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Abstract  25 

Climate change (CC) is driving modification in the chemical and physical properties of 26 

estuaries and oceans with profound consequences for species and ecosystems. Numerous 27 

studies investigate its effect from species to ecosystem levels, however little is known on 28 

impacts on biofilm communities and bioactive molecules, like cues, glues, and enzymes. 29 

CC is induced by anthropogenic activity increasing greenhouse emissions leading to rises 30 

in air and water temperatures, ocean acidification, sea level rise and changes in ocean gyres 31 

and rainfall patterns. These environmental changes are resulting in alterations in marine 32 

communities and spreading of species (pathogens, invasives). This review provides 33 

insights and synthesis of knowledge about the effect of elevated temperature and ocean 34 

acidification on microfouling communities and bioactive molecules. The existing studies 35 

suggest that CC will impact production of bioactive compounds, growth and composition 36 

of biofouling communities. Undoubtedly, with CC fouling management will became an 37 

even greater challenge.  38 
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1. Introduction 42 

The carbon dioxide concentration in the Earth’s atmosphere is clearly and steadily rising 43 

(IPCC 2013). Anthropogenic emission has driven CO2 concentration in the atmosphere 44 

from 208 ppm during the pre-industrial era to well over 400 ppm at the Hawaii monitoring 45 

site since 2015 with an estimated increase of 2ppm per year 46 

(https://www.esrl.noaa.gov/gmd/ccgg/trends/weekly.html). This increase in CO2 47 

concentration in the atmosphere causes many physical consequences for marine 48 

environments including ocean warming (IPCC 2013). The mean global sea surface 49 

temperature is increasing at an average rate of >0.1˚C per decade (over the last 39 years), 50 

with the strongest warming trends found at high latitudes, and with future prediction 51 

estimating an increase of 2.7 ˚C by 2090. Temperature variations are often accompanied 52 

by changes in salinity due to reduced or enhanced precipitation relative to evaporation. 53 

Freshening and warming cause enhanced density stratification (IPCC 2013) and reduce the 54 

depth of winter mixing, which can cause a decrease in  O2 concentration in Oxygen 55 

Minimum Zones which are  higher than the estimated decrease in  O2 concentration in the 56 

Open Ocean  (mean rate in the of 0.1 to >0.3 µmol Kg-1yr-1 ) (IPCC 2013). Additionally, 57 

climate change is expected to increase upwelling frequency and intensity, lead to sea level 58 

rise due to melting of sea ice and glaciers (Doney et al. 2012).  59 

Increase in the level of atmospheric CO2 will lead to ocean acidification (Doney et al. 60 

2009). Because the oceanic and atmospheric gas concentrations tend towards equilibrium,  ̴61 

30% of the atmospheric CO2 has been taken up by the oceans, decreasing average pH by ̴ 62 

0.1 pHT unit and ultimately changing water chemistry. The observed decrease in pHT 63 

corresponds to a 26% increase in hydrogen ion concentration of seawater (Feely et al. 64 
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2009). By 2100, pH is expected to change by -0.13 (421ppm under RCP2.6), -0.22 65 

(538ppm under RCP4.5), -0.28 (670ppm under RCP6.0) and -00.42 pHT unit (936ppm 66 

under RCP8.5). Some progress has been made to understand the consequences of changes 67 

in pH, carbonate CO3
2-, and the saturation state of CaCO3 for marine organisms and 68 

ecosystems (IPCC 2013; Wahl et al. 2015). These chemical and physical changes have 69 

direct implications for physiological processes such as photosynthesis, calcification, 70 

growth rates and internal pH regulation in a wide range of organisms (McCoy and 71 

Ragazzola 2014, Nannini et al. 2015, Evans et al. 2017, Fabricius et al. 2017, Okazaki et 72 

al. 2017) which will lead in a disruption of marine ecosystems and a reduction of 73 

biodiversity (Hoegh-Guldberg et al. 2007, Milazzo et al. 2014, Beaugrand et al. 2015).  74 

