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Abstract

We propose a new generator of continuous distributions with one extra positive para-
meter called the odd Lindley-G family. Some special cases are presented. The new density
function can be expressed as a linear combination of exponentiated densities based on the
same baseline distribution. Various structural properties of the new family, which hold for
any baseline model, are derived including explicit expressions for the quantile function,
ordinary and incomplete moments, generating function, Rényi entropy, reliability, order
statistics and their moments and k upper record values. We provide a Monte Carlo simu-
lation study to evaluate the maximum likelihood estimates. We discuss estimation of the
model parameters by maximum likelihood and provide an application to a real data set.

Keywords: estimation, Lindley distribution, generating function, odd Lindley-G distribution;
k upper record values, moment, Monte Carlo simulation.

1. Introduction

In recent years, several ways of generating new distributions from classic ones has attracted
theoretical and applied statisticians due to their flexible properties. Many classical distribu-
tions have been extensively used over the past decades for modeling data in several areas.
In fact, for instance, Johnson, Kotz, and Balakrishnan (1994, 1995) presented a comprehen-
sive discussion on hundreds of continuous univariate distributions. However, in many applied
areas including, but not limited to lifetime analysis, finance and insurance, there is a clear
need for extended forms of these distributions, which are more flexible for fitting specific real
world scenarios. Consequently, recent developments focus on definition of the new families
of distributions that extend well-known distributions and at the same time provide great
flexibility in modelling data in practice. Some well-established generators and other recently
proposed are the Marshall-Olkin generated family (MO-G) by Marshall and Olkin (1997),
beta-G by Eugene, Lee, and Famoye (2002), Kumaraswamy-G (Kw-G for short) by Cordeiro
and de Castro (2011), McDonald-G (Mc-G) by Alexander, Cordeiro, Ortega, and Sarabia
(2012), gamma-G by Zografos and Balakrishnan (2009), transformed-transformer (T-X) by
Alzaatreh, Lee, and Famoye (2013), exponentiated T-X by Alzaghal, Felix, and Carl (2013),
Weibull-G by Bourguignon, Silva, and Cordeiro (2014), exponentiated half-logistic family by
Cordeiro, Alizadeh, and Ortega (2014), logistic-X by Tahir, Cordeiro, Alzaatreh, Mansoor,
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and Zubair (2016a), a new Weibull-G by Tahir, Zubair, Mansoor, Cordeiro, Alizadeh, and
Hamedani (2016b) and Kumaraswamy odd log-logistic-G by Alizadeh, Emadi, Doostparast,
Cordeiro, Ortega, and Pescim (2015). The Lindley distribution was originally proposed by
Lindley (1958) as a counterexample of fiducial statistics. Ghitany, Atieh, and Nadarajah
(2008) showed through a numerical example that the hazard function of the Lindley distri-
bution does not exhibit a constant hazard rate, indicating its flexibility over the exponen-
tial distribution. It has recently received considerable attention as an appropriate model to
analyze lifetime data especially in applications modeling stress-strength reliability; see, for
example, Ghitany et al. (2008), Zakerzadeh and Dolati (2009), Mazucheli and Achcar (2011),
Gupta and Singh (2012), Warahena-Liyanage and Pararai (2014). Several other authors in-
cluding Sankaran (1970), Nadarajah and Tahmasbi (2011) and Asgharzedah, Bakouch, and
Esmaeli (2013) developed some structural properties of various generalized Lindley distri-
butions. Nonetheless, there are situations in which the Lindley distribution and all of its
generalizations may not be suitable from a theoretical or an applied point of view.

Let r(t) be the probability density function (pdf) of a random variable T ∈ [a, b] for −∞ ≤
a < b < ∞ and let W [G(x)] be a function of the cumulative distribution function (cdf) of a
random variable X such that W [G(x)] satisfies the following conditions:

(i) W [G(x)] ∈ [a, b],

(ii) W [G(x)] is differentiable and monotonically non-decreasing, and

(iii) W [G(x)]→ a as x→ −∞ andW [G(x)]→ b as x→∞.
(1)

Alzaatreh et al. (2013) defined the T-X family of distributions by

F (x) =

∫ W [G(x)]

a
r(t) dt, (2)

where W [G(x)] satisfies the conditions (1). The pdf corresponding to (2) is given by

f(x) =

{
d

dx
W [G(x)]

}
r {W [G(x)]} . (3)

In this paper, we propose a new wider class of continuous distributions called the Odd Lindley-
G (“OL-G” for short) family by taking W [G(x)] = G(x;ξ)

1−G(x;ξ) and r(t) = a2

1+a (1 + t) e−a t, t >

0, a > 0, where G(x; ξ) is a baseline cdf, which depends on a parameter vector ξ and G(x; ξ) =
1−G(x; ξ) is the baseline survival function. Its cdf is given by

F (x; a, ξ) =

∫ G(x;ξ)
1−G(x;ξ)

0

a2

1 + a
(1 + t) e−a t dt

= 1− a+G(x; ξ)

(1 + a)G(x; ξ)
exp

{
−a G(x, ξ)

G(x; ξ)

}
. (4)

For each baseline G, the OL-G family of distributions is defined by the cdf (4). Equation (4)
is a wider family of continuous distributions. Further, we can omit sometimes the dependence
on the vector ξ of the parameters and write simply G(x) = G(x; ξ).

