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Abstract

In this paper we propose a new lifetime model, called the odd generalized exponential
gompertz distribution, We obtained some of its mathematical properties. Some structural
properties of the new distribution are studied. The method of maximum likelihood is used
for estimating the model parameters and the observed Fisher’s information matrix is de-
rived. We illustrate the usefulness of the proposed model by applications to real data.
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1 Introduction

In the analysis of lifetime data we can use the Gompertz, exponential and generalized exponential dis-
tributions. It is known that the exponential distribution have only constant hazard rate function where
as Gompertz, and generalized exponential distributions can have only monotone (increasing in case of
Gompertz and increasing or decreasing in case of generalized exponential distribution) hazard rate. These
distributions are used for modelling the lifetimes of components of physical systems and the organisms
of biological populations. The Gompertz distribution has received considerable attention from demog-
raphers and actuaries. Pollard and Valkovics [[14] were the first to study the Gompertz distribution, they
both defined the moment generating function of the Gompertz distribution in terms of the incomplete
or complete gamma function and their results are either approximate or left in an integral form. Later,
Marshall and Olkin [10] described the negative Gompertz distribution; a Gompertz distribution with a
negative rate of aging parameter.

Recently, a generalization of the Gompertz distribution based on the idea given in [2] was proposed
by [3] this new distribution is known as generalized Gompertz (GG) distribution which includes the
exponential (E), generalized exponential (GE), and Gompertz (G) distributions. A new generalization
of th Gompertz (G) distribution which results of the application of the Gompertz distribution to the
Beta generator proposed by [4], called the Beta-Gompertz (BG) distribution which introduced by [8]].
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On the other hand the two-parameter exponentiated exponential or generalized exponential distribution
(GE) introduced by [2]. This distribution is a particular member of the exponentiated Weibull (EW)
distribution introduced by [[11]. The GE distribution is a right skewed unimodal distribution, the density
function and hazard function of the exponentiated exponential distribution are quite similar to the density
function and hazard function of the Gamma distribution. Its applications have been wide-spread as model
to power system equipment, rainfall data, software reliability and analysis of animal behavior.

Recently [15] proposed a new class of univariate distributions called the odd generalized exponential
(OGE) family and studied each of the OGE-Weibull (OGE-W) distribution, the OGE-Fréchet (OGE-Fr)
distribution and the OGE-Normal (OGE-N) distribution. This method is flexible because of the hazard
rate shapes could be increasing, decreasing, bathtub and upside down bathtub.

In this article we present a new distribution from the exponentiated exponential distribution and gompertz
distribution called the Odd Generalized Exponential-Gompertz (OGE-G) distribution using new family
of univariate distributions proposed by [[15].

A random variable X is said to have generalized exponential (GE) distribution with parameters «, 3 if
the cumulative distribution function (CDF) is given by

Fz)=(1—e )", 2>0,a>0,8>0. (1.1)

The Odd Generalized Exponential family by [15] is defined as follows. Let G(x;¢€) is the CDF of any
distribution depends on parameter € and thus the survival function is G(x,¢) = 1 — G(z;€), then the

CDF of OGE-family is defined by replacing x in CDF of GE in equation |i by % to get
7049(1;&) B
F(x;a,¢e, 8) = [le G(Ive)} ,x>0,aa>0,e>0,8>0. (1.2)

This paper is outlined as follows. In Section 2, we define the cumulative distribution function, density
function, reliability function and hazard function of the Odd Generalized exponential-Gompertz (OGE-
G) distribution. In Section 3, we introduce the statistical properties include, the quantile function, the
mode, the median and the moments. Section 4 discusses the distribution of the order statistics for (OGE-
G) distribution. Moreover, maximum likelihood estimation of the parameters is determined in Section 5.
Finally, an application of OGE-G using a real data set is presented in Section 6.

