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1. INTRODUCTION

The deep analysis of data from complex phenomena is often limited by the use of classi-
cal (probability) distributions. This motivates the developments of new distributions/
models having the ability to capture the fine features hidden behind the data. In this re-
gard, the most common approach is to use “generators of distributions” aiming to pro-
vide more flexible properties to a well-known baseline distribution. Among the most
popular generators, there are the beta generator (see Eugene et al., 2002; Jones, 2004), the
transmuted generator (see Shaw and Buckley, 2007), the Kumaraswamy generator (see
Cordeiro and de Castro, 2011), the McDonald generator (see Alexander et al., 2012),
the Kummer beta generator (see Pescim et al., 2012), the gamma generator (see Zografos
and Balakrishnan, 2009; Ristíc and Balakrishnan, 2012; Torabi and Montazari, 2012),
the log-gamma generator (see Amini et al., 2014), the logistic generator (see Torabi and
Montazari, 2014), the beta extended Weibull generator (see Cordeiro et al., 2012), the
transformed-transformer (T-X) generator (see Alzaatreh et al., 2013), the exponentiated
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T-X generator (see Alzaghal et al., 2013), the Weibull generator (see Alzaatreh et al., 2013;
Bourguignon et al., 2014), the exponentiated half-logistic generator (see Cordeiro et al.,
2014), the sine generator (see Kumar et al., 2015), the odds Burr III generator (see Jamal
et al., 2017), the cosine-sine generator (see Chesneau et al., 2018) and the generalized odds
gamma generator (see Hosseini et al., 2018).

In particular, it is demonstrated in Brito et al. (2017) that the combination of gamma
generator with the odds transformation generates very flexible distributions, with great
advantages in data analysis (providing more flexible kurtosis in comparison to the base-
line distribution, producing a skewness for symmetrical distributions, generating dis-
tributions with symmetric, left-skewed, right-skewed and reversed-J shaped . . . ). It was
recently generalized by Hosseini et al. (2018) by the consideration of a generalized odds
function, with practical benefits. The aim of this paper is to propose an interesting al-
ternative to the generator introduced by Brito et al. (2017) and Hosseini et al. (2018). It
is constructed from the generalized gamma distribution and the (standard) odds trans-
formation. It allows us to define a new family of distributions described below. Let us
recall that the probability density function (pdf) of generalized gamma distribution is
specified by

f (x;α,β,δ) =
αδαβ

Γ (β)
xαβ−1 exp[−(δx)α], x > 0,

where α > 0 and β> 0 are shape parameters and δ > 0 is a scale parameter. If we take
δ = 1, then f (x;α,β,δ) is reduced to the pdf r (x;α,β) given by

r (x;α,β) =
α

Γ (β)
xαβ−1 exp (−xα), x > 0,

where Γ (β) =
∫+∞

0 wβ−1 exp (−w)d w is the gamma function. Let us now consider
a cumulative distribution function (cdf) of a baseline distribution denoted by G(x;ξ ),
where ξ represents the related parameter vector. Then, we propose to use a general-
ized gamma generator with the standard odds transformation defined by W [G(x;ξ )] =
G(x;ξ )/[1−G(x;ξ )]. This yields the following cdf:

F (x;α,β,ξ ) =
∫ W [G(x;ξ )]

−∞
r (t ;α,β)d t =

γ
�

β,
�

G(x;ξ )
1−G(x;ξ )

�α�

Γ (β)
, x ∈R, (1)

where γ (β, x) =
∫ x

0 wβ−1 exp (−w)d w is the (lower) incomplete gamma function. By
(almost everywhere) differentiation with respect to x, the corresponding pdf is given as

f (x;α,β,ξ ) =
α

Γ (β)
g (x;ξ )Gαβ−1(x;ξ )
(1−G(x;ξ ))αβ+1

exp
�

−
�

G(x;ξ )
1−G(x;ξ )

�α�

, x ∈R. (2)
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The corresponding hazard rate function (hrf) is obtained as

h(x;α,β,ξ ) =
f (x;α,β,ξ )

1− F (x;α,β,ξ )

=
αg (x;ξ )Gαβ−1(x;ξ )

(1−G(x;ξ ))αβ+1
¦

Γ (β)− γ
�

β,
�

G(x;ξ )
1−G(x;ξ )

�α�© exp
�

−
�

G(x;ξ )
1−G(x;ξ )

�α�

,

x ∈R. (3)

For the purpose of the paper, the generator characterized by the cdf (1) is called the odds
generalized gamma generator and the corresponding family of distributions is called
odds generalized gamma G (GG-G) family of distributions. To the best of our knowl-
edge, it is new in the literature, even if connections exist with the generalized odds
gamma-G family introduced by Hosseini et al. (2018) (the families coincide by taking
α = 1 and, in the definition of the generalized odds gamma-G family, β = 1). In this
study, we show how our family is complementary on several aspects, and can be superior
in terms of goodness-of-fit in comparison to the generalized odds gamma-G family.

The rest of this paper is planned as follows. In Section 2, three special models are
given, with plots of their pdfs and hrfs illustrating their flexibility. The one using the
Fréchet distribution as baseline will be at the heart of our applied study. The main
mathematical properties of the GG-G family are studied in Section 3, including shapes
and asymptotes of the pdf and hrf, mixture representations of the pdf and cdf in terms
of functions of the baseline distribution, explicit expressions for the r th moment, r th
incomplete moment, moment generating function, mean deviations, Rényi entropy, re-
liability parameter and the pdf of the i th order statistic. The estimation of the related
parameters by the maximum likelihood method is discussed in Section 4. In Section
5, a regression model is proposed, with a simulation study. Section 6 is devoted to the
residual analysis. Applications to real life data sets are performed in Section 7.

2. SPECIAL SUB DISTRIBUTIONS

In this section, we study three special sub distributions of the GG-G family, namely
odds generalized gamma Fréchet (GGFr), odds generalized gamma Weibull (GGW) and
odds generalized gamma Lomax (GGLx) distributions.

2.1. Odds generalized gamma Fréchet distribution

Let us consider the Fréchet distribution as baseline distribution, i.e., with pdf g (x;a, b ) =
(ab b/x b+1)exp

�

−(a/x)b
�

and cdf G(x;a, b ) = exp
�

−(a/x)b
�

, where a, b , x > 0. Then,
the cdf of the GGFr distribution is given by

F (x;α,β,a, b ) =
γ
�

β,
�

exp
�

(a/x)b
�

− 1
�−α�

Γ (β)
, x > 0.
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The pdf can be expressed as

f (x;α,β,a, b ) =

αab b exp
�

−αβ (a/x)b
�

Γ (β)x b+1
¦

1− exp
�

− (a/x)b
�©αβ+1

exp
�

−
�

exp
�
� a

x

�b�

− 1
�−α�

, x > 0.

Also, the hrf is given as

h(x;α,β,a, b ) =

αab b exp
�

−αβ (a/x)b
�

x b+1
¦

1− exp
�

− (a/x)b
�©αβ+1

h

Γ (β)− γ
�

β,
�

exp
�

(a/x)b
�

− 1
�−α�i

×

exp
�

−
�

exp
�
� a

x

�b�

− 1
�−α�

, x > 0.

