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Abstract 

In this paper we propose a new lifetime model, called the odd generalized exponential gompertz 

distribution. We obtained some of its mathematical properties. Some structural properties of the 

new distribution are studied. The method of maximum likelihood is used for estimating the model 

parameters and the observed Fisher’s information matrix is derived. We illustrate the usefulness 

of the proposed model by applications to real data. 
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1. Introduction 

In the analysis of lifetime data we can use the Gompertz, exponential and generalized exponential distributions. 

It is known that the exponential distribution has only constant hazard rate function where as Gompertz and ge-

neralized exponential distributions can have only monotone (increasing in case of Gompertz and increasing or 

decreasing in case of generalized exponential distribution) hazard rate. These distributions are used for model-

ling the lifetimes of components of physical systems and the organisms of biological populations. The Gompertz 

distribution has received considerable attention from demographers and actuaries. Pollard and Valkovics [1] 

were the first to study the Gompertz distribution, they both defined the moment generating function of the 

Gompertz distribution in terms of the incomplete or complete gamma function and their results are either ap-

proximate or left in an integral form. Later, Marshall and Olkin [2] described the negative Gompertz distribution; 

a Gompertz distribution with a negative rate of aging parameter. 

http://www.scirp.org/journal/am
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Recently, a generalization of the Gompertz distribution based on the idea given in [3] was proposed by [4] 

this new distribution is known as generalized Gompertz (GG) distribution which includes the exponential (E), 

generalized exponential (GE) and Gompertz (G) distributions. A new generalization of th Gompertz (G) distri-

bution which results of the application of the Gompertz distribution to the Beta generator proposed by [5], called 

the Beta-Gompertz (BG) distribution which introduced by [6]. On the other hand the two-parameter exponen-

tiated exponential or generalized exponential distribution (GE) introduced by [3]. This distribution is a particular 

member of the exponentiated Weibull (EW) distribution introduced by [7]. The GE distribution is a right skewed 

unimodal distribution, the density function and hazard function of the exponentiated exponential distribution are 

quite similar to the density function and hazard function of the Gamma distribution. Its applications have been 

wide-spread as model to power system equipment, rainfall data, software reliability and analysis of animal be-

havior. 

Recently [8] proposed a new class of univariate distributions called the odd generalized exponential (OGE) 

family and studied each of the OGE-Weibull (OGE-W) distribution, the OGE-Fréchet (OGE-Fr) distribution and 

the OGE-Normal (OGE-N) distribution. This method is flexible because the hazard rate shapes could be in-

creasing, decreasing, bathtub and upside down bathtub. 

In this article we present a new distribution from the exponentiated exponential distribution and gompertz 

distribution called the Odd Generalized Exponential-Gompertz (OGE-G) distribution using new family of un-

ivariate distributions proposed by [8]. A random variable X is said to have generalized exponential (GE) distri-

bution with parameters ,α β  if the cumulative distribution function (CDF) is given by 

( ) ( )1 e , 0, 0, 0.x
F x x

βα α β−= − > > >                            (1) 

The Odd Generalized Exponential family by [8] is defined as follows. Let ( );G x   is the CDF of any distri-

bution depends on parameter   and thus the survival function is ( ) ( ), 1 ;G x G x= −  , then the CDF of OGE-  

family is defined by replacing x in CDF of GE in Equation (1) by 
( )
( )

;

,

G x

G x




 to get  

( )
( )
( )

;

,
; , , 1 e , 0, 0, 0, 0.

G x

G x
F x x

β
α

α β α β
− 

 = − > > > >
  


                       (2) 

This paper is outlined as follows. In Section 2, we define the cumulative distribution function, density func-

tion, reliability function and hazard function of the Odd Generalized exponential-Gompertz (OGE-G) distribu-

tion. In Section 3, we introduce the statistical properties include, the quantile function, the mode, the median and 

the moments. Section 4 discusses the distribution of the order statistics for (OGE-G) distribution. Moreover, 

maximum likelihood estimation of the parameters is determined in Section 5. Finally, an application of OGE-G 

using a real data set is presented in Section 6. 

