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Abstract

This report starts with the analysis of one year of Geosat altimeter data starting from the

orbits computed with the GEM-T2 potential coefficient model and consistent station coorditmtes

(Koblinsky et al., 1990). The first stage in the processing followed the general editing proccdttres

implemented by Denker and Rapp (1990) when working with GEM-TI orbits. Additional

altimeter data, beyond that used by Denker and Rapp, was selected below -63 ° latitude, in the

Mediterranean Sea, and in several areas of high frequency signal. The original radial orbit theo_7

is due to Engelis. The analysis solved for corrections to the GEM-T2 potential coefficient model,

coefficients in a degree 10 potential coefficient expansion, and 8 parameters for each of the 76 arcs

of data an.,dyzcd. The data used included the "altimeter data, the GEM-T2 potential coefficients with

its error covariance matrix, and surface gravity data represented by 1° x 1° mean gravity.anomalies.

The root mean square orbit correction was approximately 75 cm with the correcttons to the

potential coefficients corresponding to geoid changes on the order of 118 cm. After applying the
orbit correction terms the adjusted crossover discrepancies were + 20 cm with a sample point

residual of + 19 cm.

The sea surface topography from this solution did not show the slope problem across the

northern Pacific Ocean that was seen by Denker and Rapp with the GEM-T1 orbits. Variations of

the sea surface over the one ycr, r of data were analyzed by fixing the geopotential model and orbit

corrections from the one year solution and solving for a monthly sea surface topography

representation to degree 15. Variations from the annual degree 15 solutions were analyzed in the
time domain to find signatures at different frequencies, for example annually and seasonally.

These changes were also studied to detect local variations of the sea surface.

In a third stage of analysis a combination solution with the GEM-T2 potential coefficients

_md the recent 30" mean gravity anomaly data set was carried out using the same procedure as

described by Rapp and Pavlis (1990). The global set of adjusted gravity anomalies was used to

calculate a potential coefficient model to degree 360. The final potential coefficient model was

formed by taking the coefficients from degree 2 to 50 from the first combination solution with the

coefficients from degree 51 to 360 of the last solution. The standard deviations of each coefficient

were computed from the adjustment process and by error propagation. The cumulative geoid
undulation commission error of the 91A model to degree 10, 50, and 360 is 5 cm, 25 cm, and 49

cm, respectively.

The OSU91 model was tested through orbit predictions and data fitting; through

comparisons with geoid undulations computed from Doppler and GPS located stations, and with

comparisons to geoid undulations implied by Geosat altimeter data. In the latter case the root mean

square difference between the Geosat undulation (after orbit and sea surface topography correction)

was 34 cm for OSU91 as opposed to + 53 cm with OSU89B.
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1. Introduction

Denker and Rapp (1990) and Denker (1990) have described the analysis of Geosat altimeter

data for the recovery of an improved geopotential model, sea surface topography and, primarily,

improved, in the radial direction, Geosat orbits. The research described in these two papers used

Geosat data with the GEM-T1 based orbits described by Haines ctal. (1989; 1990). The GEM-T1

orbits were computed with the GEM-TI potential coefficient model and the OPNET Doppler

tracking data. The tracking station positions were those transformed (not adjusted) into the
reference frame consistent with that used in the development of the GEM-T 1 model. The studies

noted above demonstrated the validity of the orbit improvement process originally developed by

Engelis (1987a) and modified for the studies noted. However a problem was identified with the

degree 1 terms of the sea surface topography that were estimated from the solution. Specifically it

was found that the (1, 1) terms of the spherical harmonic expansion of sea surface topography

were incompatible with oceanographic infonnation. This specifically was demonstrated by the sea

surface slope across the northern Pacific Ocean. The coefficients that were found as part of the

solution implied a slope different from that expected from historical oceanographic information
(Levitus, 1982). When the SST (1, 1) coefficients were changed to the ones implied by the

oceanographic data (Engelis, 1987b) the slope problem disappeared. These results suggested that

the GEM-T1 orbits might have deficiencies that would cause degree (1, 1) problems in the
determination of SST. The problems could be caused by inaccurate station coordinates (especially

for the OPNET stations); inaccurate gravity model coefficients; and perhaps unmodeled effects on
the satellite orbit.

Haines et al. (1989; 1990) discussed Geosat orbit determination with the GEM-T2 potential

coefficient model and other improvements over the GEM-T1 orbits.-One improvement was the use

of Doppler tracking from several TRANET-2 tracking data and the solution of tracking station

coordinates for these stations. The preliminary results reported by Haines reported the radial orbit

error with the GEM-T2 analysis to be on the order of 35 cm as opposed to the 85 cm for the GEM-

T1 analysis.

The GEM-T2 Geosat orbits were released in early 1990 (Koblinsky et al., 1990) and

received by us in April 1990. Because of the problems identified with the GEM-T1 orbits we

decided to test the GEM-T2 orbits with our software to see if improved (specifically with the (I, 1)

coefficients) sea surface topography could be obtained. Several six day arcs were analyzed on a

preliminary basis where we found the slope problem had been eliminated with the new GEM-T2
orbits. A decision was then made to process the full year of Geosat data starting from the GEM-T2
orbits.

Denker and Rapp (1990) did not include any surface gravity data in their solution. This

was deliberately done so that results related to the orbit improvement could be emphasized.

However it was clear that for any modelling effort to be complete, surface gravity, in terms of

normal equations, should be incorporated into the new solution. The procedures used for doing

this will be described on a subsequent section.

Rapp and Pavlis (1990) described a combination solution of the GEM-T2 potential

coefficient model, surface gravity data, and gravity information derived from Geos-3/Seasat and
Geosat altimeter data. The model developed there was complete to degree 360 although a rigorous

adjustment of the data only to degree 50 took place.

The models (OSU89A and OSU89B) described by Rapp and Pavlis (ibid) used a te_Testrial

gravity data set developed in July 1989 (Kim and Rapp, 1990). Late in 1990 an update of this data

base was made in which additional gravity data was incorporated. The updated file is described by

Yi and Rapp (1991).



With the aboveas backgroundit seemedappropriateto combinethe neworbits andnew
datatogetherto comeupwith, first a newgravitymodelcompleteto degree50, anew seasurface
topographyrepresentation,andimproved Geosatorbits. This would thenbe followed by the
developmentof adegree360potentialcoefficientmodelwhichwouldbemergedwith theresultsof
thefirst step. In essencethis reportdiscussesanextensionof thework describedby Denkerand
Rapp (1990), Pavlis (1988) and Rapp and Pavlis (1990) to arrive at improved estimatesfor
numerousquantities.

2. Satellite Altimeter Data Processing

2.1 Theory

We start by a brief review of the theoretical models used to relate the altimeter measurenlent

to the parameters being sought. We closely follow (Denker and Rapp, 1990) and define a residual

sea surface height Ah:

Ah = hc - p - Nc - ANo - '_ - co (2.1)

where:

hc = computed ellipsoidal height of the satellite based on the a priori ephemeris;

p = measured and corrected (for environmental factors) distance from satellite to the sea

surface;

Nc = geoid undulation based on the same geopotential model used for the ephemeris

generation;

ANo = neglected (or removed) higher frequency geopotential effects;

'r = tid,-d effects

co = oceanic effects (waves, etc.)

The value of Ah will depend on the corrections to the a priori potential coefficients in two parts.