2.2. Odds generalized gamma Weibull distribution

Now, let us consider the gamma Weibull distribution as baseline distribution, i.e., with
pdf g (x;a, b ) = ab x b−1 exp

�

−ax b
�

and cdf G(x;a, b ) = 1−exp
�

−ax b
�

, where a, b , x >
0. Then, the cdf of the GGW distribution is defined by

F (x;α,β,a, b ) =
γ
�

β,
�

exp
�

ax b
�

− 1
�α�

Γ (β)
, x > 0.

The pdf is given by

f (x;α,β,a, b ) =
α

Γ (β)
ab x b−1

�

1− exp
�

−ax b
��αβ−1

exp
¦

aαβx b −
�

exp
�

ax b
�

− 1
�α©

, x > 0.

Also, the hrf is given as

h(x;α,β,a, b ) =

αab x b−1
�

1− exp
�

−ax b
��αβ−1

Γ (β)− γ (β, [exp (ax b )− 1]α)
exp

¦

aαβx b −
�

exp
�

ax b
�

− 1
�α©

, x > 0.

2.3. Odds generalized gamma Lomax distribution

Finally, let us chose the Lomax distribution as baseline distribution, i.e., with pdf g (x;a, b ) =
(a/b ) (1+ x/b )−a−1 and cdf G(x;a, b ) = 1− (1+ x/b )−a , where a, b , x > 0. Then, the
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cdf of the GGLx distribution is expressed as

F (x;α,β,a, b ) =
γ (β, [(1+ x/b )a − 1]α)

Γ (β)
, x > 0.
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Figure 1 – Plots of pdfs of the GGFr (a), GGW (b) and GGLx (c) distributions.
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The pdf is given as

f (x;α,β,a, b ) =

α

Γ (β)
a
b

�

1+
x
b

�aαβ−1 h

1−
�

1+
x
b

�−aiαβ−1
exp

n

−
h�

1+
x
b

�a
− 1

iαo

,

x > 0.
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Figure 2 – Plots of hrfs of the GGFr (a), GGW (b) and GGLx (c) distributions.
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Also, the hrf can be expressed as

h(x;α,β,a, b ) =

αa (1+ x/b )aαβ−1 �1− (1+ x/b )−a�αβ−1

b [Γ (β)− γ (β, [(1+ x/b )a − 1]α)]
exp

n

−
h�

1+
x
b

�a
− 1

iαo

, x > 0.

Figure 1 illustrates the pdfs of the GGFr, GGW and GGLx distributions for selected
values of the parameters. Also, Figure 2 illustrates the hrfs of the GGFr, GGW and
GGLx distributions for selected values of the parameters. Various forms of shapes are
observed, showing the great flexibility of these special sub distributions, and, a fortiori,
of the overall GG-G family.

3. MATHEMATICAL PROPERTIES

This section is devoted to some notable mathematical properties of the GG-G family of
distributions.

3.1. Characterization

Let G−1(x;ξ ) be the inverse function of G(x;ξ ) (i.e., the quantile function of the base-
line distribution), and V a random variable having the gamma distribution with param-
eters 1 and β. Then, the random variable X =G−1

�

V 1/α/(1+V 1/α);ξ
	

has the cdf of
the GG-G family.

3.2. Quantile function

Let γ−1(β, x) be the inverse function of γ (β, x). Then, after some developments, the
quantile function of the GG-G family can be expressed as

Q(y,ξ ) =G−1
�

[γ−1(β, yΓ (β))]1/α

1+[γ−1(β, yΓ (β))]1/α
,ξ
�

, y ∈ (0,1).

Among others, several descriptive parameters of the GG-G family can be defined, such
as the median defined as Med =Q(0.5,ξ ).
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3.3. Shape analysis of the crucial functions

The shapes of the pdf and the hrf of the GG-G family can be described analytically. The
critical points of the pdf f (x;α,β,ξ ) given by (2) are the roots of the following equation:

g x (x;ξ )
g (x;ξ )

+ (αβ− 1)
g (x;ξ )
G(x;ξ )

+ (αβ+ 1)
g (x;ξ )

1−G(x;ξ )

−α
�

G(x;ξ )
1−G(x;ξ )

�α−1 g (x;ξ )
{1−G(x;ξ )}2

= 0, (4)

where g x (x;ξ ) = ∂ g (x;ξ )/∂ x. The critical points of h(x;α,β,ξ ) expressed by (3) are
obtained from the following equation:

g x (x;ξ )
g (x;ξ )

+ (αβ− 1)
g (x;ξ )
G(x;ξ )

+ (αβ+ 1)
g (x;ξ )

1−G(x;ξ )

−α
�

G(x;ξ )
1−G(x;ξ )

�α−1 g (x;ξ )
{1−G(x;ξ )}2

+
αg (x;ξ )Gαβ−1(x;ξ )

(1−G(x;ξ ))αβ+1
¦

Γ (β)− γ
�

β,
�

G(x;ξ )
1−G(x;ξ )

�α�© exp
�

−
�

G(x;ξ )
1−G(x;ξ )

�α�

= 0. (5)

By using most of the symbolic computation software platforms, we can examine the
equations (4) and (5) to determine the local maxima and minima and inflexion points.

3.4. Mixture representation

Here, we plan to give the mixture representations of the pdf and cdf of the GG-G family
in terms of functions of the exp-G family, which will be useful for the derivation of
further properties.

First of all, let us recall that the exponential series expansion is formulated as, for
any x ∈R,

exp (−ax) =
+∞
∑

i=0

(−1)i a i

i !
x i . (6)

On the other side, the generalized binomial series expansion is given by, for any x such
that |x|< 1,

(1− x)b =
+∞
∑

j=0

�

b
j

�

(−1) j x j , (7)

where
�b

j

�

= b (b − 1) . . . (b − j + 1)/( j !). These two formulas will be useful in our
mathematical developments. Using the series (6) and (7), the pdf f (x;α,β,ξ ) given by
(2) becomes
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f (x;α,β,ξ ) =
+∞
∑

i , j=0

ui , j g (x;ξ )Gα(β+i)+ j−1(x;ξ ),

with ui , j =
α
Γ (β)

�−α(β+i)−1
j

� (−1)i+ j

i ! . Now, by writing

Gα(β+i)+ j−1(x;ξ ) = [1− (1−G(x;ξ ))]α(β+i)+ j−1,

we get

f (x;α,β,ξ ) =
+∞
∑

i , j ,m=0

+∞
∑

`=m

wi , j ,`,m g (x;ξ )Gm(x;ξ ),

where wi , j ,`,m = ui , j

�α(β+i)+ j−1
`

�� `
m

�

(−1)`+m . Rewriting the above expression, we arrive
at

f (x;α,β,ξ ) =
+∞
∑

m=0

am hm+1(x;ξ ), (8)

where

am =
α

Γ (β)
(−1)m

m+ 1

+∞
∑

i , j=0

+∞
∑

`=m

�

−α(β+ i)− 1
j

��

α(β+ i)+ j − 1
`

��

`

m

�

(−1)i+ j+`

i !
(9)

and hm+1(x;ξ ) = (m+ 1)g (x;ξ )Gm(x;ξ ).
Moreover, by integrating this equation with respect to x, the cdf of the GG-G family

can be expressed as

F (x;α,β,ξ ) =
+∞
∑

m=0

am Hm+1(x;ξ ), (10)

where Hm+1(x;ξ ) =Gm+1(x;ξ ). The expression in (8) and (10) are the infinite mixtures
representation of the pdf of the GG-G family in terms of functions (pdf and cdf) of the
exp-G family.