All industrial installations in estuaries, bays, seas and oceans, such as vessels, platforms, 75 

buoys, quickly develop biofouling, a community composed of micro- and macro-fouling 76 

organisms (Clare et al. 1992). Micro-fouling usually presents as a dynamic microbial 77 

biofilm, which is composed of various species of bacteria, microalgae and protozoa 78 

incorporated in a muco-polysaccharide matrix (Dobretsov 2010; Malaeb et al. 2013; Salta 79 

et al. 2013). Macro-fouling communities are complex, with barnacles, bryozoa, mussels, 80 

polychaetes and macroalgae being the most common (Richmond & Seed 1991; Zardus et 81 

al. 2008). In some cases, micro-fouling organisms produce chemical cues that induce or 82 

inhibit settlement of macro-fouling species (Crisp 1984; Dobretsov et al. 2006; Hadfield 83 

2011; Qian et al. 2007; Rittschof 2017) while in others there is a little direct relationship 84 

between macro- and micro-fouling.  85 

Biofouling has a huge economic impact on maritime industries (Callow & Callow 2002; 86 

Trepos et al. 2014). Biofouling clogs aquaculture nets, water intakes, heat exchangers and 87 
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reduces ship hull performance (Okamura et al. 2010; Schultz et al. 2011; Sievers et al. 88 

2014). Moreover, biofouling increases corrosion, shear stress and drag, eventually leading 89 

to higher fuel consumption (Schultz et al. 2011) and increased production of CO2 and 90 

carbon particulates.  91 

There are numerous reports of the effect of single environmental factors associated with 92 

climate change (CO2 level, elevated temperatures and acidification) on individual benthic 93 

species (Bamber 1990; Parker et al. 2011; Lane et al. 2013; Calosi et al. 2013; Peck et al. 94 

2015). Some of these benthic species, like the blue mussel Mytilus edulis, are potent 95 

biofouling species. In contrast, the percent of biofouling publications dealing with climate 96 

change is quite low but increasing every year (Figure 1). Several publications report effects 97 

of factors associated with climate change on micro- and macro-fouling communities on 98 

inert substrates (Kim & Micheli 2013; Gladis-Schmacka et al. 2014; Peck et al. 2015) and 99 

living hosts (Nasrolahi et al. 2012; Stratil et al. 2013; Saderne & Wahl 2013; Saha et al. 100 

2014).  101 

A significant proportion of the biofouling-related climate change literature addresses 102 

invasive species (Stachowicz et al. 2002; Hellmann et al. 2008; Canning-Clode et al. 2011).  103 

Invasive species can be introduced by ship fouling and in ballast water (Davidson et al. 104 

2008, 2009; Sorte et al. 2010; Keller et al. 2011). Most biofouling-related climate change 105 

literature deals with species (organismal level) or populations of individual species (Figure 106 

2). Fewer researchers investigated potential impact of factors associated with climate 107 

change on multispecies communities. The lowest number of publications report effects of 108 

factors associated with climate change on signaling molecules and the biochemistry of 109 
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organisms (Poloczanska & Butler 2009) (Figure 2). The impact of climate change on 110 

microbial communities and the bioactive molecules they generate is understudied.  111 

This review focuses on the impacts of elevated temperature and ocean acidification, on 112 

biofouling communities. Particular focus is on the effect of factors associated with climate 113 

change on bioactive molecules of fouling organisms and growth and composition of 114 

microbial communities. Finally, we suggest areas for fruitful future investigation and the 115 

implication of climate change on the antifouling industry.  116 

 117 

2. Climate change and bioactive molecules from fouling organisms 118 

Biologically active molecules are produced by all phyla of marine organisms and play 119 

important roles in signaling, communication, allelopathy (Mayer et al. 2013) and 120 

organization of marine communities (Browne et al. 1998; Hay 2009; Rittschof 2017). 121 

Chemical cues from bacteria, diatoms and fungi induce or inhibit settlement of invertebrate 122 

larvae and algal spores (Wieczorek et al. 1996; Zardus et al. 2008; Dobretsov et al. 2013). 123 

