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The Odometry Error of a Mobile Robot With a
Synchronous Drive System

Agostino Martinelli

Abstract—This paper presents an error modeling of an odometry system
for a synchronous-drive system and a possible strategy for evaluating this
error. The odometry error is modeled by introducing four parameters
characterizing its systematic and nonsystematic components (translational
and rotational). The nonsystematic errors are expressed in terms of a
covariance matrix, which depends on both the previous four parameters
and the path followed by the mobile robot. In contrast to previous ap-
proaches which require assuming a particular path (straight or circular)
in order to compute this covariance matrix, here general formulas are
derived. We suggest a possible strategy for simultaneously estimating
the four model parameters. As we will show, our strategy only requires
measuring the change in the orientation and position between the initial
and final configurations of the robot, related to suitable robot motions.
In other words, it is unnecessary to know the actual path followed by the
robot. We illustrate the proposed strategy by discussing the accuracy of
the parameters estimation and by showing some experimental results
obtained with the mobile robot Nomad150.

Index Terms—Localization, odometry, robot navigation.

I. INTRODUCTION

Determining the odometry errors of a mobile robot is very important,
both in order to reduce them, and to know the accuracy of the state
configuration estimated by using encoder data. The odometry error
contains both systematic and nonsystematic components. Both compo-
nents depend on the interaction of the robot with the environment where
the robot moves. In particular, the nonsystematic component dramati-
cally depends on the environment.

In a series of papers, Borenstein and collaborators [1]–[6], [21] in-
vestigated possible sources of both kinds of errors. A review of these
sources is given in [6].

Regarding the systematic errors in differential-drive mobile robots,
there are two dominant error sources, unequal wheel diameters and un-
certainty about the effective wheel base. In Borenstein and Feng [5], a
calibration technique called, “UMBmark” has been developed to cali-
brate systematic errors of a two-wheeled robot. This method has been
used by other authors [8].

Goelet al.[11] used another calibration procedure to compensate for
systematic errors. They referred to the differential-drive mobile robot
Pioneer AT. They measured (when the robot was sitting on a box and the
wheels rotated freely in the air) the actual velocities of the wheels and
the velocity measurements from the encoders. In this way, they found
a relationship between the velocity returned by the encoders and the
actual velocity (measured by using a precise tachometer). Moreover,
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they measured the effective axle length due to skid steering which dif-
fers from that given by the specifications for the robot.

Finally, Roy and Thrun [19] suggested an algorithm that uses the
robot’s sensors to automatically calibrate the robot as it operates.

In a series of papers, Borenstein ([6] and references therein) also sug-
gested a method to improve the accuracy of the odometry data by re-
ducing the effect of the nonsystematic errors. With this method, called
Internal Position Error Correction (IPEC), it was possible to detect
and correct odometry errors without inertial or external-reference sen-
sors. In particular, he implemented the IPEC method on the specially
designed mobile robot platforms Multi Degree of Freedom (MDOF)
[2] and Omnimate [6]. Experimental results showed that the accuracy
achieved with the IPEC method was one to two orders of magnitude
better than that of systems based on conventional dead reckoning.

Wang [20] analyzed the nonsystematic errors from a theoretical point
of view, and computed the odometry error covariance matrixQ. He re-
ferred to a differential-drive mobile robot. In order to evaluate this ma-
trix, he divided the entire path inN small elementary paths. To com-
pute the covariance matrix, he had to make some assumptions about
the type of elementary path. In particular, he assumed a circular path.
Moreover, since the updated robot position depended nonlinearly on
changes in the translation and orientation (measured by the encoders),
he had to introduce another approximation. He called the nonlinear
term appearing in the updated position the adjustment factor. He ana-
lyzed three different cases, depending on the considered approximation
for this factor. In particular, he considered a Taylor approximation of
the adjustment factor truncated at the zero and first orders. Finally, as a
third case, he considered this factor as a constant in the calculation of
the covariance matrix.

The same approximations were made by Chenavier and Crowley
[7] and by Feng and Milios [13]. They always considered a particular
path and they used a Taylor approximation to compute the covariance
matrix.