The corresponding density function to (4) is given by

f(x; a, ξ) =
a2

(1 + a)

g(x, ξ)

G(x; ξ)3
exp

{
−a G(x, ξ)

G(x; ξ)

}
, (5)

where g(x; ξ) is the baseline pdf. Equation (5) is most tractable when the cdf G(x) and the pdf
g(x) have simple analytic expressions. Hereafter, a random variable X with density function
(5) is denoted by X ∼ OL-G(a, ξ). Table 1 lists G(x; ξ)/G(x; ξ) and the corresponding
parameters for some special distributions.
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Most of the distributions lack physical motivation for modeling lifetime data. We now provide,
in a similar context, a physical interpretation for the proposed family inspired in Cooray
(2006). Let Y be a lifetime random variable having a certain continuous G distribution. The
odds ratio that an individual (or component) following the lifetime Y will die (failure) at time
x is G(x; ξ)/G(x; ξ). Consider that the variability of this odds of death is represented by the
random variable X and assume that it follows the Lindley model with scale a. We can write

Pr(Y ≤ x) = Pr

(
X ≤ G(x; ξ)

G(x; ξ)

)
= F (x; a, ξ),

which is given by (4). The rest of the paper is organized as follows. In Section 2, we present

Table 1: Distributions and corresponding G(x; ξ)/G(x; ξ) functions

Distribution G(x; ξ)/G(x; ξ) ξ

Uniform (0 < x < θ) x/(θ − x) θ

Exponential (x > 0) eλx − 1 λ

Weibull (x > 0) eλx
γ − 1 (λ, γ)

Fréchet (x > 0) (eλx
γ − 1)−1 (λ, γ)

Half-logistic (x > 0) (ex − 1)/2 ∅
Power function (0 < x < 1/θ) [(θ x)−k − 1]−1 (θ, k)

Pareto (x ≥ θ) (x/θ)k − 1 (θ, k)

Burr XII (x > 0) [1 + (x/s)c]k − 1 (s, k, c)

Log-logistic (x > 0) [1 + (x/s)c]− 1 (s, c)

Lomax (x > 0) [1 + (x/s)]k − 1 (s, k)

Gumbel (−∞ < x <∞) {exp[exp(−(x− µ)/σ)]− 1}−1 (µ, σ)

Kumaraswamy (0 < x < 1) (1− xα)−β − 1 (α, β)

Normal (−∞ < x <∞) Φ((x− µ)/σ)/(1− Φ((x− µ)/σ)) (µ, σ)

four special models of the new family. A range of mathematical properties of Equation (5)
is derived in Section 3 including a useful expansion for the pdf and explicit expressions for
the moments and generating function. General expressions for the Rényi entropy, reliability,
order statistics and k upper record values are discussed in Section 4. Estimation of the model
parameters by maximum likelihood is performed in Section 5. In Section 6, we conduct a
simulation study for specific choices of a model parameter. An application to a real data set
illustrates the performance of the new family in Section 6. The paper is concluded in Section
7.

2. Four special models of the OL-G family

In this section, we present four special models of the OL-G family.

2.1. Odd Lindley Weibull (OLW)

The Weibull cdf with parameters α > 0 and λ > 0 is G(x) = 1− e−(λx)
α

(for x > 0). The cdf
of a random variable X having the OLW distribution, say X∼ OLW(a, α, λ), is given by

FOLW(x) = (1 + a)−1 exp{−a[a+ e(λx)
α
]}
{

(1 + a+ a2) exp[ae(λx)
α
]− ea(1+a)

[
1 + a e(λx)

α]}
,

and the associated density function reduces to

fOLW(x) = a2 (1 + a)−1 αλα xα−1 e2(λx)
α

exp{−a[e(λx)
α − 1]}. (6)
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The hazard rate function (hrf) corresponding to (6) is given by

τOLW(x) = a2 αλα xα−1 e2(λx)
α

exp{−a[e(λx)
α − 1]}

{
1 + a− exp{−a[a+ e(λx)

α
]}

×
[
(1 + a+ a2) exp[ae(λx)

α
]− ea(1+a)

{
1 + a e(λx)

α}]}−1
.

Plots of the density and hrf of the OLW distribution for some parameter values are displayed
in Figure 1.
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Figure 1: Plots of the OLW density and hrf functions for some parameter values.

2.2. Odd Lindley Kumaraswamy (OLKw)

The Kumaraswamy cumulative distribution (for x ∈ [0,1]) is G(x) = 1− (1−xα)β, where the
parameters are α > 0 and β > 0. The OLKw cumulative distribution is given by

FOLKw(x) = (1 + a)−1
{

(1 + a+ a2) e−a
2

+ exp[a− a(1− xα)−β] [−1− a(1− xα)−β]
}

and the associated density function reduces to

fOLKw(x) = a2 (1 + a)−1 αβ xα−1 (1− xα)−2β−1 exp{−a[(1− xα)−β − 1]}. (7)

The hrf corresponding to (7) is given by

τOLKw(x) = αβ xα−1 (1− xα)−2β−1 exp{−a[(1− xα)−β − 1]}

×
{

1 + a−
[
(1 + a+ a2) e−a

2
+ exp[a− a(1− xα)−β] {−1− a(1− xα)−β}

]}−1
.

Plots of the density and hrf of the OLKw distribution for some parameter values are displayed
in Figure 2.