When released in the marine environment, most of these biologically active molecules are 124 

bio-transformed or biodegraded by microbes (Uroz et al. 2005; Moree et al. 2012). There 125 

is a straightforward relationship between increase in temperature and the half-life of 126 

biologically active molecules (Singh et al. 2004). Similarly, there is a positive relationship 127 

between the concentration of heterotrophic bacteria and the half-life of signal molecules 128 

(Decho et al. 2010). Elevated water temperatures due to climate change will stimulate 129 

growth of microorganisms and enhance biodegradation of cues as well as enhance 130 

synthesis of antimicrobial compounds by marine fouling organisms (Table 1).  131 
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Marine bacteria coordinate virulence, competence, conjugation, production of antibiotics, 132 

motility, and biofilm formation by quorum sensing (QS) (Miller & Bassler 2001; Waters 133 

& Bassler 2005; Williams 2007). QS is based on the production, release and detection of 134 

chemical signal molecules called autoinducers. Increased concentrations of these signals 135 

due to high bacterial population density lead to an alteration in gene expression that 136 

regulates bacterial physiological activities (Decho et al. 2011). One of the most common 137 

and studied class of QS signal molecules is acyl homoserine lactone (AHL) (Waters & 138 

Bassler 2005). AHLs are unstable at >pH 7 (Yates et al. 2002). Studies assessing the 139 

stability of AHL against alkaline hydrolysis showed that AHLs having longer acyl chains 140 

(>12 carbons) are more resistant to breakdown than their shorter counterparts (Hmelo et 141 

al. 2011). In laboratory and field experiments, pH has a significant impact on the 142 

concentration of AHLs in microbial mats (Decho et al. 2009). In phototrophic microbial 143 

mats, short chain AHLs degrade quickly during the day, when the pH is > 8.2.  During the 144 

night, when pH is 6.8 the concentrations of AHLs increases (Decho et al. 2009). When 145 

shorter-chain AHLs are degraded too rapidly, cellular communication may be disrupted. 146 

Acidification due to climate change will have a dramatic effect on concentrations of AHLs 147 

(Table 1). Since AHLs are important for biofilm structure and composition and settlement 148 

of some macro-fouling species (Dobretsov et al. 2009), it is possible that changes in 149 

production of QS compounds will alter densities and compositions of biofouling 150 

communities.  151 

Enzymes are biological catalysts that accelerate the rate of specific biochemical reactions. 152 

Most enzymes are proteins and their structure is important for their activity. Increased 153 

temperature and changes in pH can lead to partial inhibition and in extreme cases to 154 
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inactivation of enzymes (Iyer & Ananthanarayan 2008). However, in other cases such as 155 

the activity of trypsin-like enzymes (Rittschof, 2017) increased temperature and lowered 156 

pH are near the optimum for the enzymes and increase rates of reactions. When marine 157 

organisms are subjected to environmental change (Hochachka & Somero 2002), the three 158 

main mechanisms used to maintain physiological homeostasis are: 1) quantitative 159 

(changing the concentration of enzymes and/or reactants); 2) qualitative (using a protein 160 

variant); 3) modulation (modifying the protein environment to reduce the impact of 161 

environmental change) (Clarke 2003).   162 

Research shows that temperature impacts the enzyme levels and physiology of barnacles 163 

(Wong et al. 2011). Water temperature and high anthropogenic pollution have a significant 164 

effect on concentrations of antioxidant enzymes, such as catalase, superoxide dismutase 165 

and NADH-DT diaphorase, in the barnacle Balanus (=Amphibalanus) amphitrite (Niyogi 166 

et al. 2001). Anthropogenic ocean acidification alters protein expression patterns in B. 167 

amphitrite (Wong et al. 2011) although past studies have not found effects on reproduction 168 

due to changes in pH (McDonald et al. 2009, Nardone et al., 2018). The impact of 169 

temperature and pH on adhesion of barnacles has been reported (Tedesco et al. 2017).  170 