Chong and Kleeman [8] divided the entire path inN small segments.
They found, for the first time, a closed-form solution for the covariance
matrixQ asN approaches infinity. In this way, they did not require
the Taylor approximation. However, with their method, they were able
to compute this matrix only for special cases. Their expressions were
applicable to circular arc motions with constant radii of curvature, and
included the limit cases of an infinity radius (straight motion) and zero
radius (rotation about the center of the wheel axis).

Kelly [12] presented the general solution for linearized systematic
error propagation for any trajectory and any error model.

Martinelli [14] derived general formulas for the covariance matrix.
In these formulas, applicable to any path, the trajectory of the robot
motion appeared as a function of the curve length. In these formulas,
there were four parameters which depended on the robot and on the en-
vironment where the robot moved. Two parameters characterized the
two nonsystematic components (translational and rotational). The other
two parameters characterized the translational and rotational system-
atic components. Moreover, in [15] and [16], he suggested a strategy
for estimating those parameters.

In this paper, we present both an error modeling of an odometry
system for a synchronous-drive system and a possible strategy for
evaluating this error. The odometry error model is discussed in
Section II, where we introduce four parameters characterizing the
elementary components of the odometry error (translational and
rotational), both systematic and nonsystematic. In Section III, we
express the nonsystematic components of the odometry error in terms
of a covariance matrix, and we derive the general form of this matrix
applicable to any robot motion. In Section IV, we introduce seven
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Fig. 1. Solid line represents the real motion followed by the robot whenN !

1, while the dotted line is the motion trajectory measured by the encoder.

experimentally measurable quantities for a given robot motion, which
we call theobservables. On the basis of our odometry error model,
we analytically compute the mean values and the variances of the
observables, which depend on the previous four parameters and on
the considered robot motion. In Section V, we explicitly compute the
observables for a simple robot motion. Evaluating the observables for
this robot motion is a possible strategy for simultaneously estimating
both systematic and nonsystematic parameters. This strategy only
requires measuring the change in the orientation and position between
the initial and final configurations of the robot, related to the consid-
ered robot motion. In other words, it does not require knowing the
actual path followed by the robot. The proposed strategy is illustrated
in Section VI, where the accuracy of the parameters estimation is
discussed, and some experimental results obtained with the mobile
robot Nomad150 are presented.

II. ODOMETRY ERRORMODEL

We consider a mobile robot with a synchronous drive system. As-
suming a two-dimensional world, we can define the robot configura-
tion with respect to a world-coordinate frameW by the vectorX =
[x; y; �]T , containing its position and orientation. The robot configura-
tion estimated by odometry measurements is different from the actual
configurationX because of the odometry errors.

In order to compute the global odometry error related to a given robot
motion, we divided the trajectory inN small segments (see Fig. 1). We
first modeled the elementary error related to a single segment. Then
we computed (Sections III–VI) the cumulative error on the global path.
Finally, we took the limit value whenN ! 1.

We introduced the following assumptions about the actual motion.

1) The robot moves straight along each given segment whose
length, measured by the encoder sensor, is always�� = �=N .

2) The angle��i between the orientations related to the(i + 1)th
and theith segment and the translation��i covered during the
same step are Gaussian random variables.

3) The random variable��i is independent of the random variable
��i, moreover,��i is independent of��j (i 6= j) and ��i is
independent of��j .

We therefore can write

��i �N ��(1 +ET ); �
2
�� (1)

��i �N ��i +ER��; �
2
�� (2)

where��i is the angle between the orientations related to the(i+1)th
and theith segment measured by the encoder sensor,ET �� andER��
represent the systematic components of the error, and�2

�� and�2
�� are

directly related to the rolling conditions and are assumed to increase
linearly with the traveled distance, i.e.,

�2
� = K�� (3)

and

�2
� = K��: (4)

The odometry error model here proposed is based on four parame-
ters. Two of them (ER, ET ) characterize the systematic components,
while the other two (K�, K�) characterize the nonsystematic compo-
nents. Clearly, these parameters depend on the environment where the
robot moves. The assumption that��i is independent of��i is clearly
a simplified approximation. A disturbance on the robot trajectory can
generate both a distance error and a dependent-angle error. Moreover,
more sophisticated models should also take into account the error de-
pendence on the robot velocity and acceleration. Finally, we want to
remark that a statistical treatment of the nonsystematic component as-
sumes the environment homogeneous on large scale. Therefore, the ex-
pressions we are deriving in Sections III–VI hold. If the robot moves
in regions larger than the scale beyond it, the environment can be con-
sidered homogeneous.