2.3. Odd Lindley half-logistic (OLHL)

The half-logistic cumulative distribution (for x > 0) is given by G(x) = 1−e−x
1+e−x . The OLHL

cumulative distribution becomes

FOLHL(x) = [2(1 + a)]−1 exp
[a

2
(1− 2a− ex)

]
×

{
− (2 + a) ea

2
+ 2(1 + a+ a2) exp

[a
2

(−1 + ex)
]
− a ea

2+x
}
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Figure 2: Plots of the OLKw density and hrf functions for some parameter values.

and the associated density function reduces to

fOLHL(x) = a2 [4(1 + a)]−1 (1 + ex) exp
[a

2
(1− ex) + x

]
. (8)

The corresponding hrf to (8) is given by

τOLHL(x) =
a2

2
(1 + ex) exp

[a
2

(1− ex) + x
]{

2(1 + a)− exp
[a

2
(1− 2a− ex)

]
×

[
− (2 + a) ea

2
+ 2(1 + a+ a2) exp

[a
2

(−1 + ex)
]
− a ea

2+x
]}−1

.

Plots of the pdf and hrf of the OLHL distribution for some parameter values are displayed in
Figure 3.
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Figure 3: Plots of the OLHL density and hrf functions for some parameter values.
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2.4. Odd Lindley Burr XII (OLBXII)

Zimmer, Keats, and Wang (1998) introduced the three parameter Burr XII (BXII) distri-

bution with cdf and pdf (for x > 0): G(x; s, k, c) = 1 −
[
1 +

(
x
s

)c]−k
and g(x; s, k, c) =

c k s−c xc−1
[
1 +

(
x
s

)c]−k−1
, respectively, where k > 0 and c > 0 are shape parameters and

s > 0 is a scale parameter. The OLBXII cumulative distribution becomes

FOLBXII(x) = (1 + a)−1 exp
{
a+

[
1 +

(x
s

)c]k}
×

{
(1 + a+ a2) exp

{
a
[
1 +

(x
s

)c]k}− ea(1+a)
(

1 + a
[
1 +

(x
s

)c]k)}
and the associated density function reduces to

fOLBXII(x) = a2 c k s−c (1 + a)−1 xc−1
[
1 +

(x
s

)c]2k−1
exp
[
a
{

1−
[
1 +

(x
s

)c]k}]
. (9)

The corresponding hrf is given by

τOLBXII(x) = a2 c k s−c xc−1
[
1 +

(x
s

)c]2k−1
exp
[
a
{

1−
[
1 +

(x
s

)c]k}]
×

{
1 + a− exp

{
a+

[
1 +

(x
s

)c]k}
×

[
(1 + a+ a2) exp

{
a
[
1 +

(x
s

)c]k}− ea(1+a)
(

1 + a
[
1 +

(x
s

)c]k)]}−1
.

Plots of the density and hrf of the OLBXII distribution for some parameter values are dis-
played in Figure 4.
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Figure 4: Plots of the OLBXII density and hrf functions for some parameter values.

3. Main properties

3.1. Survival and hazard

The corresponding survival function to (4) is given by

S(x; a, ξ) = 1− F (x; a, ξ) =
a+G(x; ξ)

(1 + a)G(x; ξ)
exp

{
−a G(x, ξ)

G(x; ξ)

}
. (10)
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The hrf of X becomes

τ(x; a, ξ) =
a2 g(x, ξ)

G(x; ξ)2 [a+G(x; ξ)]
=

a2

G(x; ξ) [a+G(x; ξ)]
τ(x; ξ), (11)

where τ(x; ξ) = g(x; ξ)/G(x; ξ). The multiplying quantity a2/{G(x; ξ) [a + G(x; ξ)]} works
as a corrected factor for the baseline hrf. Equation (4) can deal with general situations in
modeling survival data with various shapes of the hrf.

3.2. Quantile functions

Let X be an arbitrary random variable with cdf F (x) = Pr(X ≤ x), where x ∈ R. For any
u ∈ (0, 1), the uth quantile function (qf) Q(u) of X is the solution of

F (Q(u)) = u, (12)

for Q(u) > 0.

For any fixed a > 0, from Equation (4), we obtain

−1 + a−G(Q(u))

1−G(Q(u))
e
− aG(Q(u))

1−G(Q(u)) = (1 + a)(u− 1).

Multiplying both sides of this equation by e−(1+a) gives

−1 + a−G(Q(u))

1−G(Q(u))
e
− 1+a−G(Q(u))

1−G(Q(u)) = (1 + a)(u− 1) e−(1+a).

In the above equation, we note that −1+a−G(Q(u))
1−G(Q(u)) is the Lambert W function of the real

argument (1 + a)(u− 1)e−(1+a). The Lambert W function is defined by

W (x) eW (x) = x.

The Lambert function has two real branches with a branching point located at (−e−1, 1). The
lower branch, W−1(x), is defined in the interval [−e−1, 1] and has a negative singularity for
x→ 0−. The upper branch, W0(x), is defined for x ∈ [−e−1,∞].

Then, we have

W
(

(1 + a)(u− 1)e−(1+a)
)

= −
(

1 +
a

1−G(Q(u))

)
. (13)

Clearly, for any a > 0 and u ∈ (0, 1), we have
(

1 + a
1−G(Q(u))

)
> 1 and then (1 + a)(u −

1)e−(1+a) < 0. Therefore, considering the lower branch of the Lambert W function, we can
write (13) as

W−1

(
(1 + a)(u− 1)e−(1+a)

)
= −

(
1 +

a

1−G(Q(u))

)
.