Similarly, enzymes responsible for calcification of sedentary polychaete tubes were 171 

affected by elevated concentrations of CO2 (Chan et al. 2012; Lane et al. 2013). Past 172 

work indicates the aragonite-producing juveniles of Hydroides elegans at the level of 173 

acidification predicted for the years 2050-2300 will not be able to maintain integrity of 174 

their calcification products (Chan et al. 2012).  175 

Acidification affects interactions between iron and 3,4-dihydroxyphenylalanine (DOPA) 176 

and thus weakens byssus attachment of Mytilus trossulus to non-calcified materials 177 
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(O’Donnell et al. 2013). Mussel byssus threads were weaker and less extensible when 178 

secreted under elevated pCO2 (>1200 µatm), whereas shell and tissue growth were 179 

unaffected (O’Donnell et al. 2013). Byssal fiber performance was reduced by 40%, which 180 

suggest that mussels will be dislodged by forces lower than those which dislodge them 181 

under present conditions. Decreased mussel attachment strength due to low pH was also 182 

reported by Zhao et al. (2017) who showed with real time PCR that low pH altered the 183 

expression of genes encoding proximal thread matrix protein, precursor collagen proteins 184 

and mussel foot proteins. The expression of some genes was down regulated, while others 185 

were up regulated. In multi-species communities, the impact of ocean acidification on 186 

mussel biomolecules became less predictable. A recent mesocosm study suggested that 187 

dense populations of macrophytes, like Fucus vesiculosus and Zostera marina, may 188 

mitigate acidification impact on mussel (Mytilus edulis) calcification by raising mean pH 189 

of seawater (Wahl et al. 2017). In the future, factors associated with climate change can 190 

change activity of enzymes and other bioactive molecules and, thus, change physiology 191 

and behavior of fouling organisms, and, finally, lead to changes in biofouling communities.  192 

 193 

3. Climate change and microbial communities  194 

Stress factors associated with climate change affect the growth and productivity of 195 

microbes (Rajkumar et al. 2013) and production of bioactive compounds (Hasegawa et al. 196 

2005; Yang et al. 2007). Temperature has a dramatic impact on microbial growth (Price & 197 

Sowers 2004). Elevated temperature accelerates the growth of mesophiles and slows the 198 

growth of psychrophiles and alters the interactions between bacteria and their hosts (White 199 

et al. 1991; Wahl et al. 2012). In a case of marine pathogens, elevated temperature increases 200 

Sergey Dobretsov
I included this interesting recent study
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growth, virulence and antimicrobial resistance (Kimes et al. 2012; Abdallah et al. 2014). 201 

For example, at 280 C the infection rate and attachment of the coral pathogen Vibrio shiloi 202 

increases, while at the lower temperatures (about 160 C) bacterial adhesion and growth in 203 

the tissues of the host coral Oculina patagonica is minimal and does not cause bleaching 204 

(Toren et al. 1998; Kushmaro et al. 2001). Virulence factors involved in motility, host 205 

degradation, secretion, antimicrobial resistance and transcriptional regulation are up-206 

regulated in the pathogen Vibrio coralliilyticus at temperatures above 270 C (Kimes et al. 207 

2012).  208 

Factors associated with climate change (e.g. increase in temperature, frequency of El-Nino 209 

and La-Nina-like conditions) and anthropogenically induced eutrophication cause massive 210 

algal blooms of microorganisms (Paerl & Huisman 2009). Due to presence of algal toxins 211 

and elevated oxygen consumption these blooms result in massive benthic and fish kills 212 

(Richlen et al. 2010; Hallegraeff 2010) and create estuarine and ocean dead zones (Diaz & 213 

Rosenberg 2008). In early July 2008, high level of nutrients and surface temperatures 214 

triggered a very dramatic bloom of Ulva sp. occurred in the China Sea off Qingdao, China 215 

(Leliaert et al. 2009). Similarly, in January-February 2014 extremely high ocean 216 

temperatures on the Atlantic coast of Brazil stimulated the largest algal bloom in the 217 

country’s history. The bloom was composed of several species with the red alga 218 