In the context of the GGFr distribution: We can express f (x;α,β,ξ ) as (8) with
hm+1(x;ξ ) = (m+ 1)(ab b/x b+1)exp

�

−(m+ 1) (a/x)b
�

, ξ = (a, b ), x,a, b > 0.

3.5. Moments and moment generating function

Now, we give the explicit expression for the r th moment, r th incomplete moment,
moment generating function and mean deviation about the mean.
The r th moment of the GG-G family can be obtained by using following formula

µ′r =
∫ +∞

−∞
x r f (x;α,β,ξ )d x,
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where f (x;α,β,ξ ) is given by (2). Assuming that the sum and integral are interchange-
able, it follows from the infinite mixture representation expressed in (8) that

µ′r =
+∞
∑

m=0

amτ
r
m ,

where

τ r
m =

∫ +∞

−∞
x r hm+1(x;ξ )d x. (11)

In the context of the GGFr distribution: One can show that, for r < b , we have
τ r

m = (m+ 1)r/b a r Γ (1− r/b ).
Similarly, the r th incomplete moment of the GG-G family can be expressed as

T r (x;α,β,ξ ) =
+∞
∑

m=0

am∆
r
m(x;ξ ),

where

∆r
m(x;ξ ) =

∫ x

−∞
t r hm+1(t ;ξ )d t . (12)

In the context of the GGFr distribution: One can show that, for r < b , we have
∆r

m(x;ξ ) = (m+ 1)r/b a r Γ
�

1− r/b , (m+ 1)ab x−b
�

, ξ = (a, b ), a, b > 0, where Γ (s , x)
denotes the upper incomplete gamma function defined by Γ (s , x) =

∫+∞
x t s−1e−t d t ,

s , x > 0.
The mean deviation about the mean of the GG-G family is given by

D1 = 2µ′1F (µ′1;α,β,ξ )− 2T 1(µ′1;α,β,ξ )

and the mean deviation about the median of the GG-G family is given as

D2 =µ
′
1F (µ′1;α,β,ξ )− 2T 1(Med ;α,β,ξ ).

The moment generating function of the GG-G family is

M0(t ;α,β,ξ ) =
+∞
∑

m=0

am Mx (t ;ξ ),

where

Mx (t ;ξ ) =
∫ +∞

−∞
exp(t x)hm+1(x;ξ )d x. (13)

Note that the integrals in (11), (12) and (13) only depend on the choice of baseline
distribution.
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3.6. Reliability parameter

In the context of reliability, the stress-strength model defines the life of an element which
has a random strength X1 that is subjected to an accidental stress X2. The component
fails at the instant that the stress applied to it exceeds the strength, and the component
will work suitably whenever X1 > X2. Hence, by modeling X1 and X2 as random vari-
ables, the probability R = P (X2 < X1) is a measure of components reliability. It has
many applications, especially in the area of reliability and engineering. In what follows,
we derive the reliability R when X1 and X2 are independent and belongs to the GG-G
family with pdf f (x;α1,β1,ξ ) for X1 and with cdf F (x;α2,β2,ξ ) for X2 (note that they
have the same baseline parameter(s) ξ ). From (1) and (2), we can write

R=
∫ +∞

−∞
f (x;α1,β1,ξ )F (x;α2,β2,ξ )d x.

Using the mixture representations of the pdf and cdf provided in (8) and (10), respec-
tively, we have

R=
+∞
∑

m=0

+∞
∑

k=0

a(1)m a(2)k

∫ +∞

−∞
hm+1(x;ξ )Hk+1(x;ξ )d x,

where a(1)m and a(2)k are defined by (9) with (α1,β1) and (α2,β2) instead of (α,β), respec-
tively.

Since hm+1(x;ξ )Hk+1(x;ξ ) = (m+ 1)g (x;ξ )Gm+k+1(x;ξ ), we have

R=
+∞
∑

m=0

+∞
∑

k=0

a(1)m a(2)k (m+ 1)
∫ +∞

−∞
g (x;ξ )Gm+k+1(x;ξ )d x

=
+∞
∑

m=0

+∞
∑

k=0

a(1)m a(2)k

m+ 1
m+ k + 2

.

Let us observe that, under the above setting, R does not depend on the choice of baseline
distribution.

3.7. Entropies

Let δ > 0 with δ 6= 1. Then, the Réyni entropy of the GG-G family is defined by

Iδ =
1

1−δ
log

�∫ +∞

−∞
f δ (x;α,β,ξ )d x

�

. (14)

Using (6) and (7), we have

f δ (x;α,β,ξ ) =
�

α

Γ (β)

�δ +∞
∑

i , j=0

ui , j ,δ gδ (x;ξ )G j+δ(αβ−1)+αi (x;ξ ),
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where ui , j ,δ =
�−αi−δ(αβ+1)

j

� (−1)i+1δ i

i ! . Now (14) becomes

Iδ =
1

1−δ

§

δ logα−δ logΓ (β)+

log
� +∞
∑

i , j=0

ui , j ,δ

∫ +∞

−∞
gδ (x;ξ )G j+δ(αβ−1)+αi (x;ξ )d x

�ª

.

We observe that Iδ depends only for any choice of baseline distribution.
The δ-entropy (or Tsallis entropy) is defined by

Hδ =
1

δ − 1

�

1−
∫ +∞

−∞
f δ (x;α,β,ξ )d x

�

.

So, we have

Hδ =
1

δ − 1



1−
�

α

Γ (β)

�δ +∞
∑

i , j=0

ui , j ,δ

∫ +∞

−∞
gδ (x;ξ )G j+δ(αβ−1)+αi (x;ξ )d x



 .

Finally, the Shannon entropy of the GG-G family is defined by
S = −

∫+∞
−∞ log[ f (x;α,β,ξ )] f (x;α,β,ξ )d x. It is in fact a particular case of the

Rényi entropy, obtained when δ tends to 1+.

3.8. Order statistics

Let X1, . . . ,Xn be independent and identically distributed random variables with com-
mon pdf given by (2). Then, by applying the well-know theory on order statistics, the
pdf of the i th order statistic is specified as

fi :n(x;α,β,ξ ) =
n!

(i − 1)!(n− i)!
f (x;α,β,ξ )F i−1(x;α,β,ξ ) [1− F (x;α,β,ξ )]n−i .