2. The OGE-G Distribution  

2.1. OGE-G Specifications 

In this section we define new four parameters distribution called Odd Generalized Exponential-Gompertz dis-

tribution with parameters , , ,cα λ β  written as OGE-G(Θ), where the vector Θ is defined by ( ), , ,cα λ βΘ = . 

A random variable X is said to have OGE-G with parameters , , ,cα λ β  if its cumulative distribution function 

given as follows  

( )
( )e 1

e 1

; 1 e , 0, , , , 0,

cx

c

F x x c

λ β

α

α λ β

− 
 − − 
  

 
  Θ = − > > 
 
  

                       (3) 

where , ,cα λ  are scale parameters and β  is shape parameter. 

2.2. PDF and Hazard Rate 

If a random variable X has CDF in (3), then the corresponding probability density function is  
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( ) ( )
( ) ( )e 1 e 1

1

e 1 e 1
e 1

; e e e 1 e ,

cx cx

c c
cx

cx cf x

λ λ β

α αλ

αβλ

− −
−

   
   − − − −   −       

 
  Θ = − 
 
  

                    (4) 

where 0, , , , 0.x cα λ β> >  

A random variable ( )~ OGE-GX Θ  has survival function in the form  

( )
( )e 1

e 1

1 1 e .

cx

c

S x

λ β

α
− 

 − − 
  

 
  = − − 
 
  

                                (5) 

The hazard rate function of ( )OGE-G Θ  is given by  

( ) ( )
( )

( )
( ) ( )

( )

e 1 e 1

e 1

1

e 1 e 1
e 1

e 1

e e e 1 e

.

1 1 e

cx cx

c c
cx

cx

c

cx c

f x
h x

S x

λ λ

λ

β

α αλ

β

α

αβλ

− −

−

−
   
   − − − −   −       

 
 − − 
  

 
  − 
 
  = =

 
  − − 
 
  

                 (6) 

The cumulative distribution, probability density and hazard rate function of the OGE-G(Θ) are displayed is 

Figure 1, Figure 2 and Figure 3. 

It is clear that the hazard function of the OGE-G distribution can be either decreasing, increasing, or of bath-

tub shape, which makes the distribution more flexible to fit different lifetime data set. 

3. The Statistical Properties  

In this section, we study some statistical properties of OGE-G, especially quantile, median, mode and moments. 

3.1. Quantile and Median of OGE-G 

The quantile of OGE-G(Θ) distribution is given by using  

( ) .qF x q=                                       (7) 

 

 

Figure 1. The CDF of various OGE-G distributions for some values of the parameters. 
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Figure 2. The pdf’s of various OGE-G distributions for some values of the parameters. 

 

 

Figure 3. The hazard of various OGE-G distributions for some values 

of the parameters. 

 

Substituting from (3) into (7), 
qx  can be obtained as  

1
1 1

ln 1 ln 1 ln 1 , 0 1.q

c
x q q

c

β

λ α

     = + − − < <        
                        (8) 

The median of a random variable X that has probability density function ( )f x  is a number mx  such that  

( ) [ ]d 0.5
mx

mf x x P X x
−∞

= ≤ =∫  

Therefore the median of OGE-G ( , , ,cα λ β ) distribution can be obtained by setting q = 0.5 (50% quantile) in (8).  

1

1 1 1
ln 1 ln 1 ln 1 .

2

c
Med

c

β

λ α

   
    = + − −          

                         (9) 

3.2. The Mode of OGE-G  

In this subsection, we will derive the mode of the OGE-G(Θ) distribution by deriving its pdf with respect to x 
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and equal it to zero thus the mode of the OGE-G(Θ) distribution can be obtained as a nonnegative solution of the 

following nonlinear equation  

( )
( )

( ) ( )
( )e 1 e 1

e 1 e 1
e 1 e 1

e e e 1 e 1 e e e 0.

cx cx

c c
cx cx

cx cx cxc cc

λ λ

α αλ λ

λ αλ αλ β

− −   
   − − − −   − −      

 
    + − − + − =  

   
  

          (10) 

From Figure 2, the pdf for OGE-G distribution has only one peak. It is a unimodal distribution, so the above 

equation has only one solution. It is not possible to get an explicit solution of (10) in the general case. Numerical 

methods should be used such as bisection or fixed-point method to solve it. 