The first is through the undulation effects (ANG) and the second is through the effect (Ahc;) on the

ellipsoidal height through the a priori ephemeris. Let Ahi be the ellipsoidal height error caused by
initial state errors and other effects and let _ be the sea surface topography. Then (ibid, eq. (5))

Ah = ANo(ACgm, AS-tin) - AhG(AC/m, AS-gin) - Ahl + ; (2.2)

where:

ACtm, AS'--tmare the corrections to the fully normalized a priori potential coefficient model

of degree t and order m;

The modeling of ANo and Ahc is described in Engelis (1987a). We continue with a

spherical harmonic representation of the sea surface topography although problems with the

representation are discussed in Denker and Rapp (ibid). We write:

2



Z Z k_trn/_SSTcosmA"+ s_STsinm_.) Ptrn(Sin_)

g=l m=O (2.3)

where ili and % are geocentric latitude and longitude. The value of Ahi was taken the same as used

by Denker and Rapp (ibid, eq. (7)):

Ahi = ao + alcosaitt + a2sin_t + a3Atcos_rt

+ a4Atsin_t + asAtsin2_t + a6At2cos_itt

+ aTAt2sin_ t (2.4)

is the frequency associated with the lcy/rev; t is the time from the beginning of the arc being

processed; and At is the time relative to the middle of the arc.

Originally the a6 and a7 terms were in the Denker/Rapp procedure because such terms can

represent resonance terms effects which are not modeled in the GEM-T1 model (a 43 order
resonance was noted by Haines et al., 1989). Since tile GEM-T2 model included a 43 order term

there was a question if the a6 and a7 terms should be retained. Several arcs were analyzed with and

without the a6 and a7 terms. The results indicate that the inclusion of these terms gave significant

improvement (i.e. the root 'mean square residuals were smaller) over the case that excluded the
coefficients. For all results to be described in this paper the a6 and a7 temas were retained in the

Ahi model.

2.2 Editing and Computational Procedures

The initial editing procedures for the Geosat analysis were the same as described in Denker

and Rapp (ibid, p. 13,153) or Denker (ibid, pp. 10-17). The initial editing deleted data over land;
data where the standard deviation of a linear fit to 10 per second sea height values was greater than

10 cm; data where the automatic gain control voltage exceeded 37 db; when the attitude was larger
than 1°.3; when the ocean tide correction was larger than + 1 m; etc.

After the data was selected in a 6 day arc using the criteria described above a subsequent

editing was applied with the following criteria:

1. Data in shallow seas and continental shelves was deleted if the altimeter measurement fell in a

30' x 30' cell where the depth was smaller than 1000 m. This criteria is the same as used by

Denker and Rapp (ibid).

2. An altimeter data point was deleted (initially) if the geoid undulation contribution from degree

51 to 360 was larger than 3 m when computed from the OSU89B potential coefficient model (Rapp

and Pavlis; 1990). In the Denker/Rapp solution the 3 m tolerance was applied to the 37 to 360

contribution so that the new criteria accepts more data. In addition the OSU89B model is more

accurate than the OSU86F model used by Denker/Rapp so that more appropriate editing results.

3. An altimeter data point was deleted (initially) if the along track deflection of the vertical

exceeded 10" as computed from the actual sea surface height data. This criteria is the same as used

by Denker/Rapp.

4. No data below -64 ° latitude was deleted because of latitude considerations. Such data was

deleted by Denker and Rapp (ibid) because of suspected inaccuracies of the OSU86F reference



model. Sincethe OSU89Bmodel is substantiallybetter than 86F, especially in the Antarctic
regions,we arenow ableto processdatain thisregion.

The purposesof criteria 1was to eliminate data wherethe tide model might not be as
accurateasotherareas.Criteria2 and3 wereusedto deletedatawheretherewasaconcernon the
effectof unmodeledhighfrequencyeffectson thecoefficientsbeingsolved.

After data was selected with the above criteria sample points were calculated. A sample

point was evaluated by first fitting the 1 sec residual sea surface height (eq. (2.1)) to a linear fit
over 20 secs. An iteratwe outlier rejection criteria with a 3c-limit was used. The sample point

value was computed from the linear fit at the mid time point of the interval.

In this computation the Nc value was computed from the GEM-T2 potential coefficients

which are complete to degree 36 with many coefficients extending to degree 50. The initial

computation of the geoid was for the "zero geoid" (Rapp, 1989) so that an additional correction (to

be added to the zero geoid) was needed to obtain the "mean geoid" which would be consistent with

the tidal system used to define the sea surface height. The correction was (ibid, eq. (17)):

AN = - 0.198 (2_ sin2¢ - 1) m (2.5)

The value of AN0 was computed from the OSU89B coefficients from degree 51 to 360 plus
values for the coefficients not included in GEM-T2.

Using the editing and selection procedure described in the above paragraphs sample points

were formed for 76 six day arcs over 22 cycles of the Exact Repeat Mission. The total number of

sample points was approximately 0.8 million or an average of 10526 points per arc.

Approximately 20 million one second data were analyzed to arrive at this sample point count. The

number of normal points will vary from arc to arc depending, primarily, on season or time of year.

A typical normal point plot from a 17 day Geosat repeat cycle is given in Denker and Rapp (ibid,
Figure 2). A listing of the Geosat arc number, arc Start and stop times and other informaii0n as

reproduced from Koblinsky et. al (1990) is given in Appendix A.

The above procedures exclude data in several areas that may be of importance to our final

solutions. Specifically the editing criteria deleted data where the tide was greater than 1 m. Such a

procedure would delete data where no tide value was present on the GDR. This would

systematically delete data in some areas where the tide magnitudes are small and the altimeter data

otherwise useful. The largest such area is the Mediterranean Sea where the tides are small typically

being on the order of 20 cm although reaching 1 m in some limited areas. In order to bring the

previously deleted data into the solution, 3 or 4 arcs from each of 4 widely space in time ERM's
Were selected for analysis. The arcs were 4, 5, 6, and 7 (approximately ERM 2); 22, 23, and 24

(approximately ERM 7); 39, 40, and 41 (approximately ERM 12); and 66, 67, 68, and 69

(approximately ERM 20). Normal points were computed on the basis of 10 second linear fits in
contrast to the 20 second interval used previously. This was done to increase the number of

normal points in this specific region. For these points the ocean tide value was set to zero. For the

14 arcs a total of 687 normal points were obtained.

A second inappropriate data exclusion area was the generic area that was deleted because

the high frequency contribution was significant. Additional consideration recognizing a more

accurate high degree model (OSU89B) is now available (than used by Denker/Rapp) suggested that
data be selected in the areas in which such data was previously deleted. Three regions where high

frequency information was present were chosen as follows:

4



Area One: - 58 ° _; _p_; - 14°; 165 ° S _, < 190 °

Area Two: - 60 ° < _ < - 50°; 300 ° < _. _; 340 °

Area Three: 50 ° < _p< 60°; 165 ° -<k < 210 °

These areas are primarily ones in which trenches can be found. The 14 arcs described earlier

(ERM 2, 7, 12, and 20) were used to select 701 normal points using the 20 second linear fit

procedure.

The standard deviation for each normal point was computed as in Denker and Rapp (ibid,

p. 13,155):

SD(Ah) = (0.2 2 + ff2)l/2m (2.6)

where 0.2 m is somewhat arbitrary and ff is the root mean square misfit (in meters) from the

normal point computation.

2.3 The Normal Equation Formation

The edited data described in the previous section was used to form normal equations that
will be combined with the GEM-T2 error eovariance matrix and the surface gravity normal

equations (see Section 3). In this formation 76 arcs, over 22 ERMs, were processed. The total

number of potential coefficient parameters being estimated was 2595. For each arc, 8 parameters

were estimated leading to 608 arc dependent parameters.

The parameters associated with the sea surface topography representation were dependent

on the maximum degree of the expansion as expressed by equation (2.3). Two maximum degrees

were used in the analysis. In one series of tests the maximum degree was 10 leading to 120

parameters while in another series of tests the maximum degree was 15 leading to 255 parameters.

Recall that the zero degree term is deleted from the SST expression effectively forcing the mean
value to be zero.

The formation of the normal equations was carried out based on the standard deviations

computed from eq. (2.6) for all points except for the specially selected points in the Mediterranean

Sea area and the points from the areas of significant high frequency information. For these points

the standard deviation computed from eq. (2.6) was multiplied by two. In the case of the
Mediterranean data this was done to compensate for the use of 10 sec normal points instead of 20

sec points used in all other areas. In the case of the high frequency content points the

multiplication by two was used to take into account a higher uncertainty caused by uncertainty in

the high frequency signal removed from the normal point observation. Other weighting schemes
could be used or tested but time factors did not allow us to do this.