III. COVARIANCE MATRIX Q

The nonsystematic errors are expressed in terms of the covariance
matrixQ. The robot configurationX is a random vector whose mean
valuehXi is given by the odometry measurements (once both the sys-
tematic errors are known). The covariance matrixQ is defined as

Q = Ef[X � hXi][X � hXi]Tg =

�2
x �xy �x�

�xy �2
y �y�

�x� �y� �2
�

: (5)

This matrix, of course, depends on the trajectory followed by the
robot, and also on the type of floor surface. It can be represented as
a function of the previous parameters (ER, ET , K� , andK�), which
can be determined experimentally as suggested in Sections IV–VI. The
analytical expression of the matrix entries, in terms of the model pa-
rameters and the trajectory, can be obtained through direct computa-
tion on the basis of the hypothesis stated in Section II. This computa-
tion is troublesome, with the exception of the term�2

� directly given
by (3). For�2

x, �2
y , and�xy we use the relations�2

x = hx2i � hxi2,
�2
y = hy2i � hyi2, and�xy = hxyi � hxihyi. Therefore, in order to

compute the other matrix entries, we need to computehxi, hyi, hx2i,
hy2i, hxyi, �x� , and�y�.

In Appendix I, we only give the computation of the mean valuehxi,
obtaining

hxi = (1 + ET )
�

0

cos(�(s))e�(K s=2)ds (6)

where�(s) = �(s) + ERs and�(s) is the robot orientation as mea-
sured by the encoder sensor as a function of the curve lengths always
measured by encoder. In a similar way the other previous quantities can
be derived. We obtain

hyi =(1 + ET )
�

0

sin(�(s))e�K s=2ds (7)

hx2i =(1 + ET )
2

�

0

ds
��s

0

ds0 e�K s =2

� (1 + �C(s)) cos[~�(s+ s0)� ~�(s)]

��S(s) sin[~�(s+ s0)� ~�(s)]

+
K�

2
�+

�

0

�C(s)ds (8)
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hy2i =(1 + ET )
2

�

0

ds
��s

0

ds
0

e
�K s =2

� (1� �C(s)) cos[~�(s+ s
0)� ~�(s)]

+�S(s) sin[~�(s+ s
0)� ~�(s)]

+
K�

2
� +

�

0

�C(s)ds (9)

hxyi =(1 + ET )
2

�

0

ds
��s

0

ds
0

e
�K s =2

� �S(s) cos[~�(s+ s
0)� ~�(s)]

+�C(s) sin[~�(s+ s
0)� ~�(s)]

+
K�

2
�+

�

0

�C(s)ds (10)

�x� =2K�
@hyi
@K�

(11)

�y� =� 2K�
@hxi
@K�

(12)

where�C(s) = cos[2�(s)]e�2K s and�S(s) = sin[2�(s)]e�2K s.
Previous equations enable us to compute the entries of the matrixQ

once the parametersER, ET , K� , andK� are known, and the trajec-
tory �(s) is specified. We want to remark that, in reality, the odometry
sensor furnishes a discrete measurement. In other words, it provides the
function�(s) through its sampled values taken at appropriately spaced
intervals. However, when the sensitivity of the odometry system is high
enough, the function�(s) can be considered provided as a continuous
function and (6)–(12) can be adopted. It is possible to see that the inte-
grals appearing in those equations can be analytically computed when
the function�(s) is linear ins (i.e., circular trajectory included the case
of straight trajectory; that is a special case of a circular path with in-
finity curvature radius).