Hence, the qf of X is given by

Q(u) = G−1
{

1 + a
[
1 +W−1

(
(1 + a)(u− 1)e−(1+a)

) ]−1}
. (14)
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3.3. Shapes of the OL-G family

The shapes of the density and hazard rate functions can also be described analytically. The
critical points of the OL-G density function are the roots of the equation:

g′(x)

g(x)
+ 3

g(x)

G(x)
− a g(x)

G(x)2
= 0. (15)

The critical points of h(x) are obtained from the following equation

g′(x)

g(x)
+

g(x)

a+G(x)
+ 2

g(x)

G(x)2
= 0. (16)

By using most computer algebra systems, we can examine Equations (15) and (16) to deter-
mine the local maximums and minimums and inflexion points.

3.4. Useful expansions

Several structural properties of the extended distributions may be easily explored using mix-
ture forms of exponentiated-G (“Exp-G”) distributions. In this section, we obtain expansions
for f(x) and F (x). First, we define the Exp-G distribution for an arbitrary parent distribution
G(x), say W ∼ Exp-G(c), if W has cdf and pdf given by

Hc(x; ξ) = G(x; ξ)c and hc(x; ξ) = c g(x; ξ)G(x; ξ)c−1,

respectively. Next, we obtain an expansion for f(x). Using the power series for the exponential
function, we have

exp

{
−a
[
G(x; ξ)

G(x; ξ)

]}
=

∞∑
k=0

(−1)k ak

k!

[
G(x; ξ)

G(x; ξ)

]k
.

Inserting this expansion in Equation (5), we have

f(x; a, ξ) =
a2

1 + a
g(x, ξ)

∞∑
k=0

(−1)kak

k!

G(x; ξ)k

G(x; ξ)k+3
. (17)

By using the generalized binomial expansion, we can write

G(x; ξ)−(k+3) =
∞∑
i=0

Γ(i+ k + 3)

i! Γ(k + 3)
G(x; ξ)i. (18)

Inserting (18) in (17), the OL-G density function can be expressed as an infinite mixture of
Exp-G density functions

f(x; a, ξ) =
∞∑

i, k=0

γi,k hi+k+1(x; ξ), (19)

where

γi,k =
(−1)k a2+k Γ(i+ k + 3)

(a+ 1)(i+ k + 1) i! k! Γ(k + 3)
.

The cdf of X can be given by integrating (19) as

F (x; a, ξ) =

∞∑
i, k=0

γi,kHi+k+1(x; ξ). (20)
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The properties of Exp-G distributions have been studied by many authors in recent years, see
Mudholkar and Srivastava (1993) and Mudholkar, Srivastava, and Freimer (1995) for expo-
nentiated Weibull, Gupta, Gupta, and Gupta (1998) for exponentiated Pareto, Gupta and
Kundu (1999) for exponentiated exponential, Nadarajah (2005) for exponentiated Gumbel,
Shirke and Kakade (2006) for exponentiated log-normal and Nadarajah and Gupta (2007) for
exponentiated gamma distributions.

Thus, some structural properties of the new family such as the ordinary and incomplete
moments and generating function can be determined from well-established properties of the
Exp-G distributions.

Note that Equations (19) and (20) are the main results of this section.

3.5. Moments

From now on, we assume that Yi+k ∼ Exp-G(i+ k+ 1). Many of the important features and
characteristics of a distribution can be obtained using ordinary moments. A first formula for
the nth moment of X can be obtained from (19) as

µ′n = E(Xn) =
∞∑

i, k=0

γi,k E(Y n
i+k). (21)

Closed-form expressions for moments of several Exp-G distributions are given by Nadarajah
and Kotz (2006) that can be used to obtain OL-G moments. For instance, the moments of the
OLW model (for n > −α) discussed in Section 2 can be derived from closed-forms moments
of the exponetiated Weibull given by Nadarajah and Kotz (2006). In this case, we obtain

µ′n = λ−n Γ(n/α+ 1)
∞∑

i,k=0

(i+ k + 1) γi,k

∞∑
j=0

(−i− k)j

j! (j + 1)n/α+1
. (22)

A second alternative formula for µ′n can be obtained from (21) in terms of the baseline quantile
function QG(u). We obtain

µ′n =
∞∑

i,k=0

(i+ k + 1) γi,k τn,i+k, (23)

where the integral depends on the baseline qf

τn,j =

∫ 1

0
QG(u)n ujdu. (24)

Note that the ordinary moments of several OL-G distributions can be determined directly
from Equations (23) and (24). We now provide the PWMs (Probability Weighted Moments)
for one distribution discussed in Section 2. Cordeiro and Nadarajah (2011) determined τr,s
for some well-known distribution such as normal, beta, gamma, and Weibull distributions,
which can be applied to obtain raw moments of the corresponding OL-G distributions.

For instance, in OL-N distribution discussed in Section 2, the quantities τr,s can be expressed
in terms of the Lauricella functions of type A, Exton (1978) and Trott (2006) defined by

F
(n)
A (a; b1, . . . , bn; c1, . . . , cn;x1, . . . , xn) =
∞∑

m1=0

. . .

∞∑
mn=0

(a)m1+...+mn(b1)m1 . . . (bn)mn
(c1)m1 . . . (cn)mn

xm1
1 . . . xmnn
m1! . . .mn!

,

where (a)i = a(a + 1) . . . (a + i − 1) is the ascending factorial given by (with the convention
that (a)0 = 1).
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In fact, Cordeiro and Nadarajah (2011) determined τr,s for the standard normal distribution
as

τr,s = 2r/2 π−(s+1/2)
s∑
l=0

(r+s−l) even

(
s

l

)
2−l πl Γ

(
r + s− l + 1

2

)
×

F
(s−l)
A

(
r + s− l + 1

2
;
1

2
, . . . ,

1

2
;
3

2
, . . . ,

3

2
;−1, . . . ,−1

)
.