5



3. Normal Equations for the Geopotential Coefficients Obtained from Surface

Gravity Data

In the present study the formation of normal equations for the complete set of geopotential

coefficients up to harmonic degree 50, from the analysis of terrestrial gravity measurements,

closely followed the modeling and estimation procedures discussed in detail by Pavlis (1988).
Therefore, in the following paragraphs only a brief outline of these procedures will be given, and

the emphasis will be placed on the description of the improved gravity anomaly data which were

used in this analysis, on certain aspects of the modeling which were re-examined and modified,

and on the presentation of the results obtained.

3.1 The OSU October 1990 Gravity Database ,

The fundamental terrestrial 1° x 1° mean gravity anomaly dataset used in this study is

designated "OSU October 1990" (Yi and Rapp, 1991), and represents the latest update of the

global gravity anomaly database maintained at the Ohio State University. With respect to its

predecessor (OSU July 1989--Kim and Rapp, 1990), it is improved by the incorporation of

improved 944 1° x 1° mean gravity anomalies. Of the 944 newly accepted values, 9 anomalies had

no previous estimates and 935 anomalies replaced previous values which were primarily

geophysically predicted. The OSU July 1989 dataset, on the other hand, is substantially better
than the June 1986 file (Despotakis, 1986) which was originally used for the normal equations

formed by Pavlis (1988). For example, improved gravity anomaly data for Africa, included in the

July 1989 dataset, have replaced corresponding values in the June 1986 file, which were identified
to be contaminated by significant systematic errors (Pavlis, 1988, section 5.3.2).

The October 1990 database contains in total 50802 1° x 1° mean free-air gravity anomalies.

Of these, 45932 values originate from actual gravity measurements, while 4870 values are

estimates obtained from geophysical prediction techniques. In Table 1, statistics related to the

mean anomalies of the October 1990 dataset are given, while in Figure 1 the geographic

distribution of the available data is displayed.

x 1° Mean Free-air Anomalies in the OSU October 1990 DatabaseTable 1. Statistics of the 1°

Number of values

Percentage of area
Minimum value

Maximum value

Mean value

RMS value

RMS standard deviation

Gravity
Measurements

45932

79.2

-270

303

-0.5

27.6

12.0

Geophysical
Prediction

4870

6.6

-123

127

-1.0

25.3

17.3

Combined

50802

85.7

-270

303

-0.5

27.4

12.5

(Gravity anomaly units are regals; mean and RMS values given above are weighted by the area of

each 1° x 1° block.)

3.2 Creation of Mean Anomaly Files Input to the Adjustment

The analysis made by Pavlis (1988) has demonstrated that the geophysically predicted
anomalies are in many cases systematically biased with respect to the anomalies that are implied by

global geopotential models derived from the analysis of satellite perturbations only (ibid, section

5.3.2). Pavlis and Rapp (1990) have shown that a preferable alternative to the use of geophysically

6
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predicted anomalies in global gravity, modeling, is the use of anomalies evaluated from the
combination of lower-degree harmomcs obtained from a satellite-alone global gravity model,

augmented by higher-degree harmonics of topographic/isostatic induced potential. This technique

was implemented in the development of the OSU89B global geopotential model (Rapp and Pavlis,
1990), where the coefficients of GEM-T2 (Marsh et al., 1990) up to degree 36 were augmented by

the topographic/isostatic coefficients of SET3 (Pavlis and Rapp, 1990, p. 373), from degree 37 to

degree 360, and the resulting "combined" set was used to evaluate 30' x 30' mean anomalies for

areas occupied by geophysically predicted values, or devoid of any anomaly estimate.

Based on the results of the above studies, it was decided to adopt the following strategy for

the preparation of a mean anomaly file to be used as input for the normal equation formation:

(a) The coefficients of GEM-T2 up to degree 9 are augmented by the coefficients of SET3 from

degree 10 to d_ree 50, to form a "combined" set of coefficients Cnm- A global set of 1o x 1o mean
anomalies, Ag , are then evaluated by:

50 n

(_'gTI)ij = 1__!__ GM £ (n-1 !_lE)nm_=. CnmI_ j
Aoi (rE)2 n=2 n (3.1)

where the indices (i, j) identify the location of the 1° x 1° block in a two-dimensional array with

i = 0, 1 ..... 179 and j = 0, 1.... ,359. (For notation definitions see (Pavlis, 1988)). The rational

behind the reduction of the "cut-off' degree from 36, used in the development of OSU89B to 9

used here, is as follows. The normal equations to be produced here are subsequently combined

with the normal equations that produced the GEM-T2 model. This combination is performed

under the assumption that GEM-T2 and the geopotential coefficients obtained from the current

analysis of surface gravimetry, represent two uncorr¢late_l estimates of the true coefficients of the
field. To account for correlations between these two estimates is (currently) not feasible due to

computational limitations. It is thus preferable to reduce the higher degree of the haretonics of
GEM-T2 used in the evaluation of _gTI, to better comply with the aboVe assumption of zero

correlation. In addition, the study of Pavlis and Rapp (1990, section 4.2) has indicated that _gTI

evaluated using 9 as "cut-off' degree are not substantially worse than those evaluated using 36.

(b) A merging process was performed next whereby a ;_gTI value was used to provide the mean

anomaly estimate for a given 1o x 1o block if:

-- The October 1990 estimate for the block originates from geophysical prediction, or,

No estimate is available in the October 1990 database and the 1° x 1° mean elevation of

the block is positive.

In this manner, the 45932 1° x 1° mean anomalies of the October 1990 dataset originating fiom

actual measurements (denoted 2_g°c'rg°) are maintained in the merged file (denoted SET A), while

_g-n are used to "fill-in" the remaining land areas. SET A contains in total 54048 1° x 1° mean

anomaly estimates covering 87.3% of the area of the Earth. Of these, 8116 values (8.2% of the
Earth's area) are B.gTI estimates. The geographic distribution of the data in SET A is shown in

Figure 2.

A number of systematic corrections need to be applied to the _gOCT90 anomalies in SET A

before these can be used in the formation of normal equations. These are (Pavlis, 1988):

(i) Atmospheric correction 8ga

(ii) Ellipsoidal corrections eh, _, el,
(iii) Second-order vertical gradxe""nt of normal gravity correction 8gh2

8



03
E_

E3

I:::3

11

0")

"i

o _
(D

•. h..;
,ii.i

E3
('r") lltilt_

.Ii!
tiliaU

n I hill

| |_gl

C_

,

°/I

c_

I ![ J++_."+_ .!

iu. dir+t+i.

I :."l_|gm"gtl
ltll_nle_ml

umlll ,n

I

I--

z
u

_J

0

(-r) 0 I I

30n1[ lU7

o

o

o

0

o

!

o

I

o

I

9

_0

itj

>

©

,i-.I

o_,-+

<_

0

+--I

+-5
o I_

e4



(iv) Gravityformulatransformation15gr

Thespecificformulationusedtoevaluate1° x 1° area-mean values of the above correction terms is

given in detail in (ibid, section 2.3). It needs to be mentioned here that the OSU89B geopotential

model, complete to degree 180, was used to evaluate 1° x 1° area-mean values of the ellipsoidal

corrections (denoted IEh, IE_,, and IEp). Also, throughout this analysis the following parameters
were used to define the geometry and the gravity potential of the reference ellipsoid (ibid, p. 60):

a -- 6378137. m

1/f = 298.257

GM = 3986004.36 x 108 m3/s 2

to = 7.292115 x 10 -5 rad/s

and the transformation of the October 1990 anomalies, which refer to the GRS 1967 gravity

formula, to the gravity formula implied by the above constants was performed as explained in

(ibid, pp. 60-61). Denoting by ?_g" the corrected anomaly, one has:

xg j--Xg+T÷( g.3+j (3.2)

where the total systematic correction _5gs(ibid, equation 4.12):