2 The OGE-G Distribution
2.1 OGE-G specifications

In this section we define new four parameters distribution called Odd Generalized Exponential-Gompertz
distribution with parameters «, A, ¢, 8 written as OGE-G(©), where the vector O is defined by © =

(o, A\, ¢, B).
A random variable X is said to have OGE-G with parameters «, A, ¢, 8 if its cumulative distribution
function given as follows

o204 P
F(a:;@):{l—e [ 1]} ,x>0,0,\ ¢ 08>0, 2.1

where a, A, ¢ are scale parameters and [ is shape parameter.
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2.2 PDF and hazard rate

If a random variable X has CDF in (2.1)) then the corresponding probability density function is

x _ %(ccz_l)_ _ %(ecz_l)_ 6_1
f($,@) — aﬁ)\ecxe%(e _1)6 a[e 1] {1 —e a[e 1]} ’ 2.2)
where z > 0, a, A, ¢, 5 > 0.
A random variable X ~ OGE — G(0O) has survival function in the form
-~ %(ecw71>_ B
S(:c)zl—{l—e o 1]} . 2.3)
The failure rate function of OGE — G(©) is given by
ox _ % eCT _ )y _ %(Ecac ) 6_1
P {1_6 alese 1]}
x
h(x) = = 24
=50 24)
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Figure 2: The pdf’s of various OGE-G distributions for some values of the parameters.
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Figure 3: The hazard of various OGE-G distributions for some values of the parameters.

3 Statistical properties

In this section, we study some statistical properties of OGE-G, especially quantile, median, mode and

moments.

3.1 Quantile and median of OGE-G
The quantile of OGE-G(©) distribution is given by using

F(zg) = q. 3.1)

Substituting from (2.1)) into (3.1), 2, can be obtained as

=

1 1
xqzln{l—i—iln[l—aln(l—q )H,o<q<1. (3.2)

c

Setting ¢ = % in 1} we obtain the median of OGE-G(a, ), ¢, 3) distribution as follows

1 c 1 1.1
Med:ln{l—i-)\ln [1—aln(1—(2)ﬁ)}}. (3.3)

C

3.2 The mode of OGE-G

In this subsection, we will derive the mode of the OGE-G(0O) distribution by deriving its pdf with respect
to z and equal it to zero thus the mode of the OGE-G(0O) distribution can be obtained as a nonnegative
solution of the following nonlinear equation

cx cx A(eczil) —a[e%(ecxfl)_l]
c+ Ae® — ale“ee } 1—e n

eA(ecz—l),l]

al(B — 1)663[:6%(8”_1)67&[ ‘ = 0. (3.4)

It is not possible to get an explicit solution of (3.4) in the general case. Numerical methods should be
used such as bisection or fixed-point method to solve it.
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3.3 The moments

Moments are necessary and important in any statistical analysis, especially in applications. It can be
used to study the most important features and characteristics of a distribution (e.g., tendency, dispersion,
skewness and kurtosis). In this subsection, we will derive the rth moments of the OGE-G(©) distribution
as infinite series expansion.

Theorem 3.1. If X ~ OGE — G(©), where © = (a, A, ¢, 3), then the rth moment of X is given by

_ iii > Z 1)itithtm (5 - 1) <€> (]) QBN 4 1)1 (j — & 4 1)t
- ' CHr+15101(0 — +1
i=0 j=0 k=0 (=0 m=0 g m) \k LN —m + 1)"
Proof. The rth moment of the random variable X with pdf f(x) is defined by

[, = /00 " f(z)dz. (3.5)
0

Substituting from (2.2) into (3.5)), we get
, o0 oo >\( CT_1) _ %(ecz_l)_ p—1
Ly :/ T aﬁ)\ecx e 1™ a[e 1} {1 —e a[e 1]} dx. (3.6)
0

—a [e%(em_l)fl]

Since0<1—e < 1 for x > 0, we have

AecxT _q 5*1 o0 _ . o Aecm_q
{1 . e—a[ec< )—1} } _ Z (B i 1) (_1)16_0‘1{60( )—1] . (37)

i=0
Substituting from (3.7) into (3.6), we obtain

© 4 — o . —alit1) e (=1 _
= E aBA(-1)" <Bi 1)/ " eTes (€D (H)[ I]d;c.
i=0 0

. . . —a(i—l—l)(e%(ew*l)_l)
Using the series expansion of e

- j ) ] CcT cx y
ZZaﬁ)\ 1)¢+ <B ; 1) ol 1)y + D / o ee (D (e (e D) 1)/ dz.
0

|
i=0 j=0 J:

