA 1/2° MOM4 coupled 3DVAR (T/SST/SIC) 

C-GLORS05V328 

CMCC 

ERAi corr+ Bulk 1/2° NEMO3.2 3DVAR (SLA/T/S/SST/SIC) 

ECCO-NRT29 

JPL/NASA 

NCEP-R1+ CORE Bulk 1° MITgcm KF-FS (SLA/T) 

ECCO-v430,31 

MIT/AER/JPL 

ERAi+CORE Bulk  1° MITgcm 4DVAR (SLA/SSH/T/S/SST) 

EN3 v2a32 

Hadley Center 

 N/A  1° Obs-Only (T/S) OI (T/S) 

GECCO233 

U. of Hamburg 

NCEP-R1+Bulk 1°x1/3° MITgcm 4DVAR (SLA/T/S/MDT/SST) 

ECDA34,35 

GFDL/NOAA 

Coupled DA  1/3° MOM4 coupled EnKF (T/S/SST) 



 

 

GloSea536,37 

UK MetOffice 

ERAi+CORE Bulk 1/4° NEMO3.2 3DVAR (SLA/T/S/SST/SIC) 

MERRA Ocean 

GSFC/NASA/GMAO 

Merra + Bulk  

 

1/2° MOM4 EnOI (SLA/T/S/SST/SIC) 

GODAS38 

NOAA NCEP 

NCEP-R2 Flux. 1°x1/3° MOM3 3DVAR (SST/T) 

GLORYS2V1(G2V1) 

Mercator Océan  

ERAi corr+CORE Bulk  1/4° NEMO3.1 KF+3DVAR 

(SLA/T/S/SST/SIC) 

GLORYS2V3(G2V3) 

Mercator Océan  

ERAi corr+ CORE Bulk  1/4° NEMO3.1 KF+3DVAR 

(SLA/T/S/SST/SIC) 

K7-ODA(ESTOC)39 

JAMSTEC/RCGC 

NCEP-R1  corr. Flux 1° MOM3 4DVAR (SLA/T/S/SST) 

K7-CDA40 

JAMSTEC/CEIST 

Coupled DA 1° MOM3 coupled 4DVAR (SLA/SST) 

LEGOS41 

LEGOS 

N/A 1/4° Obs-Only (SL) OI+EOF (SLA/SSH) 

NODC42 

NODC/NOAA 

N/A 1° Obs-only (T/S) OI (T/S) 

PEODAS43 

CAWCR(BoM) 

ERA40 to 2002; NCEP-R2  

thereafter. Flux 

1°x2° MOM2 EnKF (T/S/SST) 

ORAS444,45 

ECMWF 

ERA40 to 1988; ERAi 

thereafter. Flux. 

1° NEMO3 3DVAR (SLA/T/S/SST) 

MOVE-C46 

MRI/JMA 

Coupled DA  1° MRI.COM2 

coupled 

3DVAR (SLA/T/S/SST) 

MOVE-G247 

MRI/JMA 

JRA-55 corr+ Bulk  

 

0.5°x1° MRI.COM3 3DVAR (SLA/T/S/SST) 

MOVE-CORE48,49 

MRI/JMA 

CORE.2 Bulk  0.5°x1° MRI.COM3 3DVAR (T/S) 

SODA50 

U. of Maryland and TAMU 
 

ERA40 to 2002; ERAi 

thereafter. Bulk  

1/4° POP2.1 OI (T/S/SST) 

UR025.451 

U. of Reading 

ERAi + CORE Bulk  1/4° NEMO3.2 OI (SLA/T/S/SST/SIC) 

AVISO52 

CLS 

N/A 

 

1/4° Obs-Only 

(SSH/SLA) 

OI (SLA) 

SLCCI53 

ESA 

N/A 1/4° Obs-Only (SSH) OI (SSH) 
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Figures 914 



 

 

 
 

Fig 1: Time series of global ocean heat content anomaly, relative to a baseline period of 1993-2007. 