This equation holds when r+ s− l is even and it vanishes when r+ s− l is odd. So, any OLN
moment can be expressed as an infinite weighted linear combination of Lauricella functions
of type A.

Further, the central moments (µr) and cumulants (κr) of X can be determined from the
ordinary moments using the recurrence equations

µr =
r∑

k=0

(−1)k
(
r

k

)
µ′k1 µ

′
r−k and κr = µ′r −

r−1∑
k=1

(
r − 1

k − 1

)
κk µ

′
r−k,

respectively, where κ1 = µ′1. Then, κ2 = µ′2−µ′21 , κ3 = µ′3− 3µ′2µ
′
1 + 2µ′31 , κ4 = µ′4− 4µ′3µ

′
1−

3µ′22 +12µ′2µ
′2
1 −6µ′41 , etc. The skewness ρ1 = κ3/κ

3/2
2 and kurtosis ρ2 = κ4/κ

2
2 can be obtained

from the second, third and fourth cumulants.

The incomplete moments play an important role for measuring inequality. For example, the
main application of the first incomplete moment refers to the Lorenz and Bonferroni curves.

The nth incomplete moment of X is calculated as

mn(y) = E (Xn|X < y) =

∞∑
i,k=0

(i+ k + 1) γi,k

∫ G(y)

0
QG(u)nui+kdu.

The last integral can be evaluated for most baseline G distributions.

3.6. Generating function

Here, we provide two formulae for the mgf M(t) = M(t; a, ξ) = E[exp(tX)] of X. The first
one comes from (19) as

M(t) =
∞∑

i,k=0

γi,kMi+k(t), (25)

where Mi+k(t) is the mgf of Yi+k. Hence, M(t) can be determined from the generating
function of the Exp-G distribution.

A second formula for M(t) can be derived from (19) as

M(t) =
∞∑

i,k=0

(i+ k + 1) γi,k ρ(t, i+ k), (26)

where

ρ(t, b) =

∫ ∞
−∞

exp(tx)G(x)b g(x)dx =

∫ 1

0
exp {tQG(u)}ubdu. (27)

We can obtain the mgf of several OL-G distributions directly from Equations (26) and (27).
These equations are the main results of this section.
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4. Other measures

4.1. Entropy

The entropy of a random variable X with density function f(x) is a measure of variation of
the uncertainty. Two popular entropy measures are due to Shannon (1951) and Rényi (1961).
A large value of the entropy indicates the greater uncertainty in the data. The Rényi entropy
is defined by (for γ > 0 and γ 6= 1)

IR(γ) =
1

1− γ
log

(∫ ∞
0

fγ(x)dx

)
.

The Shannon entropy is given by E {− log[f(X)]}. It is a special case of the Rényi entropy
when γ ↑ 1.
Here, we derive expressions for the Rényi entropy for the OL-G distribution. Due to the fact
that the parameter γ is not in general a natural number, it is difficult to use (19) for entropy
derivation. So, we use (5), the power series for the exponential and the generalized binomial
expansion to obtain the Rényi entropy of X as

IR(γ) =
1

1− γ

γ log

(
a2

1− a

)
+ log

 ∞∑
i,k=0

(−1)k (a γ)k Γ(3γ + i+ k)

i! k! Γ(3γ + k)
K(γ, i, k)

 .

Here, K(γ, i, k) denotes the integral

K(γ, i, k) =

∫ 1

0
gγ−1[QG(u)]ui+kdu,

to be evaluated for each OL-G model. For the OL-exponential (with parameter λ > 0),
OL-Weibull (with parameters α > 0 and λ > 0) and OL-Pareto (with parameter γ > 0)
distributions, we obtain

K(γ, i, k) = λγ−1B(i+ k, γ − 1),

K(γ, i, k) = βγ−1 Γ

(
(α− 1)(γ − 1)

α
+ 1

) i+k∑
p=0

(−1)p (p+ γ)−
(α−1)(γ−1)

α
−1
(
i+ k

p

)
,

where α > (γ − 1)/γ, and

K(γ, i, k) = γγ−1B(i+ k, (1 + γ−1)(γ − 1)),

respectively.

4.2. Reliability

The measure of reliability of industrial components has many applications especially in the
area of engineering. The reliability of a product (system) is the probability that the product
(system) will perform its intended function for a specified time period when operating under
normal (or stated) environmental conditions. The component fails at the instant that the
random stress X2 applied to it exceeds the random strength X1, and the component will
function satisfactorily whenever X1 > X2. Hence, R = P (X2 < X1) is a measure of compo-
nent reliability (see Kotz, Lai, and Xie (2003)). We derive the reliability R when X1 and X2

have independent OL-G(x, a1, ξ) and OL-G(x, a2, ξ) distributions with the same parameter
vector ξ for the baseline G. The reliability is defined by
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R =

∫ ∞
0

f1(x)F2(x)dx.

The pdf of X1 and cdf of X2 are obtained from Equations (19) and (20) as

f1(x) =
∞∑

i,j=0

pi,j(a1) g(x, ξ)G(x; ξ)i+j and F2(x) =
∞∑

k,l=0

qk,l(a2)G(x; ξ)k+l+1,

where

pi,j =
(−1)ja2+j1 Γ(i+ j + 3)

i!j!(a1 + 1)Γ(j + 3)

and

qk,l =
(−1)la2+l2 Γ(k + l + 3)

k!l!(a2 + 1)(k + l + 1)Γ(l + 3)
.