(ags)ij = [SgA - (IEh + lFq + _r,) + _gh2 + 5gr]ij (3.3)

The _g' values in SET A represent surface mean free-air anomalies in the Molodensky

sense. Their frequency content is not uniform worldwide but depends on factors such as the

distribution of gravity measurements inside each 1° x i ° block and the averaging process used to
estimate each mean value. In contrast, the NgTI values in SET A are formally interpreted as mean

free-air anomalies continued to the surface of the reference ellipsoid, and their specmd content

extends (by definition) only up to harmonic degree 50. Extensive analysis discussed by Pavlis

(1988_ section 5.2.5) has shown that the leakage of power from the higher-frequency component

of Agij, to the lower-frequency coefficients being solved for from the incompl_;te set of discrete
area-mean values Ag[-, can be minimized by removing the higher-frequency content of Ag_ (above• J

degree 50) pnor to the formation of normal equations. The higher-frequency component, 8g ut:, can

be evaluated in terms of 1° x 1° area-mean values, using an existing high-degree geopotential model

such as OSU89B, by:

360 n

= k.nm xlnTm

At_i (r_) 2 n=St (3.4)

In the implementation of this procedure the following two aspects need to be considered carefully:

1. The harmonic coefficients used to evaluate _gnF must represent as prec!sely as possible the

higher-frequency component of the data which will be used in the adjustment.

2. ggnV must be evaluated at the same level at which the mean values ?igij refer (the topographic

surface of the Earth).

To comply with the first of the above requirements (since no high-deg-ree expansion was available

at the time, that included the gravity data from our new source), the following steps were taken:
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(a)Eachof the944 1° x 1° blocks,containingavaluefrom tile newdatasource,wasdivided into
the four corresponding30' x 30' blocks that it covers. To eachof them a 30' meananomaly
estimatewasassigned,which is identical with thecorresponding1° x 1° n_eanvalue. A total of
3776_g30'were thusproduced. After applicationof the atmospheric,ellipsoidal, second-order
gradientand gravity formula correctionsandanalyticaldownwardcontinuationto the reference
ellipsoid (RappandPavlis, 1990),these"split-up" valueswere mergedwith theac.aditusLcdglobal
30'meananomalyfile that producedtheOSU89Bgeopotentialmodel (ibid). In this merging,a
"split-up" valuefrom Chinareplacedaprevious30'valueonly if thepreviousestimatewasa "fill-
in" anomalyor a "split-up"from previouslyavailable1° x 1° estimate.In thismanner,3669(outof
the3776)China30'meanvalueswereacceptedin themergedfile. Of these,3144valuesreplaced
"fill-in" dataand525valuesreplacedprevious"split-up"data.

(b)Theresultingglobal30'meananomalyfile from theabovemergingwasharmonicallyanalyzed
as explained by Rapp and Pavlis (ibid, equation 20) to yield a "modified OSU89B" set of
coefficientscompleteto degreeandorder360. Thisset,denotedCgn_9B',was thenusedin equation
(3.4) to evaluate1° x 1° meanvaluesof 8_F. As it canbe seenfrom (3.4), the high-frequency
contribution to thedatais evaluatedon thes,wfaceof thereferenceellipsoid,while thedataAgij,
refer to the topographicsurfaceof theEarth. To accountfor this incompatibility, the analytical
continuationterm gt (Wang,1988)wasusedin two different ways,which led to two alternative
files to beusedasinputfor theformationof normalequations:

Method 1..: Input anomalies referring to the topographic surface of the Earth.

The global 30' x 30' set of gl values computed by Wang (ibid) on the basis of the TUG87

mean elevations (Wieser, 1987), was harmonically analyzed (according to a quadrature formt|la

similar to equation (20) in Rapp and Pavlis (1990)), to yield a set of (spherical) harmonic

coefficients Gnm, complete to degree 360. Using the coefficients Gnm, two correction terrns were

evaluated, both in terms of 1° x 1° mean values:

50 n

.__l..... GM 2 (n l)(r__E) m___.n --_ --ij
= - GnmlYnm

A_Ji (rE) 2 n=2 n (3.5)

(g 1H)ij -

360 n

l GM 2 (n- ll(r-_.E)nm_=_GnmIYiJr_n
A(Ii (rE) a n=51 n (3.6)

The anomalies to be input to the adjustment, denoted AgO), were then defined by:

Xgi T90+(Sgs)ij-( gllF_ H)ij2gTl-(glL)ij (3.7)

depending on their origin (actual measurements or topographic/isostatic values). From the

definition of the analytical continuation term gl (Wang, 1988), it can be seen that _-g(1 ) refer to the

topographic surface of the Earth. The anomalies _g(1) constitute the file designated SET 1, which

was one of the two files considered as input to the least-squares adjustment.

11



Method 2: Input anomalies reduced to the reference ellipsoid.

Here, the 1° x 1° mean values of the term gl (denoted gl) as computed by Wang (1988) are

used, and the anomalies to be input to the adjustment are defined by:

tAgi( Tg0+( gs)ij+(gl)ij-( gHF j

(3.8)

The anomalies _'g(2) constitute the file designated SET 2, and represent values reduced to the

surface of the reference ellipsoi d .

In theory, the two alternative treatments of the ihput anomaly data should yield the s;m!e

result, proVided that flae Observation equations approp_ateiy consider-the surface to which the data

refer. In practice however, the approximations involved in the evaluation of the gl terms (Wang,

1988), and the errors introduced in the computation of _L and g_t resuh ill small but systematic

differences as it will be seen later. It should be mentioned here that the hamlonic decornposition of

gl, which is necessary to evaluate __and __, is not a trivial step since gi has a discontinuity at

the continental boundary (gl _ 0 over the ocean).

In Table 2 statistics related to the anomalies of SET 1 and SET 2, as well as their

differences, are given. When forming these files, all Ag Ti anomalies wcre assigned identical

standard deviation of 20 mgal, based on the accuracy assessment for these values discussed by

Paviis and Rapp (1990). Also, the minimum standard deviation for any anomaly regardless of

source was set to 2 mgal to avoid over optimistic accuracy estimates. The distribution of data in

both SET 1 and SET 2 is obviously identical to that of SET A given in Figure 2.

Table 2. Statistics of the 1° x 1° Mean Anomalies Used in the Normal Equations Formed.

SET ! ._S.ET2

6g(Z) Sg(2)
Number of values 54048 54048 54048

Percentage of area
Minimum value

Maximum value

Mean value
RMS value

RMS standard deviation

87.3

-199.4

141.3

-0.3

19.0

13.0

87.3

-199.4

141.2

-0.1

19.2

13.0

87.3

-10.4

9.2

-0.2

0.7

3.3 Estimation of Geopotential Coefficients from Surface Gravity Data

The anomalies Ag(1) and _-g(2) previously defined lead to the following observation

equations respectively:

50

rij n=O

l'I

r_iJ A_i j )(n- 1) "--nm--nm-

n

(3.9)

12



50 n

V!ff)= 1..._L_ GM Z' (n- 1)(r-_E)nm____ _nmIgij-Xg_i 2)
Ao'i (l_i) 2 n=0 n (3.10)

where v(_ ) is the residual associated with the Xg! k) observation (k = 1, 2) and cTn represent the

adjusted geopotential coefficients obtained on the basis of surface gravity data alone (even zonal

harmonic coefficients are remainders after subtraction of the coefficients of the nom_al potential).

The geocentric distance i'ij in (3.9) was evaluated as explained in (Pavlis, 1988, section 2.3.4)

using the TUG87 (Wieser, 1987) 1° x 1° mean elevations to realize the topographic surface of the

Earth. r_ on the other hand is the distance from the geocenter to the point on the ellipsoid at the

mid latitude of the (i, j)th block and thus possesses equatorial symmetry. The primes of the

summations in (3.9) and (3.10) indicate absence of the first-degree terms. The inclusion of the

zeroeth-degree term is necessitatedb,y the fact that the incomplete set of discrete mean values used

gives rise to covariances between Coo and the rest of the coefficients, which must be taken into

account (Pavlis, 1988).