, we get

Using binomial expansion of (e%(emfl) —1)7, we get

oo oo J . : . : 0o
Z Z Z Z+J+k < ' 1> <‘IZ;> a]+1ﬂ)\‘(Z + 1)] / xrecme%(j_k—’—l)(ecz_l)dm.
t 0

!
=0 =0 k=0 J:
Using series expansion of ec 2U—k+1)(ee =D we get
4 _ -~ i - (_1)i+j+k B -1 ] O‘j—Hﬂ)‘e—H(i + 1)j(j —k+ 1)£
e Lt L L i k 10
i=0 j=0 k=0 ¢=0

- i ii i é(—l)i-i-j-&-k-i-m (B - 1) (i) (@ oﬂ“ﬁz\”l(i;j!lgj(j —k+1)°
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By using the definition of gamma function in the form
(o.9]
I(z) = x’z/ e t*7dt, 2,2 > 0.
0
Thus we obtain the moment of OGE-G(© ) as follows

co oo Jj oo £ . A . o
: ke (B 1) (€ QLN+ 1)7(j — k4 1)r!
My = Z Z Z Z Z (_1) +j+k+ < i > <m> <}Z/-> Cf+1”+1jw!(£ —m+ 1)T+1 .

i=0 j=0 k=0 ¢=0 m=0

This completes the proof. O

4 Order Statistic

Let X1, X5, -+, X, be a simple random sample of size n from OGE-G(©®) distribution with cumulative
distribution function F'(z; ©) and probability density function f(x;©) given by and respec-
tively. Let X1, < Xa.,, < --- < X, denote the order statistics obtained from this sample. The
probability density function of X, is given by

1

r—1 n—r .
m[F(x7®” [I—F(m,G)} f(ﬂf7@), 4.1)

fr:n(‘ra @) =
where f(z;0) and F(x,0) are the pdf and cdf of OGE-G(©) distribution given by (2.1) and (2.2)
respectively and B(., .) is the beta function. Since 0 < F(z,0) < 1 for z > 0, we can use the binomial
expansion of [1 — F/(z,0)]"™" given as follows

[1— F(z,0)" " = (” N 7") (—1)![F(z,0)] . 4.2)
Substituting from (4.2) into (@.I)), we have

fn@.0) = = @)Y (

) i+r—1
Bon—r D) )(—1) [F(z,0)]"" . (4.3)

(2

Il
o

Substituting from (2.1) and (2.2)) into @.3)), we obtain

— —1)in!
frn(@;05 A5 ¢, B) = Z il(r — 1)!((71 —)7’ —)(r+1)

1=0

flz,a, N\ e, (r+1)3) 4.4)

Thus f,.n(z; a, A, ¢, 8) defined in (4.4) is the weighted average of the OGE-G distribution with different
shape parameters.

5 Estimation and Inference

Now, we determine the maximum-likelihood estimators (MLE’s) of the OGE-G parameters.
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5.1 Maximum likelihood estimators

Let X1, Xy, -, X, be a random sample of size n from OGE-G(©), where © = («, A, ¢, 3), then the
likelihood function £ of this sample is defined as

n

‘C:Hf(xi;a>)‘7caﬂ)' (51)

=1

Substituting from (2.2)) into (4.3)), we get

L= Haﬂ)\ecxzef(eczz 1 70[[60(8812 1)71} {1 — eia[e%(ecxfl)fl] }/81 .