Hence,

R =

∞∑
i,j,k,l=0

pi,j(a1) qk,l(a2)

∫ ∞
0

g(x; ξ)G(x; ξ)i+j+k+l+1 dx.

Setting u = G(x; ξ), the reliability of the OL-G distribution reduces to

R =
∞∑

i,j,k,l=0

pi,j(a1) qk,l(a2)

i+ j + k + l + 2
.

4.3. Order statistics

A branch of statistics known as order statistics plays a proeminent role in real-life applications
involving data relating to life testing studies. These statistics are required in many fields,
such as climatology, engineering and industry, among others. A comprehensive exposition of
order statistics and associated inference is provided by David and Nagaraja (2003). Let Xi:n

denote the ith order statistic. The density fi:n(x) of the ith order statistic, for i = 1, . . . , n,
from independent and identically distributed random variables X1, . . . , Xn having the OL-G
distribution is given by

fi:n(x) = M f(x)F (x)i−1 [1− F (x)]n−i,

where M = n!/[(i− 1)! (n− i)!]. First of all, by adding and subtracting aG(x) in numerator

of a+G(x)

(1+a)G(x)
, the cdf (4) can be rewritten as

F (x) = 1−
{

1 +
a

(1 + a)

[
G(x)

G(x)

]}
exp

{
−a G(x)

G(x)

}
. (28)

From Equations (5) and (28),

fi:n(x) = M
a2

1 + a

g(x)

G(x)

i−1∑
k=0

(−1)k
(
i− 1

k

) {
1 +

a

1 + a

G(x)

G(x)

}k+n−i
× exp

{
−a (k + n− i+ 1)

G(x)

G(x)

}
.
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The folowing equations are obtained by using the power series for the exponential function
and the generalized binomial expansion:

exp

{
−a (k + n− i+ 1)

[
G(x)

G(x)

]}
=

∞∑
m=0

(−1)m am (n+ k − i+ 1)m

m!

[
G(x)

G(x)

]m
(29)

and

[1−G(x)]−(j+m+1) =
∞∑
p=0

(
j +m+ p

j +m

)
G(x)p. (30)

Based on Equations (29) and (30), the density of the order statistic Xi:n can be expressed as
a mixture of Exp-G densities.

fi:n(x) =
∞∑

m,p=0

k+n−i∑
j=0

γj,m,p hj+m+p(x), (31)

where

γj,m,p =
M aj+m+2

m! (1 + a)j+1 (j +m+ p+ 1)

(
j +m+ p

j +m

) i−1∑
k=0

(−1)k+m
(
k + n− i

j

)(
i− 1

k

)
.

Clearly, the cdf of Xi:n can be expressed as

Fi:n(x) =
∞∑

m,p=0

k+n−i∑
j=0

γj,m,pHj+m+p(x). (32)

Hence, several mathematical quantities of the OL-G order statistics such as the ordinary,
incomplete and factorial moments, mgf and mean deviations can be determined from those
quantities of the Exp-G distributions. For example, from Equation (31), the moments and
mgf of Xi:n are given by

E(Xs
i:n) =

∞∑
m,p=0

k+n−i∑
j=0

γj,m,pE(Zsj+m+p)

and

Mi:n(t) =

∞∑
m,p=0

k+n−i∑
j=0

γj,m,pE(et Zj+m+p),

where Zj+m+p ∼ Exp-G(j + m + p). Equations (31) and (32) are the main results of this
section.

4.4. K upper record values

Chandler (1952) formulated the theory of record values as a model for successive extremes
in a sequence of independently and identically random variables. Record values are found
in many real life applications involving data related to economics, sports, weather and life
testing problems. The statistical study of record values has now spread in various directions.
Dziubdziela and Kopocinski (1976) proposed the model of k upper record values by observing
successive k largest values in a sequence, where k is a positive integer.

Let X
(k)
n denote the kth upper record value. The pdf f

X
(k)
n

(x) of the kth upper record value,

for k = 1, . . . , n, from independent and identically distributed random variables X1, . . . , Xn

from the OL-G distribution is given by

f
X

(k)
n

(x) =
kn

(n− 1)!
{− log[1− F (x)]}n−1 [1− F (x)]k−1 f(x). (33)
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By expanding the logarithm function in power series and using the binomial expansion, we
have

f
X

(k)
n

(x) =
kn

(n− 1)!

{ ∞∑
p=0

ap F (x)p+1

}n−1{ k−1∑
j=0

(−1)j
(
k − 1

j

)
F (x)j

}
f(x), (34)

where ap = 1/(p+ 1).

Here, we use an equation by Gradshteyn and Ryzhik (2007) (Section 0.314) for a power series
raised to a positive integer n ( ∞∑

i=0

ai u
i

)n
=
∞∑
i=0

cn,i u
i, (35)

where the coefficients cn,i (for i = 1, 2, . . .) are determined from the recurrence equation

cn,i = (i a0)
−1

i∑
m=1

[m (n+ 1)− i] am cn,i−m,

where cn,0 = an0 .

Based on Equations (34) and (35), the pdf (33) can be expressed as

f
X

(k)
n

(x) =
kn

(n− 1)!

∞∑
p=0

k−1∑
j=0

(−1)j cn−1,p

(
k − 1

j

)
F (x)j+n+p−1 f(x),

where cn−1,p can be obtained from the quantities a0, . . . , ap as in Equation (35).