IV. OBSERVABLES

In this section, we introduce the observables which are measur-
able quantities related to a given robot motion. As we will show
in Section V, in order to more easily experimentally estimate the
observables, we consider robot motions whose initial configuration
coincides with the final configuration in the world coordinate frame of
the odometry system.

Let us consider a given robot motion, and let us repeat this motion
n times. The robot motion is always the same in the world coordinate
frame of the odometry system. The observables are

Obs� =
1

n

n

i=1

�i (13)

Obs� =
1

n� 1

n

i=1

(�i �Obs�)
2 (14)

Obsx =
1

n

n

i=1

xi (15)

Obsy =
1

n

n

i=1

yi (16)

ObsD =
1

n

n

i=1

D
2

i (17)

Obsx� =
1

(n� 1)n2

n

ijk

(xi�i � xj�k) (18)

Obsy� =
1

(n� 1)n2

n

ijk

(yi�i � yj�k) (19)

where�i is the angular difference between the initial and final con-
figurations,xi andyi are the position changes along thex axis andy
axis, respectively, between the initial and final configurations, andDi

is the distance between the initial and final positions related to theith
robot motion.

Because of the nonsystematic errors, the observables are random
variables, whose statistics are completely defined by the hypothesis in-
troduced in Section II. In particular, on the basis of that hypothesis, it
is possible to compute the mean value and the variance of each observ-
able. We will show that the mean values are independent of the number
n, but only depend on the considered robot motion and on the model
parameters. On the other hand, their variances decrease by increasing
n. Therefore, the observable mean value estimation is more accurate
asn increases.

We obtain for the mean values and variances (see [17])

hObs�i = �� + ER�; �Obs =
K��

n
(20)

where�� is the global change in orientation between the initial and
final configurations measured by the encoder sensor.

hObs� i =K��; �Obs = K��
2

n� 1
(21)

hObsxi =1

n

n

i=1

hxii = hxi; �Obs =
�xp
n

(22)

hObsyi =hyi; �Obs =
�yp
n

(23)

where the analytical expression ofhxi, hyi, �x, and�y in terms of the
trajectory and the model parameters shown in Section III. Concerning
the last three observables, we only give here the mean value for the sake
of brevity

hObsD i =1

n

n

i=1

D
2

i =
1

n

n

i=1

x
2

i + y
2

i = hx2i+ hy2i

(24)

hObsx�i =�x� hObsy�i = �y�: (25)

From (8) and (9) we therefore obtain forObsD

hObsD i = K�� + 2(1 +ET )
2 �

�

0

ds
��s

0

ds
0

e
�K s =2

� cos[�(s+ s
0)� �(s)] : (26)

Clearly,hObsD i does not depend on the initial orientation. More-
over, this observable is very important, since it is the only one whose
mean value depends on the parameterK�.

Finally, concerningObsx� andObsy�, their mean values can be
computed through (11) and (12).

V. STRATEGY TO ESTIMATE ERRORPARAMETERS

The objective of this section is to suggest a possible strategy for es-
timatingER, ET , K� , andK�.

Let us consider the following simple robot motion. The robot moves
straight back and forthk times in order to cover a fixed distance� =
2kl (measured by the encoder sensor). We obtain

hObs�i =2ERkl; �Obs =
2K�kl

n
(27)

hObs� i =2K�kl; �Obs = 2K�kl
2

n� 1
: (28)
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To compute the other observables for this robot motion, it is very
useful to introduce the following complex quantity:

z =
K�l

2
+ iERl: (29)

This complex quantity characterizes the rotational components of the
odometry error. In particular, its real part contains the nonsystematic
component while the imaginary part contains the systematic one.

By a direct calculation, we obtain from (22) and (23) (see
Appendix II)

hObsxi � ihObsyi = (1 + ET )lf(z) (30)

wheref(z) = (1� 2e�z + e�2z)(e�2zk � 1)=z(e�2z � 1). From
(30) we see that the real part of(1 + ET )lf(z) gives the mean value
hObsxi, and the imaginary part gives the mean valuehObsyi.