Aglaothamnion uruguayense being the most abundant (Martins et al. 2016). In 2008-2009 219 

in the Persian Gulf, an algal bloom of the dinoflagellate Margalefidinium (Cochlodinium) 220 

polycricoides probably brought by ballast waters caused high mortality among benthic 221 

animals and fishes (Richlen et al. 2010) and dramatically decreased biomass of biofouling 222 

communities (Dobretsov 2015). These examples suggest that algal bloom conditions are 223 

Sergey Dobretsov
Ricardo please correct

Sergey Dobretsov
It has a new name
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becoming the norm for most populated coastal regions and their impact on benthic and 224 

fouling community ecosystems will intensify in the warming oceans. 225 

Marine biofilms are communities composed of viruses, bacteria, microalgae and protozoa 226 

incorporated in an exopolymer matrix (Zobell & Allen 1935; Webb et al. 2003; Qian et al. 227 

2007; Dobretsov 2010). Biofilms are dynamic and the composition of communities can be 228 

altered by changes in environmental conditions, such as temperature, salinity, pH, and 229 

nutrient availability (Qian et al. 2007; Salta et al. 2013). For example, the number of rainy 230 

days and temperature affected growth of phototrophic biofilms on roof tiles (Gladis-231 

Schmacka et al. 2014). Researchers studied the effect of different temperatures (high, low 232 

and ambient) on formation of microbial biofilms and subsequent larval settlement in 233 

laboratory experiments (Lau et al. 2005; Whalan & Webster 2014). Increased water 234 

temperatures led to formation of different microbial communities and subsequently 235 

affected settlement of larvae. Compositions of microbial communities associated with the 236 

alga Fucus vesiculosus were different when these algae were exposed to different 237 

temperatures or light intensities (Saha et al. 2014). Changes in pH led to significant 238 

decreases in biofilm performance and diversity (Patil et al. 2011). Peck and co-authors 239 

(Peck et al. 2015) studied formation of biofouling communities under ambient (pH = 7.9) 240 

and acidified (pH = 7.7) conditions at a constant temperature (230C). After 100 days in 241 

acidified conditions, the proportion of sponges and ascidians is increased but numbers of 242 

the spirorbid Neodexiospira pseudocorrugata were reduced 5-fold. Changes in pH affected 243 

microfouling communities as well; the densities of the diatoms were lower in the low pH 244 

treatments compared to controls (Peck et al. 2015). Similarly, the microbial communities 245 

of corals, coralline algae and foraminifera were significantly different after the exposure to 246 
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pH 7.9 (pCO2 = 822 μatm) over 6 weeks (Webster et al. 2013). In contrast, elevated pCO2 247 

had no impact on the microbiome associated with rhodoliths (Cavalcanti et al. 2018). If 248 

one ventures beyond the host algal thresholds to climate change, positive host-microbiome 249 

interactions are disrupted. Increasing temperatures resulted in a 2-fold increase in relative 250 

abundance of epibiotic Rhodobacteraceae on the surface of F.vesiculosus (Stratil et al. 251 

2013). Similarly, community diversity measured by evenness and richness was higher at 252 

ambient water temperatures than at elevated temperatures. Thus, climate change can shift 253 

the structure of biofilms on inert and natural substrata (Table 1).  254 

Biofilms play an important role by inducing or suppressing settlement of spores and larvae 255 

of some macrofouling species (Dobretsov et al. 2006; Zardus et al. 2008; Hadfield 2011; 256 

Salta et al. 2013). Thus, changes in microbial communities due to climate change could 257 

alter the structure of macro-fouling communities. For example, in the laboratory microbial 258 

communities developed at 23oC and 30oC were different from ones at 16oC (Lau et al. 259 

2005). Larval response to these biofilms was also different; biofilms developed in the 260 

laboratory at 23oC and 30oC stimulated settlement of larvae of the barnacle B. (=A.) 261 

amphitrite and B. trigonus but had no effect on the polychaete larvae Hydroides elegans 262 

(Lau et al. 2005). Similarly, biofilms developed at elevated temperatures stimulated sponge 263 

larval settlement (Whalan & Webster 2014). Changes in the microbial community 264 

associated with crustose coralline algae reduced coral larval settlement under low pH 265 