3.3. The Moments  

Moments are necessary and important in any statistical analysis, especially in applications. It can be used to 

study the most important features and characteristics of a distribution (e.g., tendency, dispersion, skewness and 

kurtosis). In this subsection, we will derive the rth moments of the OGE-G(Θ) distribution as infinite series ex-

pansion. 

Theorem 1. If ( )~ OGE-GX Θ , where ( ), , ,cα λ βΘ = , then the rth moment of X is given by  

( ) ( ) ( )
( )

1 11

11
0 0 0 0 0

1 1 1 !
1 .

! ! 1

jjj
i j k m

r rr
i j k m

j i j k r

i m k c j m

β β α βλ
µ

+ +− ∞ ∞
+ + +

++ +
= = = = =

− + − +   ′ = −    
− +   

∑∑∑∑∑






 

 

Proof. The rth moment of the random variable X with pdf ( )f x  is defined by  

( )
0

d .r

r x f x xµ
∞

′ = ∫                                    (11) 

Substituting from (4) into (11), we get  

( )
( ) ( )e 1 e 1

1

e 1 e 1
e 1

0
e e e 1 e d .

cx cx

c c
cx

r cx c
r x x

λ λ β

α αλ

µ αβλ

− −
−

   
   − − − −
   −∞       

 
 

′ = − 
 
 

∫                   (12) 

Since 

( )e 1
e 1

0 1 e 1

cx

c

λ

α
− 

 − − 
  < − <  for 0x > , we have  

( )

( )
( )e 1 e 1

1

e 1 e 11

0

1
1 e 1 e .

cx cx

c ci

i

i i

λ λβ

α αβ β
− −

−
   
   − − − −−   
      

=

 
  −  − = −   

  
  

∑                      (13) 

Substituting from (13) into (12), we obtain  

( ) ( ) ( ) ( )e 1
1 e 11 e 1

0
0

1
1 e e e d .

cx

c
cx

i

i r cx c
r

i

x x
i

λ

αλβ β
µ αβλ

− 
 − + −−  −∞   

=

− ′ = −  
 

∑ ∫  

Using the series expansion of 

( ) ( )e 1
1 e 1

e

cx

ci

λ

α
− 

 − + −  
  , we get  

( ) ( ) ( ) ( )1 e 1 e 1

0
0 0

1 1
1 e e e 1 d .

!

cx cx
jjj

i j r cx c c
r

i j

i
x x

i j

λ λβ β α
µ αβλ

− ∞ − −∞+

= =

 − + ′ = − −       
∑∑ ∫  

Using binomial expansion of 
( )e 1

e 1
cx

j

c

λ
− 
−  

 
, we get  
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( ) ( ) ( )( )11 1 e 1

0
0 0 0

1 1
1 e e d .

!

cx
jjj j ki j k r cx c

r
i j k

j i
x x

i k j

λβ β α βλ
µ

+− ∞ − + −∞+ +

= = =

− +  ′ = −   
  

∑∑∑ ∫  

Using series expansion of 
( )( )1 e 1

e
cx

j k
c

λ
− + −

, we get  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 11

0
0 0 0 0

1 11
1

0
0 0 0 0 0

1 1 1
1 e e 1 d ,

! !

1 1 1
1 e d .

! !

jjj
i j k r cx cx

r
i j k

jjj
i j k m c m xr

i j k m

j i j k
x x

i k c j

j i j k
x x

i m k c j

β

β

β α βλ
µ

β α βλ

+ +− ∞ ∞ ∞+ +

= = = =

+ +− ∞ ∞ ∞+ + + − +

= = = = =

− + − +  ′ = − −  
  

− + − +   
= −    

   

∑∑∑∑ ∫

∑∑∑∑∑ ∫


















 

By using the definition of gamma function in the form  

( ) 1

0
e d , , 0.z tx z

z x t t z x
∞ −Γ = >∫  

Thus we obtain the moment of OGE-G(Θ) as follows  

( ) ( ) ( )
( )

1 11

11
0 0 0 0 0

1 1 1 !
1 .