The computation ofhObsD i is similar to the previous one, but a
little bit more troublesome. We obtain

hObsD i =2K�kl+ 2(1 + ET )
2l2

�Re
(e�z � 1)2(1� e�2kz) + 4k(e�2z � 1)

z2(1 + e�z)2
+2

k

z
:

(31)

The mean values of the observablesObsx� andObsy� can be easily
obtained through differentiation using (11), (12), and (25).

Regarding the variances of the observablesObsx, Obsy, ObsD ,
Obsx�, andObsy� we need to compute�2x, �xy, and�2y related to the
considered robot motion. The computation of these quantities can be
carried out starting from the general expressions given in Section III,
and is similar (although a little bit more troublesome) to the computa-
tion of hxi � ihyi given in Appendix II.

Our strategy consists of the estimation of the mean values of the
observables for the considered robot motion. The advantage of this
strategy is that we only need to consider the initial and final config-
urations of the real robot motion. In Section VI, we discuss the attain-
able accuracy for the parameter estimation through this strategy and we
show some experimental results.

VI. DISCUSSION

We illustrate the proposed odometry error model by discussing the
attainable accuracy for the parameter estimation by adopting the pro-
posed strategy and by showing some experimental results.

A. Accuracy for the Parameters Estimation

We discuss the attainable accuracy for the parameter estimation by
adopting the proposed strategy. The error on the estimation of a given
modelparameter(forexampleER)usingtheobservableObsi isgivenby
�ER = (�hObsii=j@hObsii=@ERj) =(�Obs =j@hObsii=@ERj).
Therefore, the relative error on the estimation ofER (in %) using the
observableObsi is given by(1=ER)(�Obs =j@hObsii=@ERj) � 100.
Regarding theparameterET ,weactuallyconsider,asarelativeerror, the
quantity(�(1 + ET )=1 + ET ) = (�ET=1 + ET ), which is much
smaller than(�ET=ET ).

In Table I we report the best observable to estimate each model pa-
rameter with the robot motion considered in Section V. We see that
Obs� andObs� are the best observables, respectively, to estimateER

andK� independently of the parameters characterizing the considered
robot motion (k, n, andl). The relative error on the estimation of these
two parameters has a simple expression in terms ofk, n, andl. From
(27), we obtain

�ER

ER

=
1

ER

�Obs
@hObs i
@E

=
1

ER

K�

LTot

(32)

TABLE I
BEST OBSERVABLE TO ESTIMATE EACH MODEL PARAMETER

whereLTot = n � 2kl is the total distance traveled by the robot, and
from (28), we obtain

�K�

K�

=
1

K�

�Obs
@hObs i

@K

=
2

n� 1
: (33)

ConcerningET , the best observable changes by changingk, l, andn.
The analytical expression of(�ET=1 +ET ) using the three observ-
ablesObsy,Obsy�, andObsD can be obtained from the equations in
Sections III–V.

In Fig. 2(a)–(c), we plot the relative error (in %) on this param-
eter, versusk andn for a fixedLTot, and for the values of the model
parameters we experimentally obtained in the corridor of our depart-
ment (see Section VI-B). Observe that by changing these values, the
qualitative behavior does not change. The relative error obtained with
Obsy [Fig. 2(a)] increases withk andn, but the variation is in any case
bounded and, in particular, does not exceed 4%. Regarding the accuracy
obtained throughObsD [Fig. 2(c)], the relative error again increases
with k andn, but, in this case, the growth is unbounded. Finally, the
relative error obtained by adoptingObsy� [Fig. 2(b)] decreases withn.

ConcerningK�, the estimation can be obtained with good accuracy
by adoptingObsD with largek andn as shown in Fig. 2(d).

B. Experimental Results

1) Experiment: Our experiments consist of the estimation of
the parametersER, K� , ET , andK� related to our mobile robot
Nomad150 in two different environments, the corridor of our depart-
ment (indoor) and asphalt (outdoor). Of course, it is possible to apply
the same method to other mobile robots, and the results will depend
not only on the robot, but also on the environment where the robot
moves. In order to estimate the model parameters, we used several
values ofk, n, andl. In this way we could check the validity of some
assumptions in Section II.