From Equations (5) and (28), and following similar algebra of Section 4.3, we obtain

f
X

(k)
n

(x) =

q∑
r=0

∞∑
s,t=0

φr,s,t hr+s+t+1(x), (36)

where

φr,s,t =

(
n

k

)(
r + s+ t+ 2

r + s+ 2

)
kn ar+s+2

(r + s+ t+ 1) (n+ 1)! (1 + a)r+1

×
∞∑
p=0

k−1∑
j=0

j+n+p−1∑
q=0

(
q

r

)(
k − 1

j

)
(−1)j+q (q + 1)s cn−1,p.

Equation (36) is the main result of this section. It reveals that the pdf of the OL-G k upper
record values is a triple linear combination of Exp-G densities.

5. Estimation

We determine the maximum likelihood estimates (MLEs) of the parameters of the new family
from complete samples only. Let x1, . . . , xn be observed values from the OL-G distribution
with parameters a and ξ. Let Θ = (a, ξ)> be the p × 1 parameter vector. The total log-
likelihood function for Θ is given by

`(Θ) = 2n log(a)− n log(1 + a) +
n∑
i=1

log[g(xi; ξ)]− 3
n∑
i=1

log[G(xi; ξ)]− a
n∑
i=1

V (xi; ξ),

where V (x; ξ) = G(x; ξ)/G(x; ξ). We assume that the folllowing standard regularity condi-
tions for the log-likelhood `(Θ) hold: i) The support of X associated to the distribution does
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not depend on unknown parameters; ii) The parameter space of X, say Ψ is open and `(Θ)
has a global maximum in Ψ; iii) For almost all x, the fourth-order log-likelihood derivatives
with respect to the model parameters exist and are continuous in an open subset of Ψ that
contains the true parameter; iv) The expected information matrix is positive definite and
finite; v) The absolute values of the third-order log-likelihood derivatives with respect to the
parameters are bounded by expected finite functions of X.

The components of the score function U(Θ) = (Ua, Uξ)
> are

Ua =
2n

a
− n

1 + a
−

n∑
i=1

V (xi; ξ)

and

Uξk = −a
n∑
i=1

∂V (xi; ξ)/∂ξk +
n∑
i=1

∂g(xi; ξ)/∂ξk
g(xi; ξ)

− 3
n∑
i=1

∂G(xi; ξ)/∂ξk
G(xi; ξ)

.

Setting Ua and Uξ equal to zero and solving the equations simultaneously yields the MLE

Θ̂ = (â, ξ̂)> of Θ = (a, ξ)>. These equations cannot be solved analytically and statistical
software can be used to solve them numerically using iterative methods such as the Newton-
Raphson type algorithms.

For interval estimation on the model parameters, we obtain the (p + 1) × (p + 1) observed
information matrix J(Θ) = {Urs} (for r, s = a, ξk), whose elements are

Uaa = −2n

a2
+

n

(1 + a)2
, Uaξk = −

n∑
i=1

∂V (xi; ξ)/∂ξk

and

Uξkξl = −a
n∑
i=1

∂2V (xi; ξ)/∂ξk ∂ξl −
n∑
i=1

[∂g(xi; ξ)/∂ξk] [∂g(xi; ξ)/∂ξl]

g(xi; ξ)2
+

n∑
i=1

∂2g(xi; ξ)/∂ξk ∂ξl
g(xi; ξ)

+ 3

n∑
i=1

[∂G(xi; ξ)/∂ξk] [∂G(xi; ξ)/∂ξl]

G(xi; ξ)2
− 3

n∑
i=1

∂2G(xi; ξ)/∂ξk ∂ξl
G(xi; ξ)

.

6. Empirical and numerical illustration

6.1. Some numerical values and simulation

The formulae derived in this paper can be easily handled in most symbolic computation
software platforms such as MAPLE, MATLAB and MATHEMATICA. These platforms have
currently the ability to deal with complex expressions. Table 2 provides some numerical va-
lues for the ordinary moments µi (with i = 1, 2, 3, 4.) and quantiles Q(u) of the OLW(a, α, λ)
distribution calculated from MATHEMATICA. These moments were established using nume-
rical integration. The quantile values were obtained by using Equation (14). The values of
the Lambert W function is avaliable in routine ProductLog[·, ·].
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Table 2: The values of the first four moments and some quantiles of the OLW(a, α, λ) distri-
bution for α = 1.0, λ = 4.0 and different values of a

OLW for a: 0.01 0.2 1.0 1.5 2.0

µ1 1.257 0.519 0.199 0.144 0.113

µ2 1.620 0.303 0.053 0.030 0.019

µ3 2.13 0.189 0.017 0.007 0.004

µ4 2.850 0.125 0.005 0.002 <0.001

Q(0.1) 0.993 0.266 0.045 0.027 0.018

Q(0.3) 1.174 0.433 0.122 0.079 0.057

Q(0.7) 1.374 0.627 0.262 0.191 0.149

Q(0.9) 1.490 0.743 0.363 0.280 0.228

OLW for a: 0.3 0.5 0.7 0.9 1.1

µ1 0.427 0.320 0.257 0.215 0.185

µ2 0.212 0.126 0.085 0.062 0.047

µ3 0.114 0.055 0.032 0.020 0.014

µ4 0.066 0.026 0.013 0.007 0.004

Q(0.2) 0.276 0.178 0.127 0.096 0.076

Q(0.5) 0.439 0.323 0.255 0.208 0.175

Q(0.6) 0.483 0.366 0.294 0.244 0.209

Q(0.8) 0.579 0.457 0.381 0.327 0.286

We assess the performance of the MLEs of the OLW distribution with respect to sample size
n. The assessment was based on a simulation study:

1. generate ten thousand samples of size n from (4)-(5). The inversion method was used
to generate samples.