! ! 1

jjj
i j k m

r rr
i j k m

j i j k r

i m k c j m

β β α βλ
µ

+ +− ∞ ∞
+ + +

++ +
= = = = =

− + − +   ′ = −    
− +   

∑∑∑∑∑






 

 

This completes the proof.  

4. The Order Statistic  

Let 1 2, , , nX X X  be a simple random sample of size n from OGE-G(Θ) distribution with cumulative distribu-

tion function ( );F x Θ  and probability density function ( );f x Θ  given by (3) and (4) respectively. Let 

1: 2: :n n n nX X X≤ ≤ ≤  denote the order statistics obtained from this sample. The probability density function of 

:r nX  is given by  

( ) ( ) ( ) ( ) ( )1

:

1
, , 1 , ; ,

, 1

r n r

r nf x F x F x f x
B r n r

− −
Θ = Θ − Θ Θ      − +

                (14) 

where ( );f x Θ  and ( ),F x Θ  are the pdf and cdf of OGE-G(Θ) distribution given by (3) and (4) respectively 

and ( ).,.B  is the beta function. Since ( )0 , 1F x< Θ <  for 0x > , we can use the binomial expansion of 

( )1 ,
n r

F x
−

− Θ    given as follows  

( ) ( ) ( )
0

1 , 1 , .
n r

n r ii

i

n r
F x F x

i

−−

=

− 
− Θ = − Θ       

 
∑                          (15) 

Substituting from (15) into (14), we have  

( ) ( ) ( ) ( ) ( ) 1

:
0

1
, ; 1 , .

, 1

n r
i ri

r n
i

n r
f x f x F x

iB r n r

− + −

=

− 
Θ = Θ − Θ    − +  

∑                  (16) 

Substituting from (3) and (4) into (16), we obtain  

( ) ( )
( ) ( ) ( ) ( )( ):

0

1 !
; , , , , , , ,

! 1 ! !

i
n r

r n
i

n
f x c f x c r i

i r n r i r i
α λ β α λ β

−

=

−
= +

− − − +∑                 (17) 

Thus ( ): ; , , ,r nf x cα λ β  defined in (17) is the weighted average of the OGE-G distribution with different shape 

parameters. 

5. Estimation and Inference  

Now, we determine the maximum-likelihood estimators (MLE’s) of the OGE-G parameters. 

5.1. The Maximum Likelihood Estimators  

Let 1 2, , , nX X X  be a random sample of size n from OGE-G(Θ), where ( ), , ,cα λ βΘ = , then the likelihood 
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function   of this sample is defined as  

( )
1

; , , , .
n

i

i

f x cα λ β
=

=∏                                  (18) 

Substituting from (4) into (18), we get  

( )
( ) ( )e 1 e 1

1

e 1 e 1
e 1

1

e e e 1 e .

cx cxi
c c

cxi

i

n
cx c

i

λ λ β

α αλ

αβλ

− −
−

   
   − − − −
   −       

=

 
 

= − 
 
 

∏  

The log-likelihood function is given as follow  

( ) ( ) ( ) ( ) ( )

( )
( )e 1

e 1

0 0 0

e 1

0

ln ln ln e 1 e 1

1 ln 1 e .

cxi

i

cx

c

n n n
cx c

i

i i i

n

i

L n n n c x
c

λ

λ

α

λα β λ α

β

−

−

= = =

 
 − −
 
  

=

 
= + + + + − − −  

 
 
 

+ − − 
 
 

∑ ∑ ∑

∑
            (19) 

The log-likelihood can be maximized either directly or by solving the nonlinear likelihood equations obtained by 

differentiating Equation (19) with respect to α, λ, c and β. The components of the score vector  

( ) , , ,
L L L L

U
cα λ β

 ∂ ∂ ∂ ∂
Θ =  ∂ ∂ ∂ ∂ 

 are given by  

( )e 1
e 1

1

ln 1 e ,

cx

c
n

i

L n

λ

α

β β

− 
 − − 
  

=

 
 ∂  = + − 

∂  
  

∑                             (20) 

( ) ( )
( )