2) Robot: The Nomad150 is a three-wheeled, cylindrical,
zero-gyro radius robot. Its diameter is 0.457 m and its height 0.406 m.
It is equipped with six sonar sensors placed at 22.5� increments, which
we did not use. Odometry sensors, located at the synchronous-drive
system, provide an estimation of the robot’s configuration. The
sensitivity errors of this configuration estimation are 0.13 cm in the
translation and 0.05� in the orientation. The robot configuration is
defined by the vectorX = [x; y; �]T introduced in Section III. In
order to evaluate the actual configuration change between the initial
and final configurations in the robot motion, we fixed three screws on
the base of our platform. When the robot was in the initial and final
configurations, we marked the floor in correspondence with the three
screws. The error associated to the distance measurement between the
initial and final marks was taken equal to 0.2 cm. In this way, it was
possible to estimate the change in the orientation with an error equal
to 0.3� and the change in the position with an error equal to 0.1 cm.

3) Results: We carried out four independent experiments, three in
the indoor and one in the outdoor environment. In Table II, we report
the parameters defining the robot motion. For each experiment, we con-
sidered appropriate values ofk andn in order to estimate the model
parameters with the best accuracy in accord with the considerations in
Section VI-B.2.

Fig. 3(a) shows the observableObs� measured in the indoor envi-
ronment in the three related experiments. The value ofn is set equal to
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(a) (b)

(c) (d)

Fig. 2. Relative error on the parameterE estimated by observables. (a)Obs . (b) Obs . (c) Obs . (d) Relative error on the parameterK using the
observableObs .

TABLE II
PARAMETERS DEFINING MOTION USED IN OUR EXPERIMENTS

1 for all three results. Therefore, the correspondingk = (LTot=2nl)
are, respectively,k =150, 10, and 15. From this figure, we can con-
clude that the assumption about the linear increase of the rotational
systematic component with the traveled distance is well verified. More-
over, we estimated the valueER = (�0:205 � 0:006) (deg=m).
Fig. 3(b) shows the observableObs� in the previous three experi-
ments. Observe that in this case, the relative error decreases withn
(33). On the other hand, for a fixedLTot, we have onn the constraint
K� � (2kl) = K� � LTot=n > ��, where�� is the resolu-

tion in the orientation measurement (in our case equal to 0.3�). When
K� � (2kl) < ��, it is not possible to estimateObs� ([9], [10]).

Therefore, we used the following values ofn for the three considered
experiments,n =6, 2, and 15, respectively. From Fig. 3(b), we can
again conclude that the assumption of the linear increase of the variance
of the nonsystematic rotational component with the traveled distance
is reasonably verified. We obtainedK� = (0:011� 0:004) (deg2=m).

Concerning the estimation ofET , we usedObsy as suggested in
Section VI-B.2. By expanding the functionf(z) appearing in (30),
we obtainObsy ' �(1 + ET )ERkl

2. In Fig. 3(c), we reportObsy
versuskl2. n is set equal to 1 in all three considered experiments. We
can again conclude that the assumption on the systematic translational
component is well verified. The slope of the straight lines in the figure
is�(1+ET )�ER. Therefore,(�ET=1 + ET ) = (�Obsy=Obsy)+
(�ER=ER). We obtained(1 + ET ) = 0:98� 0:05.

Finally, concerningK�, we could only estimate its value through
the first experiment. Indeed, it is possible to see by expanding inz

(a)

(b)

(c)

Fig. 3. Three experiments in the indoor environment. (a)Obs versusL .
(b) Obs versus2kl. (c)Obs versuskl .

the function appearing in (31), the second term on the right-hand side
of that equation becomes much smaller than2K�kl only whenl is
small. In other words, the accuracy of the estimation ofK� is very
rough for largel due to the error on the other parameters (ER; ET

andK�). Moreover, from Fig. 2(d), it is possible to see that the best
accuracy forK� can be achieved for largek andn. We obtainedK� =
(2:2 � 1:0) � 10�6 m.