=1

The log-likelihood function is given as follow

L - nln(a) —|—nln(ﬂ) +7’lhl —|—ch2 Z cT; _ az eCTi 1) )

=0
B-1)Y I {1 _eler _1)‘1] } : (5.2)
=0

The log-likelihood can be maximized either directly or by solving the nonlinear likelihood equations
obtained by differentiating equation (5.2)) with respect to «, A, ¢ and 5. The components of the score

vector U(©) = g—g, g—ﬁ, %—%, %) are given by

oL N _a[eéw”w_l]}
-— = S+ In {1 —e , (5.3)
B B Z_:
A .
oL no] L Aemion)
e = *—Z Do) - (B-1)) 5 : (5.4)
a — a[ec<e ¢ 1>—1]
=1 e _ 1
)\ cx,;
oL n A/ cx: n efri — ]_ ( i—1)
- — —_ CxT; - CTi __ 1 Z(e 7«71)
5 = 3t Z ;(e e + 2 Z; AW T
1= 1= e _ 1
(5.5
A
oL cx; nT:B A c)e e (e7i=1)
R — _ ( i— 1 79
ac o Z Li — Z T\Ti, )\ C @ Z T\Tis )\ C) OZ Z /\(ec:v 1) 1]
i=1 =1 i=1 6 — ]_
(5.6)
where 7(x;, A\, ¢) = —c%(ecxi — 1) + 2ae®

The normal equations can be obtained by setting the above non-linear equations (5.3))-(5.6) to zero. That
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is, the normal equations take the following form

% i Z n {1 _ e_a [e%(ecx,l)_l] } =0, (5.7)

" 1—6(% 1)

f—Z T -1 s =0, (5.8)
i1 ea{ec —1] 1
n ’ A(ocn; B — 1) n ( cr; 1)66(6“2 1)
7_’_ i _ 1) - = (66%—1)6/6\(6 1)+a( - =0,
Z ; C ; ea[eE(e *1),1] 1
(5.9
n Aeeri—1)
I SR P RN g T Y
i=1 i=1 i=1 ea[ec -1] -1
(5.10)

The normal equations do not have explicit solutions and they have to be obtained numerically. From
equation (5.7 the MLEs of 3 can be obtained as follows

—-n
Z?:l In {1 _ e—Oé [e%@czf”_l} }

Substituting from (5.11)) into (5.8), (5.9), and (5.10), we get the MLEs of a, A, ¢ by solving the following
system of non-linear equations

B=

(5.11)

n n X (plzi_
éx; 1— 5(6 o 1)
Q_Z( 2 (i Do) — (-1 € -0, (5.12)
« 1 — a|: )‘(ecxi71)_1:|
h B —1
cz 1 d i Ao X éx; 1 n sz —_ ) )\( czi*l)
Stz Z U = 2y (e - e T ~0,
i=1 i=1 0{ Bty 1}
e —1
(5.13)
n n ° /\(eézi_l)

Zazz ZT$Z’5"6)_dZ (:L'l,/\ C)BC(ULZ 1)—1— _1di7(3:,,/\c =0,
=1 =1

n CZE,L 1) i|
— & —1
‘ e { —1

—_

(5.14)

where 7(z, \, ¢) = —é%(eé"“ — 1) + 2zei

These equations cannot be solved analytically and statistical software can be used to solve the equations
numerically. We can use iterative techniques such as Newton Raphson type algorithm to obtain the
estimate B

5.2 Asymptotic confidence bounds

In this subsection, we derive the asymptotic confidence intervals of the unknown parameters «;, A, ¢, 8
when a > 0,A > 0,c > O and § > 0. The simplest large sample approach is to assume that the
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MLEs(a, A, ¢, B) are approximately multivariate normal with mean («, A, ¢, #) and covariance matrix
Iy 1, where I L is the inverse of the observed information matrix which defined as follows

2L 9L 9L 92L L

oa? ONda  dcda  OBO«

9%L 9’L 9%L 9%L
Io_l _ | Badx 9XZ  9cox  9pox

= 2 . . 5.15
cov(@,¢) cov(A¢)  war(¢)  cov(p,e) ©.15)
cov(@, B) cou(A,B) cov(é,B)  var(B)