Both observation equations (3.9) and (3.10) are of the form:

V = AX- Lb (3.1 1)

Minimization of the weighted norm of the residuals (vTpv) under the condition (3.11) yields the

normal equation system:

(ATpA),X = ATpLb
(3.12)

and the least-squares estimate X is:

X = (ATpA) -1ATpLb (3.13)

In the above A, is the design matrix, ,X is the vector containing CnTm, Lb is the vector of

observations Ag]_) (k = 1, 2) and the weight matrix P is defined by:

(3.14)

with _2o being the a-priori variance of the unit weight (taken to be 1) and ZLb the variance-

covariance matrix of the observations. The a-posteriori variance of unit weight is given by:

where d.f. are the degrees of freedom, and the variance-covariance matrix of the estimates is:

(3.16)

For the purpose of combining the normal equations obtained here with con'esponding
normals obtained from the analysis of satellite perturbations, as well as with nom_als from altimeter

13



measurements,it is critical that ZLb properly reflects the accuracy of surface gravity data.

However, the inhomogeneity of the data sources based on which global mean anomaly databases

are compiled (Kim and Rapp, 1990) makes it difficult to provide realistic estimates of the anomaly
error variances, let alone error covariances between the mean values. In addition, consideration

even of simplistic models for the error covariances would make the formation of normal equations

practically impossible (for degrees of expansion equal to 50 or higher), due to computational

limitations. Accordingly, following previous experiences (Rapp and Pavlis, 1990), it was decided

to consider a diagonal :CLbmatrix, but modify the original error estimates for the anomalies in an

attempt to compensate for the neglected error covariances. Denoting by cr° the standard deviations
0fthe anomalies in SET 1 (which are identical to those in SET 2) and by CYi_ the modified values

used to form I;Lb, the following relationship was imposed:

max(8, 2 x c °) < (JiM < rain(16, 2 x (JiO) (3.17)

This modification yields a ratio 4 : 1 between maximum and minimum weights used in the

adjustment, and approximately corresponds to the weighting scheme used by Rapp and Pavlis

(ibid) for 30' x 30' mean anomalies. According to the modification (3.17), the RMS standard
deviation of the anomalies input to the adjustment is 13.7 mgal, so that the overall accuracy of

either SET 1 or SET 2 remains practically unchanged (see Table 2). With :_t.t, (and thus P) being

diagonal, the formation of ATpA and ATpLb can be done efficiently using analytical expressions
that avoid the use of matrix algebra, as explained by Pavlis (1988, section 4.2.1).

According to the above, two sets of normal equations were formed using SET 1 and SET 2

as input data respectively. Both normal equation sets correspond to an expansion complete to

degree and order 50. From each normal system the corresponding coefficient estimates were

computed. These are designated V1 (from SET 1) and V2 (from SET 2). In both cases 2598
unknown coefficients are estimated on the basis of 54048 1° x 1° mean anomalies, so that the

degree of freedom (d.f.) is 51450. In Table 3, statistical information related to the solutions V1

and V2 is given.

Table 3. statistical Information Related to the Gravity Solutions V1, V2 and C1, C2.

' V1 V2 C1 C2
1.

"'2
(jo

Min vij (regal)

Max vij (mgal)

Mean vij (regal)

RMS vij (regal)

Number of Ivijl > 7 regal

0.302

-117.8

187.5

0.0

7.3

11116

0.303

-117.7

187.5

0.0

7.3

11118

0.354

-119.5

195.2

0.4

8.2

14200

1.078

0.353

-119.3

195.3

0.2

8.1

14207

1.089

As it can be seen from Table 3, the solutions V1 and V2 are only marginally different (as

expected). The average percentage difference between them is 4.4%, while the RMS vndulation

and anomaly differences are 1.14 m and 0.73 mgal respectively. In Figure 3 the locations of the
11118 residuals from V2 which exceed in magnitude 7 mgal are shown. It is clear from this figure

that V2 fits well the input data over well surveyed (gravimetrically) continental areas (North

America, Australia, Europe and Africa), while most of the large residuals occur in ocean areas.

This is primarily due to the incompatibility between the high-frequency component of the surface

14
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anomaliesover theocean,with thecorrespondingcomponentof the altimetry-derivedanomalies
thatareusedin theevaluationof the"modifiedOSU89B"coefficients(seealso(Pavlis,1988)). It
shouldbeemphasizedherethat theresidualsfrom the solutionsemployingonly surfacegravity
data, representdominantly a "goodness-of-fit"of the estimatedcoefficients to the input data.
Long-wavelengtherrorsthat maybepresentin the surfaceanomaliescannot be detected without

the incorporation of superior independent information from satellite-derived normals.

The statistical information given in Table 3 does not provide any evidence that may be used

to decide which of the two alternative treatments of the input data (surface values or values reduced

to the ellipsoid) yields better results. Accordingly, it was decided to compare the results from the
two methods in greater detail over areas where:

High-quality surface gravity data are available

Significant variation in elevation is present
-- independent information, such as undulations obtained from GPS and leveling are available for

comparisons.

However, any comparisons between GPS-derived geoidal undulations and undulations computed

from the solutions V1 or V2 may be masked by long-wavelength errors that are present in the

surface gravity data. For this reason, as well as for the purpose of testing the compatibility of the
solutions V1 and V2 with a satellite-derived model, two preliminary combined solutions wcrc

performed whereby the coefficients from V1 and V2 were combined (in a least-squares sense) with
the GEM-T2 coefficients (Marsh et al., 1990). The error variance-covariance matrix

accompanying each solution was used as weight in order to estimate the "combined" model as a

weighted average of the two contributing coefficients sets. The resulting "combined" models are

designated C1 (V1 + GEM-T2) and C2 (V2 + GEM - T2). Statistics pertaining to the adjustn'ients

that produced C1 and C2 are given in Table 3. As it can be seen the RMS residuals from these

adjustments are only by about 10% higher than the corresponding values obtained when fitting the

surface gravity data alone. This provides an overall measure of the compatibility between the
terrestrial and the satellite implied solutions. In Figure 4, the locations of 14207 residuals from

C2, exceeding in magnitude 7 mgal are shown. In this figure extended areas in Asia and South
America are identified, where the terrestrial and satellite-implied anomalies are in disagreement.

Note that many of these areas cannot be identified in Figure 3, since the residuals from the

terrestrial-only solution represent primarily a goodness-of-fit to the data as explained before. As

part of the combination adjustments, calibration factors (see Section 4) were also computed,

considering the "combined" models versus GEM-T2 as a subset solution. Thcsc are givcn in Table
3 and their values indicate that the weighting scheme used for the surface anomalies, yields

satisfactory results. The average percentage difference between the solutions C1 and C2 is 2.7%,
while the RMS undulation and anomaly differences are 0.08 m and 0.36 mgal respectively.

Using the harmonic coefficients of the solutions C1 and C2, geoidaI undulations were

computed next according to:

50 n

N-- Z (a)nZ CornY.m(0,
1_ n=2 m=-n (3.18)

where the notation definitions are given in (Rapp and Pavlis, 1990, pp. 21899-21900). The
differences AN12 = N(C1) - N(C2) over the areas of Europe and North America are shown in

Figures 5 and 6 respectively. From these figures it can be seen that AN12 are highly correlated

with elevation. The signatures of the Alps in Europe and of the Rocky Mountains and Sierra

Nevada in North America are clearly identifiable.
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In the area of Europe 12 GPS stations forming part of the European GPS traverse (Torge et

al., 1989) were selected in the area of interest, in order to compare the geoidal undulations dcrived

from GPS positioning and leveling to the corresponding values obtained from the solutions C1 and

C2. For this purpose the contribution to the gravlmetric undulation from degree 51 to 360 was

computed using the coefficients of the model described in Section 6. The results from these

comparisons are summarized in Table 4.