( )e 1

e 1
e 1

1 1 e 1

1 e
e 1 1 ,

e 1

cxi
cxi

cxi
c

n n c
c

i i

L n
λ

λ
λ

α

β
α α −

−
−

 
= =  −

 
  

 ∂ −
= − − − −  ∂  

−

∑ ∑                     (21) 

( ) ( ) ( ) ( ) ( ) ( )

( )e 1

e 1

e 1

1 1 1 e 1

e 1 e11
e 1 e 1 e ,

e 1

cxi

icxi

i i

cx

c

cx cn n n
cx cx c

i i i

L n

c c c
λ

λ
λ

α

α βα
λ λ −

−
−

 
= = =  − 

  

−−∂
= + − − − +

∂

−

∑ ∑ ∑            (22) 

( ) ( ) ( ) ( ) ( ) ( )

( )e 1

e 1

e 1

1 1 1 1 e 1

, , e
, , , , e 1 ,

e 1

cxi

cxi

cx

c

cn n n n
ic

i i i
i i i i

x cL
x x c x c

c
λ

λ
λ

α

τ λ
τ λ α τ λ β α

−

−
−

 
= = = =  −

 
  

∂
= − − + −

∂

−

∑ ∑ ∑ ∑          (23) 

where ( ) ( )2
, , e 1 e .i icx cx

i ix c x
cc

λ λτ λ = − − +  

The normal equations can be obtained by setting the above non-linear Equations (20)-(23) to zero. That is, the 

normal equations take the following form  

( )e 1
e 1

1

ln 1 e 0,

cx

c
n

i

n

λ

α

β

− 
 − −
 
  

=

 
 

+ − = 
 
 

∑                              (24) 
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( ) ( )
( )

( )e 1

e 1
e 1

1 1 e 1

1 e
e 1 1 0,

e 1

cxi
cxi

cxi
c

n n c
c

i i

n
λ

λ
λ

α

β
α −

−
−

 
= =  − 

  

  −
− − − − =  

 
−

∑ ∑                      (25) 

( ) ( ) ( ) ( ) ( ) ( )

( )e 1

e 1

e 1

1 1 1 e 1

e 1 e11
e 1 e 1 e 0,

e 1

cxi

icxi

i i

cx

c

cx cn n n
cx cx c

i i i

n

c c c
λ

λ
λ

α

α βα
λ −

−
−

 
= = =  − 

  

−−
+ − − − + =

−

∑ ∑ ∑             (26) 

( ) ( ) ( ) ( ) ( ) ( )

( )e 1

e 1

e 1

1 1 1 1 e 1

, , e
, , , , e 1 0.

e 1

cxi

cxi

cx

c

cn n n n
ic

i i i
i i i i

x c
x x c x c λ

λ
λ

α

τ λ
τ λ α τ λ β α

−

−
−

 
= = = =  −

 
  

− − + − =

−

∑ ∑ ∑ ∑            (27) 

The normal equations do not have explicit solutions and they have to be obtained numerically. From Equation 

(24) the MLEs of β can be obtained as follows  

( )e 1
e 1

1

ˆ .

ln 1 e

cx

c
n

i

n
λ

α

β
− 

 − − 
  

=

−
=

 
  − 
 
  

∑

                                (28) 

Substituting from (28) into (25), (26) and (27), we get the MLEs of α, λ, c by solving the following system of 

non-linear equations  

( ) ( )
( )

( )

ˆ

ˆ

ˆ ˆ
e 1

ˆ

ˆ
e 1ˆ

ˆe 1
ˆ

1 1
ˆ e 1

1 eˆe 1 1 0,
ˆ

e 1

cxi
cxi

cxi
c

n n c
c

i i

n
λ

λ
λ

α

β
α −

−
−

 
= =  − 

  

  −
 − − − − =
 
 

−

∑ ∑                        (29) 

( ) ( ) ( ) ( ) ( ) ( )

( )

ˆ

ˆ ˆ

ˆ ˆ
e 1

ˆ

ˆ
e 1

ˆˆ ˆ ˆ
e 1 e 1

ˆˆ ˆ

1 1 1
ˆ e 1

ˆˆ 1 e 1 eˆ1
e 1 e 1 e 0,

ˆ ˆ ˆ ˆ

e 1

cxi

icx cxi i

i

cxi
c

cx cn n n
cxc c

i i i

n

c c c λ

λ
λ λ

α

α βα
λ −

−
− −

 
= = =  − 

  