Using the series expansion in (7), we have

fi :n(x;α,β,ξ ) =

n!
(i − 1)!(n− i)!

n−i
∑

j=0

�

n− i
j

�

(−1) j f (x;α,β,ξ )F j+i−1(x;α,β,ξ ). (15)

By the infinite mixture representation in (8) and (10), an alternative expression is

fi :n(x;α,β,ξ ) =

n!
(i − 1)!(n− i)!

n−i
∑

j=0

�

n− i
j

�

(−1) j
+∞
∑

m=0

am hm+1(x;ξ )
�

+∞
∑

k=0

ak Hk+1(x;ξ )
� j+i−1

. (16)
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Using a general result of power series raised to a positive power (see Gradshteyn and
Ryzhik, 2000), we get

�

+∞
∑

k=0

ck xk

�n

=
+∞
∑

k=0

dk xk ,

where d0 = c n
0 and dm = [1/(mc0)]

m
∑

k=1
(k(n+ 1)−m)ck dm−k for m ≥ 1. Therefore,

�

+∞
∑

k=0

ak Hk+1(x;ξ )
� j+i−1

=G j+i−1(x;ξ )
+∞
∑

k=0

dk Gk (x;ξ ),

with d0 = a j+i−1
0 and dm = [1/(ma0)]

m
∑

k=1
(k( j + i)−m)ak dm−k for m ≥ 1. Now, (16)

becomes

fi :n(x;α,β,ξ ) =

n!
(i − 1)!(n− i)!

n−i
∑

j=0

�

n− i
j

�

(−1) j
+∞
∑

m=0

+∞
∑

k=0

dk am(m+ 1)g (x;ξ )Gm+ j+i+k−1(x;ξ ).

From this expression, several mathematical properties can be obtained, as moments,
moment generating function, various entropies. . . .

In the context of the GGFr distribution: One can observe that

g (x;ξ )Gm+ j+i+k−1(x;ξ ) =
ab b
x b+1

exp
�

−(m+ j + i + k)
� a

x

�b�

=
1

m+ j + i + k
um+ j+i+k (x),

where um+ j+i+k (x) denotes the pdf of the Fréchet distribution with parameters (m +
j + i + k)1/b a and b . So, the pdf of the i th order statistic of the GGFr distribution can
be expressed as a linear combination of Fréchet pdfs.

4. ESTIMATION OF THE GG-G FAMILY PARAMETERS

Let x1, . . . , x2 be independent observations of a random variable with the pdf given by (2)
and vector of parametersΘ = [α,β,ξ ]T . The log-likelihood function forΘ is expressed
as

`(Θ) = n logα− n logΓ (β)+
n
∑

i=1

log g (xi ,ξ )+ (αβ− 1)
n
∑

i=1

logG(xi ,ξ )

− (αβ+ 1)
n
∑

i=1

log(1−G(xi ;ξ ))−
n
∑

i=1

�

G(xi ,ξ )
1−G(xi ;ξ )

�α

.
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The components of score vector Θ = [α,β,ξ ]T are given by

Uα =
n
α
+β

n
∑

i=1

logG(xi ,ξ )−β
n
∑

i=1

log(1−G(xi ;ξ ))

−
n
∑

i=1

�

G(xi ,ξ )
1−G(xi ;ξ )

�α

log
�

G(xi ,ξ )
1−G(xi ;ξ )

�

,

Uβ =−n
d

dβ
logΓ (β)+α

n
∑

i=1

logG(xi ,ξ )−α
n
∑

i=1

log(1−G(xi ;ξ )),

Uξ =
n
∑

i=1

g ξ (xi ,ξ )
g (xi ,ξ )

+ (αβ− 1)
n
∑

i=1

Gξ (xi ,ξ )
G(xi ,ξ )

+ (αβ+ 1)
n
∑

i=1

Gξ (xi ,ξ )
1−G(xi ,ξ )

−α
n
∑

i=1

�

G(xi ,ξ )
1−G(xi ,ξ )

�α−1 Gξ (xi ,ξ )
{1−G(xi ,ξ )}2

,

where Gξ (xi ,ξ ) = ∂ G(xi ,ξ )/∂ ξ and g ξ (xi ,ξ ) = ∂ g (xi ,ξ )/∂ ξ . Since these equa-
tions are nonlinear according to the parameters and of complex nature, they can not
be solved analytically but can be solved numerically by any software like R-language or
Mathematica.

5. LOG-GENERALIZED GAMMA FRÉCHET

In many applied areas, the lifetimes are affected by explanatory variables such as the
cholesterol level, blood sugar, gender and many other explanatory variables. Paramet-
ric survival models to estimate the survival functions for censored data are widely used.
For instance, recently Lanjoni et al. (2016) defined the extended Burr XII regression
model and Prataviera et al. (2018) proposed the heteroscedastic odds log-logistic gener-
alized gamma regression model for censored data. Thus, by using the same approach of
these papers, a distribution obtained from the log-generalized gamma Fréchet (LGGFr)
distribution will be expressed in the form of the class of location-scale models with two
additional parameters to the shape. In this way, we propose a model of regression loca-
tion, scale and shape.

Let X be a random variable following the Fréchet distribution with parameters 1
and 1. Then, the random variable Y = σ log(X )+µ has the following cdf and pdf:

G(y;µ,σ) = exp
�

−exp
�

−
�

y −µ
σ

���

and

g (y;µ,σ) =
1
σ

exp
�

−
�

y −µ
σ

�

− exp
�

−
�

y −µ
σ

���

,
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respectively, and the pdf specified in (2) becomes

f (y;α,β,µ,σ) =

α

Γ (β)
g (y;µ,σ)Gαβ−1(y;µ,σ)
(1−G(y;µ,σ))αβ+1

exp
�

−
�

G(y;µ,σ)
1−G(y;µ,σ)

�α�

, (17)

where y,µ ∈ R and σ > 0, µ is the location parameter, σ is the scale parameter and α
and β are shape parameters. Thus, if X ∼GGFr(1,1,α,β) we set Y = σ log(X ) +µ∼
LGGFr(µ,σ ,α,β). Also, if Y ∼ LGGFr(µ,σ ,α,β), by putting

G(z) = exp{−exp{−z}} , g (z) = exp{−z − exp{−z}} .

the pdf of the random variable Z = (Y −µ)/σ becomes

f (z;α,β) =
α

Γ (β)
g (z)Gαβ−1(z)
(1−G(z))αβ+1

exp
�

−
�

G(z)
1−G(z)

�α�

. (18)

In this case, we write Z ∼ LGGFr(0,1,α,β).
In order to introduce a regression structure in the class of models (18), we assume

that the parameters µi , σi , αi and βi vary across observations through the following
structure:

yi =µi +σi zi , i = 1, . . . , n, (19)

where the random error zi has the pdf given by (18), µi and σi are parameterized as

µi =µi (θ1), σi = σi (θ2), αi = αi (θ3), βi =βi (θ4),

whereθ1 = (θ11, . . . ,θ1 p1
)T , θ2 = (θ21, . . . ,θ2 p2

)T , θ3 = (θ31, . . . ,θ3 p3
)T andθ4 = (θ41, . . . ,

θ4 p4
)T . The usual systematic component for the location parameter is µi = xT

i θ1,
where xT

i = (xi1, . . . , xi p1
) is a vector of known explanatory variables, i.e., µ = Xθ1,

and µ = (µ1, . . . ,µn)
T , X = (x1, . . . ,xn)