Note that SODA only includes grid boxes that span the full column and therefore will tend to 

underestimate OHC changes as the depth of integration increases. ARMOR3D and EN3 are obs-only 

analyses and do not include a dynamic model component. [UoR in legend corresponds to the 

URO25.5 in Table 2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

Fig 2: 2005-2009 Steric Sea Level anomaly correlation of EM-ORA with respect to the validation 

dataset (altimetry minus gravimetry) described in the text, for the full (top-left) and the inter-

annual signal (top-right). Correlations higher than 0.25 are significant (at the 95% confidence 

level). The bottom panels show the map of differences between the EM-ORA anomaly 

correlation and the EM-OO anomaly correlation for the full (bottom-left) and the inter-annual 

signal (bottom-right). Positive (negative) values indicate that the correlation is higher (lower) 

with EM-ORA than with ORA-OO. 
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Fig 3: Top: Comparison between tide gauges and ORAs and OOs, after detrending and removing of 

seasonal cycle:  a) RMS/Correlation diagram for the individual products using GLOSS tide gauge 

data as reference; b) correlations between EM-ORAalti  and tide gauges time series, at tide gauge 

locations. Bottom: Evaluation of a sea level index: c) Taylor diagram using SLCCI as verification; d) 

Index time series, defined as the area-averaged  sea level anomalies over the North-East Tropical 

Pacific region(0-12°N, 84-108°W).  Anomalies and statistics have been computed over the 

1993-2009 period. 
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Fig 4: Time-mean global net  “Surface” heat fluxes (grey bars) and their interannual standard 

deviations (red error bars) over the 17 years (1993 – 2009) spanned by all data sets. The 

15-member ensemble of “Surface” flux products is also shown (dark grey bar), along with 

observation based on atmospheric reanalysis products to the right hand side (orange bars). Eight 

products also have “Assimilation” fluxes (blue bars) computed by integrating the temperature 

increments from the surface down to the bottom, along with “Total” -fluxes, i.e., “Surface” 

+”Assimilation”  fluxes (green bars). Positive is heat flux into the ocean. Units are in Wm
-2
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Fig 5: Zonal mean monthly MLDs and ILDs from MILA-GPV averaged over 2005-2011 (left column).  

Others: Differences from MILA-GPV, normalized by the MILA-GPV values. 
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S700 Ensemble Statistics (1993-2010) 

 

a)   1993-2010 Mean   Difference   EMORA - EMOO     b)  Ensemble Spread of the 1993-2010 Mean 

 

 
 

c)         Anomaly Correlation (EMORA and EMOO)           d)    Spread in Anomaly Correlation 

 
 

e)  Time-Std of the EM Interannual Anom S700  

 

 

f)     Ensemble Spread of Interannual Anom 

 
 

Fig. 6 a) 1993-2010 mean difference of S700 (Depth-averaged salinity over 0-700m) between EM-

ORA and EM-OO. The interval of colour bar is 0.05 psu. 

b) The ensemble spread of the mean S700 (ESD-ORA).  The interval of colour bar is 0.05 psu. 

c) Temporal correlation of S700 monthly interannual anomalies between the EM-ORA and EM-OO, 

for the period 1993-2010. 

d) Spread of correlation coefficients of S700 anomalies from the individual ORAs. 

e) The inter-annual standard deviation (1993-2010) of EM-ORA S700, representative of  the 

interannual “signal” (      . The interval of colour bar is 0.02 psu. 

f) The average ensemble spread of the interannual anomalies of S700 (     representing the 

uncertainty or ‘noise’). The interval of colour bar is 0.02 psu. 
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Figure 7: (a) Global map of mean of D20 from EM-ORA.  Differences in mean D20 between  (b) the 

two OO products ARMOR3D and EN3v2,  (c) EM-ORA and  ARMOR3D and (d) EM-ORA and EN3v2.  

Units are m. The mean fields have been calculated over the 2005-2010 periods. 
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Fig. 8: Example of mean sea ice thickness for the various ice-ocean reanalyses for March 2007. Also 

shown is a satellite estimate of sea ice thickness from ICESat (bottom left). 
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