Table 4. Undulation Comparisons at Selected GPS Stations in Europe. AN1 = Ncps - N(C 1),

M',I2 = NGPS - N(C2).

Station

Number

1

2

3
4

50.9227

50.5089

50.2988

50.0894

9.7604
9.6814

10.4542

10.9823

(m)
hell

250.190

336.324

336.478

318.680

(m)
NGPS

47.64

48.25
47.55

47.04

(m)
AN I

0.16

0.28

0.28

-0.01

5

6

7
8

9

10

11

12

49.7782

49.3477

49.0361

48.6780

48.3248

48.0417
47.7803

47.4901

11.0287

11.0215

!1.1316
11.5877

11.5709

11.6324

11.7235

11.2521

299.920

392.799

604.813

439.395

540.154

613.217
804.996

954.553

47.09

47.07

47.21
46.56

46.23

46.22

46.94

49.13

0.19

0.33

0.72

0.63

0.69

0.85

0.91

1.33

0.53Mean Difference

Standard Deviation Diff. 0.37

(m)
AN2

0.23

0.31

0.28

-0.O3

0.14

0.23

0.58

0.45

0.47

0.60
0.63

1.00

0.41

0.26

From Table 4 it is evident that N(C2) is in better overall agreement with NGp S them N(CI).

It is recognized here that the sample of the 12 GPS stations used for the comparisons is too small

to support a definitive argument as to wether the surface values or the values continued to the

ellipsoid provide a better modeling of the terrestrial anomaly data. The undulation differences
between the two alternative solutions, being on the order of 20 to 40 cm over mountainous arcas,

require very accurate independently derived undulations so that meaningful comparisons can be
made. Nevertheless, based on the limited evidence presented here, it was decided that the normal

equations formed considering the anomalies continued to the ellipsoid (solution V2) are to bc

preferred. These normal equations were subsequently used in combination with GEM-T2 and the
normals obtained from satellite altimetry, to provide the solutions discussed in section 4.

The combination of two normal equation sets obtained from different data is straight

forward in case the two sets were formed using the same approximate values for the unknown

parameters (Pavlis, 1988, p. 68). If this is not the case, one of the two sets needs to be

"translated" to the approximate values of the second. To illustrate the principle let:

N'2 = U (3.

be the normals obtained here from surface gravity, where:

N = ATpA ; U = ATpLb (3,20)

These refer to the ellipsoidal even zonal coefficients as approximate values, so that (3.19) can be
written as:
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_(_TOT-X_)= U (3.21)

where XTOT are the adjusted gravitational harmonic coefficients and XELL the vector containing the

values of the even zonal coeffi£ients of the ellipsoidal gravitational potential (and zeroes for the rest

of the coefficients present in X'rOT). If X,r2 contains the values of the coefficients in GEM-T2,

equation (3.21) can be written as:

N[(_o_-x=)+(x_- x_,.,.)]=tJ (3.22)

or:

N(_o_-X_)--u- N(x_-x_,,.) (3.23)

so that, to refer the normals (3.21) to the GEM-T2 approximate values the vector U needs to be

"translated" by - N(XT2 - XELL). The principle (obviously) applies to any change of approximate
values.

21



4.0 The Initial Combination Solutions to Obtain a Potential Coefficient Model to

Degree 50

The general least squares adjustment procedure, with a priori parameter weights, was used

in the estimation of the unknowns. The equations are described in Rapp and Pavlis (1990, p. 21,

889). For this discussion we def'me the normal equation form as follows:

N = ATpA (4.1)

where A is the design matrix and P is the weight matrix assumed here to be a diagonal matrix. We

have two types of normal equations: one from the altimeter data, NA; the other from surface

gravity data, NG. The solution vector (actually the correction vector to the a priori parameter
values) is:

VX = - (NA + NG + PT2 + Px)-I(UA + UG) (4.2)

where lar2 is the inverse of the error covariance of the GEM-T2 potential coefficient model, Px are

the a priori weights on the selected parameters of the adjustment. UA and Uc are the misclosure
vectors.

In our adjustment the a priori weights were used in two cases: 1) sea surface topography

coefficients and 2) potential coefficients not included in GEM-T2. In the sea surface topography

coefficients we need to fix (see discussion in Denker and Rapp, 1990, p. I3,158) the degree I, 0

term. This term can not be separated from the 1-cy/rev orbit correction term and therefore we fix

the value at an oceanographic estimate. This values is 0.1297 m based on the harmonic analysis of

the Levitus sea surface topography by Engelis (1987b, Table 1, p. 28, Ocean Solution to Degree
10). The initial value of the other coefficients were taken as zero with standard deviations (to

degree 10) based on the root mean square coefficient implied by the ocean solution. For SST

solutions to degree 15 the standard deviation for coefficients from degree 11 to 15 was taken to be

the same as that at degree 10. The standard deviations used are given in Table 5. Also included in

this table are the standard deviations implied by the SST signal model given by Nerem et al (1990a,

eq. 20). With the exception of degree 1, the standard deviations used in this paper are roughly

50% larger than used by Nerem et al. This simply implies that we put less of a constraint on our

SST estimates than was described in the Nerem et al study.

Table 5. A Priori Standard Deviations for Each SST Harmonic Coefficient (Unit = cm)

De_ree
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

This Paper
12.8

22.4*

10.5

6.41

6.22

6.36

4.35

2.66

2.29

1.31

1.31

1.31

1.31

1.31

1.31

Nerem

19.0

7.88

4.71

3.27

2.46

1.95

1.61

1.35

1.17

1.02

* based on a degree variance of 2500 cm 2.
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A priori estimatesfor the C21and $21 potential coefficients were also included. These
coefficients were not incorporated in the altimeter observation equations but they were in the

gravity anomaly observation equations. Consequently the gravity normal equations have such
coefficients and correlations do exist between these coefficients and others in the solution. To

force the final C2,1 and SZI coefficients to be zero a high weight was assigned to force the zero a

priori value.

This analysis used one year of Geosat data represented by 22 ERMs. Since each ERM

represents the same geographic region, the use of 22 ERMs would cause a disproportionate fit of
the model to the altimeter data. Consequently a down weighting of the altimeter data is needed to

assume a balanced solution. The down weighting problem was discussed by Denker and Rapp

(1990, p. 13,156).

Initial combination solutions were made with down weighting factors of 1/24 and 1/96

using the initial V1 surface gravity normal equation set as described in Section 3. Solutions were

made with sea surface topography expansions to degree 10 and 15. Using the improved V2

gravity normal equations sea surface topography solutions to degree 10 and 15 were also made

with the 1/24 and 1/96 down weighting of the altimeter normal equations. Table 6 defines the

various solutions made for this study.

Table 6. Designation of One Year Solutions

Solution

FYS 10.W24GV

FYS 10.W96GV

FYS 15.W24GV

FYS 10.W24GW

FYS 10.W96GW

FYS 15.W96GW

SST(max)
10

10

15

10

10

15

Alt. Weights
1/24

1/96

1/24

1/24

1/96

1/96

Surface Normals

V1

V1

V1

V2

V2

V2

As noted in Section 3 the solutions corresponding to the V 1 normal equation set were

found slightly poorer in several tests than the V2 solution. Therefore, in subsequent analysis our

results will primarily refer to the V2 solution.

We first compare the effect of the altimeter down weighting factor on the corrections to

residual sea surface heights, geoid undulation corrections, crossover discrepancies, etc. Results
for six arcs out of the 76 used are shown in Table 7. All values are given for the solution of sea

surface topography to degree 10. In this table _ is the root mean square sea surface height implied

by the harmonic coefficients and Ah (residual) is the root mean square residual of the altimeter

measurement observation equation, eq. 2.2.