(Webster et al. 2013). UV radiation reduces densities of bacteria in biofilms, which in turn 266 

decrease settlement of Hydroides elegans (Dobretsov et al. 2005). These examples show 267 

that temperature and pH associated with climate change directly affect composition and 268 
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densities of microorganisms in biofilms and indirectly (through biofilm composition and 269 

cues) reduce or enhance larval settlement of macro-fouling species.  270 

 271 

4. Conclusions and future research directions 272 

Climate change and increased anthropogenic activity will have strong effects on micro- 273 

and macro-fouling communities (Figure 3; Table 1). Though there are some publications 274 

on impacts of temperature, pH and generation of bioactive molecules, cues and signals   275 

associated with climate change at the species level, there is far less information about the 276 

impact of these factors at the community and molecular levels (Figure 2). This review 277 

suggested that increased temperatures and ocean acidification can affect compound 278 

production, detection, turnover and, in turn, will have a dramatic effect on microbial and 279 

macro-fouling communities.  280 

Reports of the impact of ocean acidification on biofouling communities and their bioactive 281 

compounds are contradictory, indicating that responses are community dependent. 282 

Acidification will impact aragonite and magnesium calcite producers, such as coralline 283 

algae, corals, mussels, barnacles and some bryozoans (Doney et al. 2012; Chan et al. 2012; 284 

Lane et al. 2013). Acidified conditions significantly change biofouling community 285 

composition by a decrease in calcified (tube worms) and an increase in soft-bodied 286 

organisms, like ascidians and sponges (Peck et al. 2015). In contrast, some biofouling 287 

species (like Amphibalanus amphitrite and Alcyonidium hirsutum), their larvae and 288 

proteins are not sensitive to predicted changes in pH (McDonald et al. 2009; Saderne & 289 

Wahl 2013; Nardone et al., 2018). Moreover, dense populations of macrolagae, like F. 290 

vesiculosus, may reduce adverse effect of acidification on calcified biofouling organisms 291 
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(Wahl et al. 2017). Thus, it is likely that ecological impacts of ocean acidification will be 292 

location, species and community specific (Ekstrom & Moser 2014; Ekstrom et al. 2015). 293 

Future studies will answer questions about biofouling communities facing ocean 294 

acidification.  295 

With climate change fouling management is a challenge (Table 2; Dobretsov 2009). 296 

Climate change will affect rates of leaching and dissolution of toxic ions and hydrolysis of 297 

copolymers of antifouling coatings because these are temperature, pH and flow dependent 298 

(Yebra et al. 2004; Yebra et al. 2006). Because coating chemistry and release rates are 299 

temperature sensitive, meeting environmental regulations in regions, which experience 300 

extreme temperatures, will be challenging. Additionally, spreading of invasive species 301 

(Sorte et al. 2010) will provide new challenges for industry. Novel regulations that will 302 

require coating companies to address these issues and provide new environmentally safe 303 

products that are effective in managing fouling in a warming and changing world are 304 

urgently needed.  305 

As the polar ice melts, fast and inexpensive polar shipping routes are becoming possible 306 

(Lasserre & Pelletier 2011). In the future goods will travel on ships through the Arctic to 307 

Europe and Asia. However, the potential impacts of these new routes with respect to 308 

introduced and invasive species and performance of antifouling coatings remains unclear 309 

(Bax et al. 2003; Ware et al. 2014, Table 2). Long term information on biofouling 310 

communities in Arctic and preventive measures are lacking (Zvyagintsev 2003). Several 311 

important questions arise: Which invasive species have a change to establish in warming 312 

Arctic waters? Will polar port biofouling communities develop that are comparable to 313 

those found in temperate and tropical regions? Will antifouling coatings designed for 314 
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temperate waters be effective and environmentally benign in warming Arctic? All of these 315 

questions should be answered urgently.  316 

To conclude, we are at the beginning of our understanding of impacts of factors associated 317 

with climate change on bioactive molecules. The few existing studies suggest that ocean 318 

warming and acidification will have dramatic consequences on biofouling communities 319 

and their bioactive compounds. Probably, this effect will be region, community and species 320 

specific, which should be priority of future studies.  321 
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