T is a specified n × p1 matrix of full rank with
p1 < n. Analogously, we consider the systematic component g (σi ) = ηi = vT

i θ2 for the
dispersion parameter, where g (·) is the dispersion link function, and vT

i = (vi1, . . . , vi p2
)

is a vector of known explanatory variables. We have g (σ) = η = Vθ2, where σ =
(σ1, . . . ,σn)

T , η = (η1, . . . ,ηn)
T and V = (v1, . . . ,vn)

T is a specified n × p2 matrix of
full rank with p2 < n. For αi and βi , we consider the systematic component analo-
gous. We have g (α) = δ =Wθ3, where α = (α1, . . . ,αn)

T , δ = (δ1, . . . ,δn)
T and W =

(w1, . . . ,wn)
T is a specified n× p3 matrix of full rank with p3 < n and g (β) = λ= Sθ2,

where β = (β1, . . . ,βn)
T , λ = (λ1, . . . ,λn)

T and S = (s1, . . . , sn)
T is a specified n × p4

matrix of full rank with p4 < n. It is assumed that θ1, θ2, θ3 and θ4 are functionally
independent and that g (·) is a known one-to-one continuously twice differentiable func-
tion.
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5.1. Maximum likelihood estimation

Consider a sample (y1,x1,v1,w1, s1), · · · , (yn ,xn ,vn ,wn , sn) of n independent observa-
tions, where each random response is defined by yi = min{log(xi ), log(ci )}. Here, the
xi ’s are the failure times and the ci ’s are the censored times. We assume non-informative
censoring such that the observed lifetimes and censoring times are independent. Let
F and C be the sets of individuals for which yi is the log-lifetime or log-censoring, re-
spectively. Then, we can apply conventional likelihood estimation techniques to esti-
mate the model parameters. The log-likelihood function for the vector of parameters
φ = (βT

1 ,βT
2 ,βT

3 ,βT
4 )

T from model (19) has the form l (φ) =
∑

i∈F
li (φ) +

∑

i∈C
l (c)i (φ),

where li (φ) = log[ f (yi )], l (c)i (φ) = log[S(yi )], f (yi ) is the pdf specified by (17) and
S(yi ) is the corresponding survival function, respectively. The maximum likelihood es-
timate (MLE) bφ of the vector of model parameters can be computed by maximizing the
log-likelihood l (φ).

The asymptotic distribution of (bφ−φ) is, under standard regularity conditions, mul-
tivariate normal Np1+p2+p3+p4

(0,K(φ)−1), where K(φ) is the total expected information

matrix. The asymptotic covariance matrix K(φ)−1 of bφ can be approximated by the
inverse of the (p1 + p2 + p3 + p4)× (p1 + p2 + p3 + p4) observed information matrix
−L̈(φ). The elements of −L̈(φ) can be evaluated numerically. The approximate multi-
variate normal distribution Np1+p2+p3+p4

(0,−L̈(φ)−1) for bφ can be used in the classical
way to construct approximate confidence intervals for the components of φ.

5.2. Simulation study

We now perform a Monte Carlo simulation study to assess the finite sample behavior
of the MLEs. The results are obtained from 1000 Monte Carlo simulations performed
using the R software. In each replication, a random sample of size n is drawn from the
LGGFr(θ1,θ2,θ3,θ4)model and the parameters are estimated by maximum likelihood.
The log-lifetimes denoted by log(x1), · · · , log(xn) are generated from the LGGFr regres-
sion model (19), where µi = θ10+θ11xi , σi = exp(θ20+θ21xi ), αi = exp(θ30+θ31xi ),
βi = exp(θ40+θ41xi ) and xi is generated from a normal distribution N (0,0.65). Thus,
we consider for the simulations with sample sizes n = 100, n = 350 and n = 850, and
censoring percentages approximately equal to 0%, 10% and 20%. The values consid-
ered for the parameters are θ10 = 5.6350, θ11 = 0.4948, θ20 = 0.1688, θ21 = 0.5219,
θ30 = −0.5805, θ31 = 0.0313, θ40 = −2.6156 and θ41 = 3.2250. The survival times are
generated considering the random censoring mechanism as follows.

• Generate xi ∼Normal(1,0.65).

• Generate c ∼ Uniform(0,τ), where τ denotes the proportion of censored obser-
vations.
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• Generate z ∼ LGGFr(0,1,αi ,αi ), the values from the pdf given by (18).

• Write y∗ =µi xi +σi z.

• Set y =min(y∗, c).

• Create a vector κ of dimension n which receives 1’s if (y∗ <= c) and zero other-
wise.

TABLE 1
Simulations for the LGGFr regression model for the parameters values θ10 = 5.6350, θ11 = 0.4948,
θ20 = 0.1688, θ21 = 0.5219, θ30 =−0.5805, θ31 = 0.0313, θ40 =−2.6156 and θ41 = 3.2250 for 0%

censored.

n θ AE Bias MSE
θ10 5.648 0.013 0.119
θ11 0.484 -0.010 0.064
θ20 0.121 -0.047 0.015

100 θ21 0.529 0.007 0.007
θ30 -0.698 -0.117 0.101
θ31 0.109 0.078 0.142
θ40 -2.630 -0.014 0.090
θ41 3.249 0.024 0.111
θ10 5.658 0.023 0.015
θ11 0.479 -0.015 0.009
θ20 0.155 -0.013 0.002

350 θ21 0.528 0.006 0.000
θ30 -0.631 -0.051 0.019
θ31 0.072 0.041 0.024
θ40 -2.610 0.005 0.017
θ41 3.223 -0.001 0.016
θ10 5.647 0.012 0.003
θ11 0.486 -0.008 0.002
θ20 0.162 -0.006 0.000

850 θ21 0.526 0.004 0.000
θ30 -0.611 -0.031 0.005
θ31 0.059 0.027 0.006
θ40 -2.608 0.007 0.004
θ41 3.216 -0.008 0.004
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TABLE 2
Simulations for the LGGFr regression model for the parameters values θ10 = 5.6350, θ11 = 0.4948,
θ20 = 0.1688, θ21 = 0.5219, θ30 =−0.5805, θ31 = 0.0313, θ40 =−2.6156 and θ41 = 3.2250 for 10%

censored.

n θ AE Bias MSE
θ10 5.661 0.026 0.142
θ11 0.468 -0.026 0.068
θ20 0.120 -0.048 0.016

100 θ21 0.536 0.014 0.008
θ30 -0.681 -0.101 0.103
θ31 0.086 0.054 0.178
θ40 -2.666 -0.050 0.115
θ41 3.295 0.070 0.148
θ10 5.662 0.027 0.017
θ11 0.477 -0.017 0.010
θ20 0.155 -0.013 0.002

350 θ21 0.528 0.006 0.000
θ30 -0.612 -0.031 0.018
θ31 0.049 0.018 0.023
θ40 -2.632 -0.016 0.020
θ41 3.243 0.018 0.019
θ10 5.652 0.017 0.004
θ11 0.484 -0.010 0.002
θ20 0.160 -0.008 0.000