− − 
 + − − − + =
 
 

−

∑ ∑ ∑            (30) 

( ) ( ) ( ) ( ) ( ) ( )

( )

ˆ

ˆ

ˆ ˆ
e 1

ˆ

ˆ
e 1

ˆ ˆ
e 1

ˆ

1 1 1 1
ˆ e 1

ˆ ˆ, , e
ˆ ˆ ˆˆ ˆˆ ˆ, , , , e 1 0,

e 1

cxi

cxi

cxi
c

c
n n n n

i
c

i i i
i i i i

x c
x x c x c

λ

λ

λ

α

τ λ
τ λ α τ λ β α

−

−

−

 
= = = =  − 

  

− − + − =

−

∑ ∑ ∑ ∑             (31) 

where ( ) ( )ˆ ˆ

2

ˆ ˆ
ˆ ˆ, , e 1 e .

ˆˆ
i icx cx

i ix c x
cc

λ λτ λ = − − +  

These equations cannot be solved analytically and statistical software can be used to solve the equations nu-

merically. We can use iterative techniques such as Newton Raphson type algorithm to obtain the estimate β̂ . 

5.2. Asymptotic Confidence Bounds  

In this subsection, we derive the asymptotic confidence intervals of the unknown parameters α, λ, c, β when 

0α > , 0λ > , 0c >  and 0β > . The simplest large sample approach is to assume that the MLEs (α, λ, c, β) 
are approximately multivariate normal with mean (α, λ, c, β) and covariance matrix 1

0I
− , where 1

0I
−  is the in-

verse of the observed information matrix which defined as follows  
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1
2 2 2 2

2

2 2 2 2

2

1

0
2 2 2 2

2

2 2 2 2

2

ˆ ˆˆ ˆ ˆ ˆˆ, , ,

ˆ ˆ ˆ ˆ ˆˆ ˆ, , ,

L L L L

c
var cov cov c cov

L L L L

cov var cov c covc
I

L L L c

c c cc

L

c

λ α α β αα
α λ α α β α

α λ λ λ β λα λ λ β λλ

α λ β

α β λ β β β

−

−

 ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂∂ 
 ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂∂

= − = 
 ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂∂ 
 ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

.
ˆ ˆˆ ˆ ˆ ˆ ˆ, , ,

ˆ ˆ ˆ ˆ ˆˆ ˆ, , ,

ov c cov c var c cov c

cov cov cov c var

α λ β

α β λ β β β

 
 
 
 
 
 
 
  

    (32) 

The second partial derivatives included in 1

0I
−  are given as follows  

2

2 2
,

L n

β β
∂ −

=
∂

 

( )
( )

( )

e 1

e 1

e 1
e 1

2

1 e 1

e 1 e

,

1 e

cxi
c

cxi

cxi
c

c

n

i

L

λ

λ

αλ

α
α β

−

−

 
 − − −   

 
=  − − 

  

 
−  ∂  =

∂ ∂

−

∑  

( )
( )e 1

2

1 e 1

e 1
,

1 e

i

cxi
c

cx
n

i

i

AL

c
λ

α

α
λ β − 

=  − − 
  

−∂
=

∂ ∂

−

∑  

( )e 1

2

1 e 1

,

1 e

cxi
c

n
i i

i

A BL

c
λ

α

α
β − 

=  − − 
  

∂
=

∂ ∂

−

∑  

( )

( )
( )

( )

e 1

e 1

2 e 1
e 1

2

2 2 2
1

e 1

e 1 e

1 ,

1 e

cxi
c

cxi

cx

c

c

n

i

L n

λ

λ

αλ

α

β
α α

−

−

 
 − − −   

 =  − − 
  

 
−  ∂ −  = − −

∂  
  − 
 
  