Table 7 can be compared to Table 4 in Denker and Rapp (1990). The comparison will

show that the value of Aha + Aht has been reduced in this new solution by about 30% and AN_ has

been reduced by 51%. The sea surface topography, rms residuals, and rms crossover

discrepancies are all comparable in both solutions. We also see from Table 7 that the results are

insensitive to the 1/24 or 1/96 weighting scheme. We do see a small (1 cm) increase in the Ah
(residual) and crossover discrepancy when going from the 1/24 to 1/96 weighting. The increase is

expected; the small rms is welcome.
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Table7. RootMean SquareValue of Corrections to the Various Terms in the Error Model, and

Crossover Discrepancies Based on the Adjusted Orbits and the One Year Solution.
Units are cm.

Arc Solution

1 S 10.W24GW

S 10.W96GW

2 S 10.W24GW

S 10.W96GW

3 S10.W24GW

S 10.W96GW

22 S 10.W24GW

S 10.W96GW

23 S 10.W24GW

S 10.W96GW

24 S 10.W24GW

S 10.W96GW

Ah G + Ahl ANG

71 119

71 118

82 115

81 114

80 117

80 117

'70 1'19

70 118

73 117

72 116

77 117

76 116

64

63

66

65

66

65

81

81

82

81

83

82

I ,

Ah Model AhResidual iAdjCrossover Diff.!

143 18 19

142 19 2O

149 19 21

149 19 22

152 18 21
151 19 23

I62 19 21
162 20 22

161 20 21

161 21 22

169

169

18

19

20

21

The next comparison was to compare the heights at the one day overlaps in the six day

arcs. The results are shown in Table 8 for the degree 10 SST case.

Table 8. Mean and RMS Value of Satellite Height Differences at One Day Overlapping Arc

Segments. Units are cm.

Difference

Solution Mean RMSOverlap Arcs
1/2

2/3

22/23

23/24

S 10.W24GW

S 10.W96GW

S 10.W24GW
S 10.W96GW

S 10.W24GW

S 10.W96GW

S 10.W24GW

S 10.W96GW

-4

-4

-3

-3

4

4

6

6

This table gives results that indicate there is no sensitivity to the altimeter weighting scheme

in the orbit overlap comparisons.

Next we calculated the calibration factors for several solutions with respect to the GEM-T2

model and the standard deviations of the coefficients implied by the error covariance matrix. The

calibration factor was introduced by Lerch et al. (1988) and used by various investigators (e.g.

Rapp and Pavlis, 1990, p. 21,898) to calibrate various models_ Let AFn be the root mean Square

(rms) coefficient difference, at degree n, between two potential coefficient models. Specifically:

ACnm + ASnm 7
=['=nL2_0 2 2 1/2AFn K -3 (4.3)

where Nn is the number of coefficients at degree n. The rms coefficient error at degree n, for the

solution case would be:
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"° j (4.4)

with a similar expression, an, for the GEM-T2 model. We define a term t_ as follows:

= o2n (4.5)

For a given degree the calibration factor is:

kn = AFn]tn (4.6)

The average calibration factor is:

50

= __1._ X Nnkn
N*

n=2 (4.7)

Values of k are given in Table 9.

Table 9. Calibration Factors (k)

Solution Value

FYS 10.W24GW 1. i 6

FYS 15.W24GW 1.15

FYS 10.W96GW 1.14

The values in Table 9 indicate the low sensitivity of the calibration factor to the altimeter weighting

factor. Assuming the weighting procedures used in the solution are appropriate, the value of k =

1.14 indicates the standard deviations implied by the GEM-T2 error covariance matrix may be

slightly optimistic. (Recall that the ideal value of k would be one.)

In order to further investigate the impact of the different altimeter weighting procedures the

standard errors of the geoid undulations and sea surface topography were computed. This was

done by calculating the propagated error in the parameters of the solution to the undulation error

and the sea surface topography error on a 3% grid. The root mean square error was calculated for
land and ocean areas. An ocean area was defined to be where -70 ° < ¢ < 70 ° and h < -200 m,

using a 30' x 30' elevation file. The results are given in Table 10 for geoid undulation and Table
16 in Section 5 for sea surface topography. Also shown are global averages computed from the

gridded values and the error degree variances. These two values will be similar but not identical
since the use of the error degree variance approach neglects the error correlation of the coefficients.

Table 10. Standard Error of Geoid Undulation Based on Selected Degree 50 Combination
Solutions. Units are cm.

Solution Ocean Land

FYS 10.W24GW 9.6 36.5

FYS 10.W96GW 14.2 39.4

Global

23.2

26.2

Through Degree Variances
21.9

24.8

From Table 10 we see that the undulation error in the ocean areas is 26% of the undulation

error in the land areas. The use of the 1/96 weighting procedure increases the undulation error

from 9.6 cm (1/24 case) to 14.2 cm. A smaller percentage change is seen for the undulation efrof
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on land. Also note that the error computed through the degree variances is slightly (6%) smaller

than when the more rigorous approach is used.

A comparison was made of the geoid undulations implied by the 1/24 and 1/96 weighting
solutions. The differences are shown in Table 11.

Table 11. Comparison of Geoid Undulations Implied by the FYS 10.W96GW and
FYSi0.W24GW Solution to Degree 50. Units are in cm.

Ocean

RMS Dif. 6.4

Minimum Dif. -61.4

Maximum Dif. 43.0

Land

22.3

-92.6
94.7

Global

14

-92.6

94.7

The MS differences seen in this table are quite consistent with the standard errors of the solutions

seen from Table 10. Of interest is how the weight changes on the altimeter data effect the

undulations on land.

At this point several external evaluations were carded out to help in the selection of the

preferred altimeter weighting scheme. A complete discussion of external comparisons will be

made in Section 8 but two pertinent comparisons will be addressed here. In these comparisons,

the degree 50 potential coefficient model (W96GW or W24GW) was augmented by the coefficients
of the OSU89B model from degree 51 to 360.

The first comparison was with geoid undulations computed at the GPS stations described

in Rapp and Pavlis (ibid, p. 21,900-21,901). Table 12 shows the standard deviation of the
undulation difference (GPS derived minus model) for the two different weighting procedures.

Table 12. Standard Deviation of GPS/Leveling Implied Geoid Undulation Mi nus Model Gcoid

Undulation for Two Altimeter Weighting Procedures. Units are cm.

Traverse

Europe
Canada

Australia

Scandinavia

Tennessee

Model

FYS 10.W24GW

37

37

39

35

24

FYS 10.W96GW

34

37

35

32

21

The values given in Table 12 imply the 1/96 weighting gives slightly better comparisons at the

GPS sites. Examination of geoid undulation difference maps showed differences that could reach

95 cm although the rms undulation difference between the two solutions was 14 cm.

The next test involved the comparison of the geoid undulation implied by a Geosat ERM

with the undulation implied by the geopotential model. The comparison is generally described by

Rapp and Pavlis (ibid, Section 4.4). In the comparison to be described here the satellite orbits and

sea surface topography to degree 10 were implied by a preliminary solution with a 1/24 weight.

Table 13 shows these comparisons for 768286 points on approximately ERM 7.
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Table13. Comparison of Potential Model and Altimeter Implied Geoid Undulations

Model

FYS10.W96GW

Std. Dev.

No.>_ 1.5m

No. > 2.0 m

FYS10.W24GW

33.2 cm

4149

1326

34.0 cm

4386

1437

The numerical results indicate a slightly poorer fit when the 1/96 weighting was used. This is

clearly expected but the only very slight deterioration indicates the 1/96 can be used without any

significant deterioration of the altimeter fits.

Taking into account the information given in the past several tables the 1/96 weighting

procedure was selected to be that used for the OSU91A solution. The main reason for the selection
was related to the increased undulation discrepancies at the GPS stations when using the 1/24

procedure. This, coupled with the only slight altimeter fit deterioration when the 1/96 weights
were used, led to the 1/96 weighting procedure for the final solution.