The second partial derivatives included in /5 Lare given as follows
FL _ —n
ap* B’
A eCT; _
aZL " (e%(eczi_l) _ 1) efa [ec( 1)71}
= A eCT; _
aaaﬂ e 1_ e_a[ec( 1)_1]
L« Zn: (e“®i — 1) A;
- - A (eCT4 _ )
3)\(96 C 11— e,a {ec( 1),1]
0L o AiBi
d9coB ) Xy ]’
i=11—¢ ° {e - ]
cx; 2 —« 6%(eczi*1>,
0’L -n n <€%(e = 1) e [ 1]
-~ - _°_ -1
aa2 a2 (/B )Z _a[e%(ccz_l)_l] 2 )
=1 {1 —e }
0L -1 ¢ , Aeeriqy . (B—1) (i — 1) A;C;
- - cTi ] ~(efTi—1) 1“1
ONO« c 4 (e e + c Z Cale2eem-n 12
i=1 i=1 {1—6 a[ec ]}
82L i A(pCT; " ABC
- BZ Z(e 1_1) 1 11
OcOa Z ‘ + (8 )Z —a[e%te”—n_l] 3
=1 =1 {1 —e }
F R D B G e R B P AR
=1 i=1 {l—e a[e ]}
82[1 1 " [0 " —1 A(pcT;
- - B; — — (e ; cx; B; cri _q 2(eri—-1)
OcOA )\; c;[c(e )+ zie™ + Bie )}6

n 1—e¢ + *(ecxl — I)Dl AzBZ
(B—Da i
+ A Z A (ecw 1) 2
i=1 {1 _ e*a[ec *1] }

I
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2 n n
G = L e (BB
i=1 1=1

dc?
—aferei-n_
n |:B12DZ+E1 (1—6 a[e 1}>:| A;

B—1a)

i=1 {1 _ efa[e%@“*ltq }2

I

cx; — %(ecz_l)_
where 4, = ¢l = — (e — 1) + 2 (wie),
cx; — %(6695*1)_ cxs _ %(ecwil)_
Ci:1—a(e%(€ 171)—1)—6 a[e 1]7 Dizl—ae%(e 171)—6 a[e 1]7
oA AN A,
E; = 3 (e —1) — Cja:z'e“”’ + Ea:?e“‘l.

The asymptotic (1—v)100% confidence intervals of «, A, cand 3 are Gtzy Vovar(a), Atz34/ var(A), ¢+

z3 Vvar(é) and 3 + z 1 var(B)) respectively, where z3 is the upper ( $)th percentile of the standard
normal distribution.

6 Data Analysis

In this section we perform an application to real data to illustrate that the OGE-G can be a good lifetime
model, comparing with many known distributions such as the Exponential, Generalized Exponential,
Gompertz, Generalized Gompertz and Beta Gompertz distributions (ED, GE, G, GG, BG), see [3, 16,7, 8]
Consider the data have been obtained from Aarset [1l], and widely reported in some literatures, see
[2, 13, 9L 12, [13]]. It represents the lifetimes of 50 devices, and also, possess a bathtub-shaped failure rate
property, Table 1.

Table 1: The data from Aarset [1]].
01 02 1 1 1 1 1 2 3 6 7 11 12 18 18 18 18
18 21 32 36 40 45 46 47 50 55 60 63 63 67 67 67 67
72 75 79 82 82 83 84 84 88 85 8 8 8 8 8 86

Based on some goodness-of-fit measures, the performance of the OGE-G distribution is compared with
others five distributions: E, GE, G, GG, and BG distributions. The MLE’s of the unknown parameters for
these distributions are given in Tables 2 and 3. Also, the values of the log-likelihood functions (-L), the
statistics K-S (Kolmogorov-Smirnov), AIC (Akaike Information Criterion), the statistics AICC (Akaike
Information Citerion with correction) and BIC (Bayesian Information Criterion) are calculated for the
six distributions in order to verify which distribution fits better to these data.
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Table 2: MLE’s of parameters for Aarset data.