2. compute the MLEs for the ten thousand samples, say
(
â, α̂, λ̂

)
for i = 1, 2, . . . , 10000.

3. compute the standard errors of the MLEs for the ten thousand samples, say
(
sâ, sα̂, sλ̂

)
for i = 1, 2, . . . , 10000. The standard errors were computed by inverting the observed
information matrices.

4. compute the biases and mean squared errors given by

biasε(n) =
1

10000

10000∑
i=1

(ε̂i − ε),

MSEε(n) =
1

10000

10000∑
i=1

(ε̂i − ε)2,

for ε = a, α, λ.

We repeated these steps for n = 30, 31, . . . , 100 with a = 1.2, α = 2.5 and λ = 4.0, so
computing biasε(n) and MSEε(n).

Figure 5 shows how the four biases vary with respect to n. The biases for each parameter
either decrease to zero as n → ∞. The reported observations are for only one choice for
(a, α, λ), namely that (a, α, λ) = (1.2, 2.5, 4.0). But the results were similar for a wide range
of other choices for (a, α, λ). Figure 6 shows how the four mean squared errors vary with
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Figure 5: Biases of â, α̂ and λ̂ versus n.

respect to n. The mean squared errors for each parameter decrease to zero as n → ∞. In
particular, i) the biases for each parameter either decreased to zero and appeared reasonably
small at n = 100; ii) the mean squared errors for each parameter decreased to zero and
appeared reasonably small at n = 100.

6.2. Application

We illustrate the flexibility of the OLW distribution by means of a real data set. Similar
investigations could be performed for other OL-G distributions. We choose the Weibull as
baseline because of its popularity. The computations are performed using the software R
version 3.0.3 (package bbmle). The maximization follows the BFGS method with analytical
derivatives. The algorithm used to estimate the model parameters converged for all current
models.

The data set consists of 63 observations of the strengths of 1.5 cm glass fibres, originally
obtained by workers at the UK National Physical Laboratory. Unfortunately, the units of
measurement are not given in the paper. These data have also been analyzed by Bourguignon
et al. (2014). For these data, we compare the fits of the OLW distribution defined by (6),
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Figure 6: Mean squared errors of â, α̂ and λ̂ versus n.

its special Weibull model (W) and of the following distributions: the exponentiated Weibull
(EW) with pdf given by

fEW(x) = a λαλ xλ−1 (1− e−(αx)
λ
)a−1 e−(αx)

λ
,

the beta Weibull (BW) with pdf given by

fBW(x) =
1

B(a, b)
αλ xλ−1 e−(αx)

λ b
(1− e−(αx)

λ
)a−1

and the Kumaraswamy Weibull (KwW) with pdf given by

fKwW(x) = a b λαλ xλ−1 e−(αx)
λ

[1− e−(αx)
λ
]a−1

{
1−

[
1− e−(αx)

λ
]a}b−1

.

All parameters of these distribution are positive numbers. In Table 3, the MLEs and their
standard errors (SEs) (in parentheses) of the parameters from the five fitted models and the
values of the Akaike Information Criterion (AIC), Cramér-von Mises (W*) and Anderson-
Darling (A*) goodness-of-fit statistics are presented. According to the lowest values of the
AIC, W* and A* statistics, the OLW model could be chosen as the best model among the
five fitted models.
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Table 3: MLEs (SEs in parentheses) for some fitted models to the strengths data and the
AIC, W* and A* values

Model a b α λ AIC W ∗ A∗

W
- - 5.781 1.628 34.414 0.237 1.304
- - (0.576) (0.037)

EW
0.671 - 7.285 1.718 35.351 0.636 3.484

(0.249) - (1.707) (0.086)

BW
0.620 10.249 7.759 2.382 37.179 0.196 1.089

(0.248) (95.117) (2.023) (2.897)

KwW
0.606 0.214 6.908 1.337 35.252 0.161 0.908

(0.162) (0.029) (0.004) (0.003)

OLW
0.049 - 1.102 0.492 34.387 0.153 0.870

(0.087) - (0.527) (0.494)

The plots of the fitted OLW pdf and of the two better fitted pdfs are displayed in Figure 7.
The QQ plots for the fitted models are displayed in Figure 8. These plots indicate that the
OLW distribution provides a better fit to these data compared to the other models. Finally,
the proposed distribution can be considered a very competitive model to the EW distribution.
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Figure 7: Fitted densities for the strengths data
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Figure 8: QQ plots for the strengths data

7. Conclusion remarks

In this paper we propose and study a new class of distributions called the odd Lindley-
G family (OL-G). This family can extend several widely known models such as the Weibull,
Kumaraswamy, half-logistic and Burr XII distributions in order to provide more flexibility. We
investigate several of its structural properties such as an expansion for the density function and
explicit expressions for the quantile function, ordinary and incomplete moments, generating
function, Rényi entropy, reliability, order statistics and k upper record values. We estimate the
parameters using maximum likelihood and determine the observed information matrix. We
also discuss inference on the parameters based on Cramér-von Mises and Anderson-Darling
statistics. An example to real data proves empirically the importance and potentiality of the
proposed family.
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