Concerning the outdoor environment, we found the following values
through the fourth experiment:ER = (�0:25� 0:04) deg=m,K� =
(0:08� 0:05) (deg2=m), (1 + ET ) = 1:0 � 0:2, andK� = (1:7 �
1:1)10�5 m.
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VII. CONCLUSIONS

In this paper, we have presented a theory about the odometry error
for a mobile robot with a synchronous-drive system and a strategy for
evaluating the error model parameters.

The odometry error was modeled by introducing four parameters.
Two parameters characterize the two nonsystematic components
(translational and rotational). The other two parameters characterize
the translational and rotational systematic components. The non-
systematic errors were expressed in terms of a covariance matrix,
which depends both on the previous four parameters, and on the path
followed by the mobile robot. We derived closed formulas for the
odometry error covariance matrix, applicable to any path.

We introduced seven experimentally measurable quantities, the ob-
servables, for a given robot motion. On the basis of our odometry error
model, we analytically computed the mean values and the variances
of the observables, which depend on the previous four parameters and
on the considered robot motion. We suggested a possible strategy for
simultaneously estimating the four parameters by estimating the ob-
servables. Our strategy only required measuring the change in the ori-
entation and the position between the initial and final configurations of
the robot, related to suitable robot motions. In other words, it is unnec-
essary to know the actual path followed by the robot.

We illustrated the proposed strategy by discussing the accuracy of
the parameters estimation and by showing some experimental results.

APPENDIX I
COMPUTATION OF hxi

We want to compute the mean value of the position change along the
x axis on the basis of the odometry model discussed in Section II. We
have

x = lim
N!1

xN = lim
N!1

N

i=1

��icos(�i) (A1)

where��i is defined in Section II, and

�i = �0 +

i

k=1

��i (A2)

where�0 is the robot orientation at the first step, and��i is defined in
Section II.

In order to computehxi, we first computehxNi, and then we take
the limit value whenN ! 1. We have

hxNi =
N
i=1fG(��1; ���) � � � fG(��N ; ���)fG(��1; ���) � � �

fG(��N ; ���)

N

i=1

��i cos(�i)

� d��1 � � � d��Nd��1 � � � d��N (A3)

where we denoted withfG(w; �w) the Gaussian distribution function
of the random variablew, whose variance is�2w.

In Section II, we assumed that��i is independent of��i. Therefore,
we obtain

hxNi =

N

i=1

h��iihcos(�i)i: (A4)

Moreover, from (1), we have

h��ii = ��(1 +ET ): (A5)

From (A2), we have

�i � N �0 +

i

k=1

��i + iER��; K�i�� = N �i; K�i��

where��i and�� are defined in Section II, and�i is defined from the
previous equation and represents the robot orientation at theith step
as measured from the odometry sensor calibrated for the systematic
errors. It is possible to obtain [17]

hcos �ii = cos �ie
�(� )=2

= cos �ie
�(iK ��)=2: (A6)

Substituting (A5) and (A6) in (A4) we obtain

hxNi = (1 + ET )��

N

i=1

cos(�i)e
�(iK ��)=2

and, passing to the limit(�� = �=N), we obtain (6).

APPENDIX II
COMPUTATION OFhxi� ihyi FORMOTION CONSIDERED INSECTIONV

When the robot moves forward�(s) = ERs, when it moves back-
ward�(s) = � + ERs. We therefore obtain from (6) and (7)

hxi =(1 +ET )

k�1

j=0

�
(2j+1)l

2jl

cos(ERs)e
�K s=2ds

�
(2j+2)l

(2j+1)l

cos(ERs)e
�K s=2ds (B1)

hyi =(1 +ET )

k�1

j=0

�
(2j+1)l

2jl

sin(ERs)e
�K s=2ds

�
(2j+2)l

(2j+1)l

sin(ERs)e
�K s=2ds : (B2)

Using the complex quantity defined in (29), we have

hxi � ihyi = (1 +ET )l

k�1

j=0

�
2j+1

2j

e�zs ds0

�
2j+2

2j+1

e�zs ds0 : (B3)

By directly computing the integrals, we obtain the familiar geometric
seriesq = e�2z and by summing, we obtain (30).
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