11

Model & I} A ¢ -L
E 0.0219 - - - 241.0896
GE 0.0212 0.9012 - - 240.3855
G - - 0.00970  0.0203  235.3308
GG - 0.2625 0.00010  0.0828 222.2441
BG 0.2158 0.2467 0.00030  0.0832 220.6714
OGE-G 0.0400 0.1940  0.000345 0.0780 215.9735

Table 3: The AIC, CAIC, BIC and K-S values for Aarset data.

Model AIC AICC BIC K-S p-value(K-S)
E 484.1792 484.2625 486.0912 0.19110 0.0519
GE 484.7710 485.0264 488.5951 0.19400 0.0514
G 474.6617 475.1834 4823977 0.16960 0.1123
GG 450.4881 451.0099 456.2242 0.14090 0.2739
BG 449.3437 450.2326 456.9918 0.13220 0.3456
OGE-G 423.9470 424.8359 447.5951 0.13205 0.3476

Based on Tables 2 and 3, it is shown that OGE-G(«, A, ¢, #) model is the best among of those distribu-
tions because it has the smallest value of (K-S), AIC, CAIC and BIC test.
Substituting the MLE’s of the unknown parameters «, A, ¢, 5 into , we get estimation of the vari-
ance covariance matrix as the following

1.5022 x 1073
2.7638 x 107
—1.4405 x 1074
9.6331 x 10~*

It =

The approximate 95% two sided confidence intervals

2.7638 x 1077 —1.4405 x 1074
44773 x 1078 —1.7837 x 1076
—1.7837 x 1076 8.4428 x 10~°
2.7858 x 1076 —1.9127 x 1074

0,0.116], [0,0.001], [0.060,0.096], [0.116,0.270], respectively.

9.6331 x 10~*
2.7858 x 1076
—1.9127 x 10~*
1.5309 x 1073

of the unknown parameters o, \,c and [ are

To show that the likelihood equation have unique solution, we plot the profiles of the log-likelihood
function of a;, A, 5 and c in Figures 4-5.

2301
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= -240
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2 -250
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'_

~260
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=300
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0.0001 00002 0.0003

0.0004 00002 0.0006
A

Figure 4: The profile of the log-likelihood function of a; A.



M. A. EI-Damcese, Abdelfattah Mustafa, B. S. EI-Desouky and M.E. Mustafa 12

-2004

-4 1 5 250
g B
T e The MLE of ¢= .07 5 The MLE of p=.194
2 o -3001
= (=]
g -s004 2
= o
= 1000 4 = -350
(=] (=]
£ |
Qo
= -1200+4 E —an ]

-1400 4

D.IDD 0.62 0.64 D.Iﬂﬁ 0.68 o 02 o4 B 04 03
[

Figure 5: The profile of the log-likelihood function of ¢, 5.

The nonparametric estimate of the survival function using the Kaplan-Meier method and its fitted para-
metric estimations when the distribution is assumed to be ED, GED,GD,GGD and OGE — GD are
computed and plotted in Figure 6.
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Figure 6: The Kaplan-Meier estimate of the survival function.

Figure 7, gives the form of the hazard rate for the ED, GED,GD,GGD, BGD and OGE — G D which
are used to fit the data after replacing the unknown parameters included in each distribution by their MLE.
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Figure 7: The failure rate function for the data.
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7 Conclusions

In this paper, we propose a new model, called the Odd Generalized Exponential-Gompertz (OGE-G)
distribution and studied its different properties. Some statistical properties of this distribution have been
derived and discussed. The quantile, median, mode and moments of OGE-G are derived in closed forms.
The distribution of the order statistics are discussed. Both point and asymptotic confidence interval
estimates of the parameters are derived using the maximum likelihood method and we obtained the
observed Fisher information matrix. We use application on set of real data to compare the OGE-G
with other known distributions such as Exponential (E), Generalized Exponential (GE), Gompertz (G),
Generalized Gompertz (GG) and Beta-Gompertz (BG). Applications on set of real data showed that the
OGE-G is the best distribution for fitting these data sets compared with other distributions considered in
this article.
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