850 θ21 0.526 0.004 0.000
θ30 -0.601 -0.021 0.005
θ31 0.047 0.016 0.006
θ40 -2.625 -0.010 0.005
θ41 3.231 0.006 0.005
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TABLE 3
Simulations for the LGGFr regression model for the parameters values θ10 = 5.6350, θ11 = 0.4948,
θ20 = 0.1688, θ21 = 0.5219, θ30 =−0.5805, θ31 = 0.0313, θ40 =−2.6156 and θ41 = 3.2250 for 20%

censored.

n θ AE Bias MSE
θ10 5.704 0.069 0.126
θ11 0.443 -0.050 0.066
θ20 0.125 -0.043 0.015

100 θ21 0.538 0.016 0.009
θ30 -0.660 -0.079 0.111
θ31 0.029 -0.001 0.187
θ40 -2.700 -0.084 0.155
θ41 3.355 -0.084 0.181
θ10 5.674 0.039 0.022
θ11 0.470 -0.024 0.012
θ20 0.155 -0.013 0.002

350 θ21 0.530 0.008 0.001
θ30 -0.607 -0.027 0.020
θ31 0.036 0.005 0.027
θ40 -2.647 -0.032 0.025
θ41 3.264 0.039 0.026
θ10 5.657 0.022 0.005
θ11 0.481 -0.013 0.003
θ20 0.159 -0.008 0.001

850 θ21 0.527 0.005 0.000
θ30 -0.596 -0.015 0.005
θ31 0.037 0.006 0.008
θ40 -2.634 -0.018 0.008
θ41 3.242 0.017 0.008
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We fit the LGGFr regression model (19) to each generated data set, where µi =
θ10+θ11xi , σi = exp(θ20+θ21xi ), αi = exp(θ30+θ31xi ) andβi = exp(θ40+θ41xi ). From
the simulations reported in Tables 1, 2 and 3, we can verify that the mean squared errors
(MSEs) and bias of the MLEs of θ10, θ11, θ20, θ21, θ30, θ31, θ40 and θ41 decay toward
zero when the sample size increases, as usually expected under first-order asymptotic
theory. The mean estimates of the parameters tend to be closer to the true parameter
values when the sample size n increases. This fact supports that the asymptotic normal
distribution provides an adequate approximation to the finite sample distribution of the
estimates.

6. RESIDUAL ANALYSIS

The objective of the analysis of the residuals is to verify the adequacy of the model for
a given data set, which includes the investigation of intrinsic characteristics in the data.
In order to check some of these characteristics, for example, outliers, several approaches
have been proposed by Cox and Snell (1968); Cook and Weisberg (1982); Ortega et al.
(2008); Silva et al. (2011). In the context of survival analysis, the deviance residuals have
been more widely used because they take into account the information of censored times
(Silva et al., 2011). Thus, the plot of the deviance residuals versus the observed times pro-
vides a way to test the adequacy of the fitted model and to detect atypical observations.

If the model is appropriate, the martingale and modified deviance residuals must
present a random behavior around zero. The plots of the residuals, martingale or mod-
ified deviance residuals versus the adjusted values provide a simple way to verify the
adequacy of the model and to detect outliers. Atkinson (1985) suggested the construc-
tion of envelopes to enable better interpretation of the normal probability plot of the
residuals. These envelopes are simulated confidence bands that contain the residuals,
such that if the model is well-fitted, the majority of points will be within these bands
and randomly distributed.

We perform a simulation study to assess the accuracy of the MLEs of the param-
eters in the LGGFr regression model with censored data, and also to investigate the
behavior of the empirical distribution of the martingale and deviance residuals. For
the simulation study, we generate independent observations z1, · · · , zn from the LGGFr
distribution defined by (18).

So, 1000 samples are generated for each scenario presented in Subsection 5.2 as well
as the algorithm for generating the survival times considering censored.

In Figures 3, 4, and 5, we display the plots of the residuals versus the expected val-
ues of the order statistics of the standard normal distribution for different sample sizes.
These plots are known as the normal probability plots and serve to assess the depar-
ture from the normality assumption of the residuals (Weisberg, 2005). Therefore, the
following interpretation is obtained from these plots: the empirical distribution of the
deviance residuals agrees with the standard normal distribution when the sample size
increases.
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Figure 3 – Normal probability plots for the deviance residuals with sample size n = 100 for cen-
sored percentages of (a) 0% (b) 10% and (c) 20%).
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Figure 4 – Normal probability plots for the deviance residuals with ample size n = 350 for censored
percentages of (a) 0%, (b) 10% and (c) 20%).
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Figure 5 – Normal probability plots for the deviance residuals with sample size n = 850 for cen-
sored percentages of (0%, 10% and 20%).
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7. DATA ANALYSIS

In this section, several concrete applications of the above methodology are discussed.

7.1. Analysis of three data sets

Here, we present three applications to real data to illustrate the potentiality of the GG-
G family. To evaluate its performance, we consider its sub model generalized gamma
Fréchet (GGFr) and the other competitive models presented in Table 4.

TABLE 4
The competitive models of the GGFr distributions.

Distribution Author(s)
Generalized odds gamma-Fréchet (GOFr) (Hosseini et al., 2018)
Log-gamma generated Fréchet (LGFr) (Amini et al., 2014)
Kumaraswamy Fréchet (KwFr) (Mead and Abd-Eltawab, 2014)
Beta Fréchet (BFr) (Nadarajah and Gupta, 2004)
Exponentiated Fréchet (EFr) (Nadarajah and Kotz, 2003)

We consider the −b` (where b` denotes the maximized log-likelihood), AIC (Akaike
information criterion), BIC (Bayesian information criterion), CVM (Cramér-Von Mises),
AD (Anderson-Darling) and KS (Kolmogorov Smirnov) with its p-value (PV) statistics
to compare the fitted distributions. The numerical results appearing in this section are
obtained using R.

The first data set (Data Set 1) is from Xu et al. (2003) and it represents the time to
failure (103 h) of turbocharger of one type of engine, recently used by Alzaatreh et al.
(2015). The time to failure of turbocharger data (n = 40) are:
1.6 3.5 4.8 5.4 6.0 6.5 7.0 7.3 7.7 8.0 8.4 2.0 3.9 5.0 5.6 6.1 6.5 7.1 7.3 7.8 8.1 8.4 2.6 4.5
5.1 5.8 6.3 6.7 7.3 7.7 7.9 8.3 8.5 3.0 4.6 5.3 6.0 8.7 8.8 9.0.