∑  

( ) ( ) ( ) ( )
( )e 1

2
e 1

2
1 1

e 1

e 111
e 1 e ,

1 e

icxi

i

cx

c

cx
n n

i icx c

i i

ACL

c c λ

λ

α

β
λ α −

−

 = =  − − 
  

−−∂ −
= − +

∂ ∂  
  − 
 
  

∑ ∑  

( ) ( )
( )e 1

2
e 1

2
1 1

e 1

e 1 ,

1 e

cxi
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c

n n
i i ic
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i i
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α

β
α −

−

 = =  − −
 
  

∂
= − + −

∂ ∂  
 
− 

 
 

∑ ∑  
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( ) ( ) ( ) ( )
( )e 1

2
2

e 12

2 2 2 2 2
1 1

e 1

e 11
e 1 e ,

1 e

icxi

i

cx

c

cx
n n

i icx c

i i
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c c λ

λ
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α βα
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−
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  

−−∂ −
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∂  
  − 
 
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∑ ∑  

( ) ( ) ( )

( )

( )

( )
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e 1

2
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1 1

e 1

2
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1 1
e 1 e e 1 e

1 e e 1

1
,

1 e

cxi

i i i

cxi
c

i

cx

c

n n
cx cx cx c

i i i
i i
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i i i

n

i

L
B x B
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c

λ

λ

λ

α

α

α
λ λ

λ

β α
λ

−

−

−

= =

 
 − −
 
  

 =  − −
 
  

∂ − = − − + + − ∂ ∂  
 
 
− + − 

 
−  +

 
 
− 

 
 
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( )

( )

e 1

e 1

e 1

2

2
e 1

2

2 2
1 1 1

e 1

1 e

e 1 ,

1 e

cxi
c

cxi
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c

i i i i

n n n

c
i i i

i i i

B D E A

L
E E B

c

λ

λ

α

λ

α

α β α

−

−

 
 − −
 
  

−

 = = =  − −
 
  

  
  

+ −  
   ∂     = − + + − ∂  

 
− 

 
 

∑ ∑ ∑  
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( )
( )

( ) ( )
e 1

e 1
e 1

2
e e , e 1 e ,

cx

c
cxi

i icx cxc
i i iA B x
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λ

αλ λ λ
− 

 − − −   = = − − +  

( )
( )

( )
( )e 1 e 1

e 1 e 1
e 1 e 1

1 e 1 e , 1 e e ,

cx cx

c c
cx cxi i

c c
i iC D

λ λ

α αλ λ

α α

− −   
   − − − −   − −      

 
= − − − = − −  

 
 

( ) 2

3 2

2 2
e 1 e e .i i icx cx cx

i i iE x x
cc c

λ λ λ
= − − +  

The asymptotic ( )1 100%γ−  confidence intervals of α, λ, c and β are ( )
2

ˆ ˆz varγα α± , ( )
2

ˆ ˆz varγλ λ± , 

( )
2

ˆ ˆc z var cγ±  and ( )
2

ˆ ˆz varγβ β±  respectively, where 
2

zγ  is the upper th
2

γ 
 
 

 percentile of the standard 

normal distribution. 

6. Data Analysis  

In this section we perform an application to real data to illustrate that the OGE-G can be a good lifetime model, 

comparing with many known distributions such as the Exponential, Generalized Exponential, Gompertz, Gene-

ralized Gompertz and Beta Gompertz distributions (ED, GE, G, GG, BG), see [4] [6] [10] [11]. 

Consider the data have been obtained from Aarset [9], and widely reported in some literatures, see [3] [4] 

[12]-[15]. It represents the lifetimes of 50 devices, and also, possess a bathtub-shaped failure rate property, Ta-

ble 1. 
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Based on some goodness-of-fit measures, the performance of the OGE-G distribution is compared with others 

five distributions: E, GE, G, GG, and BG distributions. The MLE's of the unknown parameters for these distri-

butions are given in Table 2 and Table 3. Also, the values of the log-likelihood functions (-L), the statistics K-S 

(Kolmogorov-Smirnov), AIC (Akaike Information Criterion), the statistics AICC (Akaike Information Citerion 

with correction) and BIC (Bayesian Information Criterion) are calculated for the six distributions in order to ve-

rify which distribution fits better to these data. 