The second data set (Data Set 2) was obtained in Proschan (2000) and corresponds to
the time of successive failures of the air conditioning system of jet airplanes. These data
were also studied by Dahiya and Gurland (1972); Gupta and Kundu (2001); Kus (2007);
Andrade et al. (2017), among others. The data are:
194, 413, 90, 74, 55, 23, 97, 50, 359,50, 130, 487, 102, 15, 14, 10, 57, 320, 261, 51, 44, 9,
254, 493, 18, 209, 41, 58, 60, 48, 56, 87, 11, 102, 12, 5, 100, 14,29, 37, 186, 29, 104, 7, 4,
72, 270, 283, 7, 57, 33, 100, 61, 502, 220, 120, 141, 22, 603, 35, 98, 54, 181, 65, 49, 12,
239,14, 18, 39, 3, 12, 5, 32, 9, 14, 70, 47, 62, 142, 3, 104, 85, 67, 169, 24, 21, 246, 47, 68,
15, 2, 91, 59, 447, 56, 29, 176, 225,77, 197, 438, 43, 134, 184, 20, 386, 182, 71, 80, 188,
230, 152, 36, 79, 59, 33, 246, 1, 79, 3, 27, 201, 84, 27, 21, 16, 88, 130, 14, 118, 44, 15, 42,
106, 46, 230, 59, 153, 104, 20, 206, 5, 66, 34, 29, 26, 35, 5, 82, 5, 61, 31, 118, 326, 12, 54,
36, 34, 18, 25, 120, 31, 22, 18, 156, 11, 216, 139, 67, 310, 3, 46, 210, 57, 76, 14, 111, 97,
62, 26, 71, 39, 30, 7, 44, 11, 63,23, 22, 23, 14, 18, 13, 34, 62, 11, 191, 14, 16, 18, 130, 90,
163, 208, 1, 24, 70, 16, 101, 52, 208, 95.
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The third data set (Data Set 3) represents the annual maximum temperatures at Ox-
ford and Worthing in England for the period of 1901-1980. Chandler and Bate (2007)
used the generalized extreme value distribution to model the annual maximum tem-
peratures. Recently study this data by Alzaatreh et al. (2015). The annual maximum
temperatures data (n = 80) are:
75, 92, 87, 86, 85, 95, 84, 87,86 ,82, 77, 89, 79, 83, 79, 85, 89, 84, 84, 82, 86, 81, 84, 84, 87,
89, 80, 86, 85, 84, 89, 80, 87, 84, 85, 82, 86, 87, 86, 89, 90, 90, 91, 81, 85 ,79, 83, 93, 87,
83, 88, 90, 83, 82, 80, 81 ,95 ,89, 86, 89, 87, 92, 89, 87, 87, 83, 89 ,88, 84, 84, 77, 85, 77,
91, 94, 80, 80, 85, 83, 88.

The MLEs and their corresponding standard errors (SEs) (in parentheses) are listed
in Tables 5, 6 and 7 for Data Sets 1, 2 and 3, respectively. Tables 8, 9 and 10 provide the
values of goodness-of-fit measures for the GGFr model and other fitted models, for Data
Sets 1, 2 and 3, respectively.

TABLE 5
MLEs and SEs (in parentheses) for Data Set 1.

Model Estimate (SE)
GGFr 39.982 0.055 5.431 0.728
(α,β,a, b ) (35.482) (0.050) (1.802) (0.472)
GOFr 13.077 4.691 0.173 1.174
(α,β,a, b ) (14.145) (3.416) (0.850) (0.363)
LGFr 0.283 135.081 41.751 1.041
(α,β,a, b ) (0.106) (78.313) (0.075) (0.091)
KwFr 5.223 554.611 9.882 0.501
(a, b ,λ,α) (36.851) (222.077) (138.846) (0.092)
BFr 71.150 259.174 74.974 0.168
(a, b ,λ,α) (2.113) (111.212) (38.170) (0.032)
EFr 1.610 1.944 7.929
(a, b ,λ) (0.167) (0.203) (3.314)

From these tables, we see that the GGFr model has the smallest−ˆ̀, AIC, BIC, CVM,
AD, and KS, and the largest PV, indicating that it gives the best fit for the data in com-
parison to the other considered models.

Some plots of the fitted pdfs and cdfs are displayed in Figures 6, 7 and 8 for Data Sets
1, 2 and 3, respectively. These figures illustrate the nice fits of the GGFr model.
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TABLE 6
MLEs and SEs (in parentheses) for Data Set 2.

Model Estimate (SE)
GGFr 1.915 0.687 50.909 0.391
(α,β,a, b ) (0.483) (0.571) (46.144) (0.118)
GOFr 10.211 2.805 0.019 0.430
(α,β,a, b ) (0.483) (0.571) (46.144) (0.118)
LGFr 74.854 165.083 57.952 0.072
(α,β,a, b ) (86.451) (162.393) (29.028) (0.035)
KwFr 7.972 152.567 5.823 0.175
(a, b ,λ,α) (2.571) (170.432) (9.582) (0.036)
BFr 123.682 219.123 69.697 0.056
(a, b ,λ,α) (127.197) (204.188) (11.232) (0.031)
EFr 3.993 0.736 3.968
(a, b ,λ) (21.510) (0.034) (4.465)

TABLE 7
MLEs and SEs (in parentheses) for Data Set 3.

Model Estimate (SE)
GGFr 18.283 14.332 9.771 0.217
(α,β,a, b ) (11.781) (13.266) (5.168) (0.033)
GOFr 40.211 34.297 10.159 3.399
(α,β,a, b ) (16.439) (20.855) (11.503) (0.121)
LGFr 85.658 111.073 69.356 2.303
(α,β,a, b ) (3.121) (119.737) (12.213) (2.261)
KwFr 0.614 35.567 117.481 5.827
(a, b ,λ,α) (6.930) (16.538) (28.753) (2.707)
BFr 123.432 239.655 90.138 1.357
(a, b ,λ,α) (1.234) (146.649) (21.323) (1.666)
EFr 69.090 19.850 38.968
(a, b ,λ) (38.881) (1.590) (8.535)

TABLE 8
Goodness-of-fit measures for Data Set 1.

Model −b` AIC BIC CVM AD KS PV
GGFr 77.686 163.372 170.127 0.014 0.112 0.062 0.997
GOFr 87.878 183.757 190.513 0.220 1.446 0.135 0.456
LGFr 85.802 179.605 186.361 0.165 1.136 0.143 0.383
KwFr 86.150 180.301 187.056 0.171 1.161 0.121 0.592
BFr 91.265 190.531 197.287 0.316 1.981 0.152 0.310
EFr 101.591 209.183 214.250 0.606 3.479 0.243 0.017
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TABLE 9
Goodness-of-fit measures for Data Set 2.

Model −b` AIC BIC CVM AD KS PV
GGFr 1174.049 2352.098 2339.543 0.029 0.226 0.034 0.957
GOFr 1175.010 2358.021 2371.466 0.033 0.271 0.035 0.946
LGFr 1180.145 2368.289 2381.735 0.120 0.858 0.058 0.462
KwFr 1174.790 2357.581 2371.026 0.030 0.246 0.038 0.917
BFr 1179.905 2367.809 2381.254 0.115 0.828 0.057 0.487
EFr 1210.316 2426.632 2436.716 0.711 4.575 0.102 0.022

TABLE 10
Goodness-of-fit measures for Data Set 3.

Model −b` AIC BIC CVM AD KS PV
GGFr 229.103 465.205 474.734 0.048 0.304 0.062 0.899
GOFr 229.055 466.110 475.638 0.050 0.305 0.064 0.897
LGFr 229.477 466.954 476.482 0.066 0.392 0.079 0.685
KwFr 229.037 466.074 475.602 0.049 0.305 0.068 0.819
BFr 229.353 466.707 476.236 0.062 0.369 0.077 0.726
EFr 236.719 479.438 486.584 0.252 1.509 0.134 0.112
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Figure 6 – Plots of (a) estimated pdfs and (b) estimated cdfs for Data Set 1.
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Figure 7 – Plots of (a) estimated pdfs and (b) estimated cdfs for Data Set 2.
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Figure 8 – Plots of (a) estimated pdfs and (b) estimated cdfs for Data Set 3.
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7.2. Regression model for turbine data

In this application, we use a real data set available in the book of Lawless (2003, page 262,
Table 5.9) to study the LGGFr regression model. This data set presents an experiment
designed to compare the performances of high-speed turbine engine bearings made out
of five different compounds (McCool, 1979). The model parameters are estimated by the
use of the package GAMLSS in R. The experiment tested 10 bearings of each type; the
times to fatigue failure are given in units of millions of cycles. The analysis considering
the LGGFr regression model is performed with the definition of dummy variables as
follows: levels type I (di1 = 0, di2 = 0, di3 = 0 and di4 = 0), levels type II (di1 = 1,
di2 = 0, di3 = 0 and di4 = 0), levels type III (di1 = 0, di2 = 1, di3 = 0 and di4 = 0), type
IV (di1 = 0, di2 = 0, di3 = 1 and di4 = 0) and levels type V (di1 = 0, di2 = 0, di3 = 0 and
di4 = 1).

The LGGFr regression model for the turbine data can be expressed as

yi =µi +σi zi , i = 1, . . . , 50,

where z1, · · · , z50 are independent random variables with the pdf given by (18).
We consider the three following configurations.

• Configuration I. The first configuration corresponds to the homoscedastic case:
we consider the model parameters α, β, µi , σ , where µi = µi = θ10 + θ11di1 +
θ12di2+θ13di3+θ14di4 and σ is a common variance σ = σ1 = . . .= σ50.

• Configuration II. The second configuration corresponds to the heteroscedastic
case: we consider the parameters α,β, µi , σi , where µi = θ10+θ11di1+θ12di2+
θ13di3+θ14di4 and σi = exp(θ20+θ21di1+θ22di2+θ23di3+θ24di4).

• Configuration III. The third configuration is the more general; we consider the
parameters:

µi = θ10+θ11di1+θ12di2+θ13di3+θ14di4,

σi = exp(θ20+θ21di1+θ22di2+θ23di3+θ24di4),

αi = exp(θ30+θ31di1+θ32di2+θ33di3+θ34di4),

βi = exp(θ40+θ41di1+θ42di2+θ43di3+θ44di4).

The MLEs for the LGGFr model parameters are presented in Tables 11 and 12. Thus,
when establishing a significance level of 5%, we note that the compounds type level is
significant and should be used to model the location, scale and shape.

In order to see if the considered regression model is appropriate, the plot comparing
the empirical survival function and estimated survival function for the LGGFr regres-
sion model is displayed in Figure 9 under the three presented configurations. We observe
that the LGGFr regression model shows a suitable fit. Figure 10 (a) presents the fitted
hazard rate functions, (b) the index plot of the deviance residual for the turbine data
and (c) the normal probability plot for the deviance component residual with envelopes
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TABLE 11
MLEs, SEs and p-values for the LGGFr regression model fitted to the turbine data for Configuration

I and Configuration II.

Homoscedastic LGGFr regression Heteroscedastic LGGFr regression
Par. Estimate SE p-value Par. Estimate SE p-value
log(σ) -0.443 0.078 - log(α) -0.297 0.119 -
log(α) 0.250 0.103 - log(β) -0.031 0.114 -
log(β) 0.002 0.091 - θ10 2.310 0.166 0.000
θ10 2.016 0.106 0.000 θ11 -0.466 0.206 0.028
θ11 -0.485 0.175 0.008 θ12 -0.173 0.210 0.414
θ12 -0.162 0.191 0.400 θ13 0.042 0.208 0.840
θ13 0.012 0.153 0.934 θ14 0.366 0.199 0.073
θ14 0.380 0.216 0.086 θ20 -0.384 0.198 0.059

θ21 -0.309 0.312 0.327
θ22 -0.270 0.291 0.357
θ23 -0.214 0.265 0.424
θ24 -0.396 0.274 0.155

TABLE 12
MLEs, SEs and p-values for the LGGFr regression model fitted to the turbine data for Configuration

III.

Location, scale and shape LGGFr regression
Par. Estimate SE p-value Par. Estimate SE p-value
θ10 2.298 0.088 0.000 θ30 -3.005 0.319 0.000
θ11 -0.236 0.122 0.060 θ31 2.105 0.423 0.000
θ12 -0.044 0.126 0.727 θ32 0.962 0.465 0.044
θ13 0.352 0.114 0.003 θ33 1.641 0.456 0.000
θ14 0.416 0.122 0.001 θ34 1.420 0.456 0.003
θ20 0.408 0.187 0.034 θ40 3.505 0.289 0.000
θ21 -1.684 0.216 0.000 θ41 -4.453 0.408 0.000
θ22 -0.454 0.331 0.176 θ42 -1.323 0.4216 0.002
θ23 -1.999 0.211 0.000 θ43 -5.283 0.436 0.000
θ24 -0.459 0.334 0.176 θ44 -1.548 0.416 0.000
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from the fitted of LGGFr regression model to the turbine data. All these figures shows
that the considered LGGFr regression model is appropriate.

From these tables, when establishing a significance level of 5%, we note that the
compounds type level is significant and should be used to model the location, scale and
shape. In order to see if the considered regression model is appropriate, the plot com-
paring the empirical survival function and estimated survival function for the LGGFr
regression model is displayed in Figure 9 under the three presented configurations.
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Figure 9 – Estimated survival considering the LGGFr regression model for the (a) Configuration
I, (b) Configuration II and (c) Configuration III.
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We observe that the LGGFr regression model shows a suitable fit. Figure 10 (a)
presents the fitted hazard rate functions, (b) the index plot of the deviance residual for
the turbine data and (c) the normal probability plot for the deviance component residual
with envelopes from the fitted of LGGFr regression model to the turbine data.
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Figure 10 – (a) Fitted hazard rate functions, (b) index plot and (c) normal probability plot for the
LGGFr regression model.

All these figures shows that the considered LGGFr regression model is appropriate.
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SUMMARY

In this article, a new “odds generalized gamma-G” family of distributions, called the GG-G family
of distributions, is introduced. We propose a complete mathematical and statistical study of this
family, with a special focus on the Fréchet distribution as baseline distribution. In particular,
we provide infinite mixture representations of its probability density function and its cumulative
distribution function, the expressions for the Rényi entropy, the reliability parameter and the
probability density function of i th order statistic. Then, the statistical properties of the family
are explored. Model parameters are estimated by the maximum likelihood method. A regression
model is also investigated. A simulation study is performed to check the validity of the obtained
estimators. Applications on real data sets are also included, with favorable comparisons to existing
distributions in terms of goodness-of-fit.

Keywords: Gamma distribution; Moments; Order statistics; Rényi entropy; Maximum likeli-
hood method; Regression model; Data analysis.