Based on Table 2 and Table 3, it is shown that OGE-G (α, λ, c, β) model is the best among of those distribu-

tions because it has the smallest value of (K-S), AIC, CAIC and BIC test. 

Substituting the MLE’s of the unknown parameters α, λ, c, β into (32), we get estimation of the variance co-

variance matrix as the following 

3 7 4 4

7 8 6 6
1

0 4 6 5 4

4 6 4 3

1.5022 10 2.7638 10 1.4405 10 9.6331 10

2.7638 10 4.4773 10 1.7837 10 2.7858 10

1.4405 10 1.7837 10 8.4428 10 1.9127 10

9.6331 10 2.7858 10 1.9127 10 1.5309 10

I

− − − −

− − − −
−

− − − −

− − − −

 × × − × ×
 

× × − × × =
 − × − × × − ×
 

× × − × × 

 

The approximate 95% two sided confidence intervals of the unknown parameters α, λ, c and β are [ ]0,0.116 , 

[ ]0,0.001 , [ ]0.060,0.096  and [ ]0.116,0.270 , respectively. 

To show that the likelihood equation have unique solution, we plot the profiles of the log-likelihood function 

of α, λ, β and c in Figure 4 and Figure 5. 

 
Table 1. The data from Aarset [9]. 

0.1 0.2 1 1 1 1 1 2 3 6 7 11 12 18 18 18 18 

18 21 32 36 40 45 46 47 50 55 60 63 63 67 67 67 67 

72 75 79 82 82 83 84 84 84 85 85 85 85 85 86 86  

 
Table 2. The MLE’s, log-likelihood for Aarset data. 

Model 
MLE’s 

-L 
α̂  β̂  λ̂  ĉ  

E 0.0219 - - - 241.0896 

GE 0.0212 0.9012 - - 240.3855 

G - - 0.00970 0.0203 235.3308 

GG - 0.2625 0.00010 0.0828 222.2441 

BG 0.2158 0.2467 0.00030 0.0882 220.6714 

OGE-G 0.0400 0.1940 0.000345 0.0780 215.9735 

 
Table 3. The AIC, CAIC, BIC and K-S values for Aarset data. 

Model AIC AICC BIC K-S p-value (K-S) 

E 484.1792 484.2625 486.0912 0.19110 0.0519 

GE 484.7710 485.0264 488.5951 0.19400 0.0514 

G 474.6617 475.1834 482.3977 0.16960 0.1123 

GG 450.4881 451.0099 456.2242 0.14090 0.2739 

BG 449.3437 450.2326 456.9918 0.13220 0.3456 

OGE-G 423.9470 424.8359 447.5951 0.13205 0.3476 
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Figure 4. The profile of the log-likelihood function of α, λ. 
 

 

Figure 5. The profile of the log-likelihood function of c, β. 
 

The nonparametric estimate of the survival function using the Kaplan-Meier method and its fitted parametric 

estimations when the distribution is assumed to be ED, GED, GD, GGD and OGE-GD are computed and plotted 

in Figure 6. 

Figure 7, gives the form of the hazard rate for the ED, GED, GD, GGD, BGD and OGE-GD which are used 

to fit the data after replacing the unknown parameters included in each distribution by their MLE. 

7. Conclusion 

In this paper, we propose a new model, called the Odd Generalized Exponential-Gompertz (OGE-G) distribution 

and studied its different properties. Some statistical properties of this distribution have been derived and dis-

cussed. The quantile, median, mode and moments of OGE-G are derived in closed forms. The distribution of the 

order statistics is discussed. Both point and asymptotic confidence interval estimates of the parameters are de-

rived using the maximum likelihood method and we obtained the observed Fisher information matrix. We use 

application on set of real data to compare the OGE-G with other known distributions such as Exponential (E), 

Generalized Exponential (GE), Gompertz (G), Generalized Gompertz (GG) and Beta-Gompertz (BG). Applica-

tions on set of real data showed that the OGE-G is the best distribution for fitting these data sets compared with 

other distributions considered in this article. 
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Figure 6. The Kaplan-Meier estimate of the survival function. 

 

 

Figure 7. The Fitted hazard rate function for the data. 
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