Figure 7 shows the geoid undulation commission error implied by the FYS10.W96GW
solution. This map can be compared to Figure 8 in Denker and Rapp (ibid) or Figure 11 of Rapp

and Pavlis (ibid). However it should be noted that the Figure 7 map reflects the errors in the

complete degree 50 model while the other figures were based on coefficients to degree 36 that were
in the GEM-T1 model. We see from this figure the significantly improved accuracy in the ocean

areas as compared to the land. This, of course, was also apparent, from Table 10. The geoid

accuracy in the well surveyed (gravimetrically) areas (U.S., Europe, Australia) is on the order of

30 cm while the accuracy is 50 to 60 cm in the poorer areas. Of obvious note is the smaller errors

in the polar regions despite the fact that data coverage is sparse. A reasonable explanation for" why
this error is lower is needed. The accuracy by degree, and cumulatively, will be discussed in

Section 6. We can repeat, from Table 10, that the global undulation accuracy of the model (1/96)

is 26 cm which may be contrasted with 33 cm for the OSU89B model to degree 50 (Rapp and

Pavlis, ibid, Table 11).

The bias (or ao) term in equation (2.4) was examined for all 76 arcs. For the (1/24)

weighting the bias was 62.0 + 2.1 cm while for the (1/96) weighting it was 62.3 + 2.1 cm

indicating no essential bias difference in the weighting schemes. Adopting the (1/96) bias wdue

would imply an equatorial radius of 6378137.00 m minus 0.623 m or 6378136.38 m. The bias

values were individually examined and plotted in Figure 8 starting with the first arc. The bias

value is plotted at a time associated with the middle of the arc. A cyclic variation with an amplitude

of about 2 cm is seen. The data was spectrally analyzed with the spectrum shown ira Figure 9.

There are two clear lines; one at 2 cycle/year and the other at 22 cycles/year. The first line is
associated with a semi-annual variation while the second line is associated with the length (17.05

days) of a Geosat ERM. The key point is to understand why there should be a semi-annual
variation in the bias term. Is the variation connected with seasonal pressure changes on the oceans;

is it associated with changes in the tropospheric corrections; do seasonal winds play a role; are

there tide errors with a semi-annual signal; etc. Additional study is needed to explain the bias
variation.

This Section has examined the first stage in our development of a geopotential model to

degree 50, a sea surface topography model to degree 10, and orbit correction parameters for 76

Geosat arcs covering the first year of the ERM. Different weighting procedures were tested,
evaluated, and selected for further use. The root mean square rms residual for the altimeter

observation was typically + 19 cm with the rms crossover discrepancy being on the order of + 22

27



30nlliUq

0

o
(_
o'I

0
(_
03

0
r_
c%j

0

(_
,--4

_J

O
(19

tiJ "-_
Q

I--

o o
Z i.rl

_.I

o

c2_

o

o
(no

0

00

(23 ci o

(x3 00 o i i

l_j?_i__..___.......;_.....i_,,_,_._.

__: L ._!._ .... ".,.... b ! |_°,x o

_} _ :_,a.;!! ,f'(-o

{_./ ' ',i.).,'/t(r<- _/ i -it.... o

!_i:, (_:_:# _-,J_z::x _}\ t'i,' ( ! -

Ikl> t"h \:i_ --"._o_7 <, J l).
0

0 o o

_ 0 i I I

30nlilU7

ILl
0

I---

(D
Z
O
.J =

28



0
0

_ l l I L 1 _h ....... I I k ..... l [ J__- _j

If)

NOV DEC JflN FED I';?lR fiPR I';R ," JL]N JUL RUg SEP OCT Iq_._V

1987

Figure 8. Gcosat Bias Term (ao) for 76 Arcs Based on the FYS 10.W96GW Solution.

C_
CD

CA

_g

p---

_J

fl__

_g
CE ,

(.D

0.00 u,.o0 8.00 !2.00 lG. O0 20. O0 2q.o0 28. O0

FREOUENCY [CYCLE/YERR)

I
32.00

Figure 9. Spectrum of Gcosat Bias Terms for the 76 Arcs Used in the FYS10.W96GW Solution.

29



cm. This is a considerable improvement from the 49 cm crossover discrepancies associated with

the original GEM-T2 orbits (Haines et al, 1990, p. 2884). In the next section we consider details
of the sea surface topography solutions.

7
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5.0 The Sea Surface Topography Representations

5.1 The One Year Average

As noted in the previous section a number of solutions for sea surface topography were

made. Expansions to degree 10 and degree 15 were made with our final altimeter weighting

scheme of 1/96. For each solution the degree (1, 0) term was fixed at the value implied by the

Engelis harmonic analysis of the Levitus SST information. The harmonic coefficients and their
standard deviation are given in Table 14 for the degree 10 and Table 15 for the degree 15 solution.

In Figures 10 and 11 the sea surface topography for the degree 10 and degree 15 solution

are given. Figure 10 can be compared to Figure 6 Denker and Rapp (1990). The essential

difference between the two is that the solution of this report shows a reasonable slope across the

northern Pacific Ocean, while the Denker/Rapp initial solution did not. I11 order to achieve a

reasonable slope, Denker/Rapp were forced to fix the degree (1, 1) harmonics at oceanographically

implied values. In the current solution no such fixing is required. This does imply that the GEM-

T2 orbits, with a consistent gravity model and geocentric station set, yields better long wavelength

oceanographic information than the GEM-T1 orbits.

Another diffexence between the 10, 10 solution of this paper and the Denker/Rapp solution

is the high near 0 ° latitude, and 210 ° longitude. This high was not apparent in Dcnker/Rapp but it

has been seen in the solutions (PGS3853) of Nerem et al. (1990).

The geostrophic currents implied by the degree 10 solution are shown in Figure 12. This

map can be compared to Plate 1 of Denker and Rapp (ibid) where similarities exist but numerous
differences can be seen. For example, the California current is more reasonably represented on the

newer map than the earlier version. There is a complex circulation pattern around latitude 0 ° and
longitude 210 °. The solution is finding it difficult to separate the North Equatorial Current from the

Equatorial Counter Current. This is not unreasonable since a degree 10 solution corresponds to a

linear resolution of 1998 km. Other major currents (e.q. Kuroshio Current, Mozambique Current,

Gulf Stream (in a broad sense), South Equatorial Current, Brazil Current, Antarctic Circumpolar

Current, etc.) are evident from the flow map. However there is no sign of the Agulhas Current off

the south tip of Africa. The degree 15 flow vector map shows more detail than seen in Figure 12.

However these details are fragmented and not quite believable. For the record it is shown as

Figure 13.

We have examined in greater detail sea surface topography implied by the degree 10

solution in the Mediterranean Sea. Figure 14 shows the SST with a 10 cm contour interval. This

figure shows a decrease of the SST in a northeast direction. The maximum change in SST in the

Mediterranean Sea, from Africa (_ = 31 °, 7t = 18 °) to the north end of the Agean Sea is 98 cm.

From the entrance to the Mediterranean to the north end of the Agean Sea, the SST difference is 94
cm.

Figure 14 may be compared to Figure 31 of Lisitzin (1974) which displays the mean sea

level in the Mediterranean Sea. The slope pattern follows quite well that shown in Figure 14. For

example, the mean sea level change from the entrance to the Mediterranean to the Agean Sea is 80

cm (Agean is lower). This compares well with the 94 cm found in this study.

We have evaluated sea surface topography estimates from several other harmonic models in

the Mediterranean Sea. None show patterns resembling the Lisitzin result. This is because there

SST solutions did not incorporate any data form the Mediterranean region in their solution.
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Table 14. Sea Surface Topography Harmonic Coefficients and Their Standard Deviation Implied

by the First Year of the ERM. Degee 10 Model. Units are meters.

n m c
1 0 0.1297

2 0 -0.4933

3 0 0.1667

4 0 -0.0582

5 0 0.1045

6 0 0.1818

7 0 -0.0312

8 0 0.0466

9 0 -0.0374

I0 0 0.0101

1 1 -0.1550

2 1 -0.0628

3 1 -0.0415

4 1 0.0231

5 1 -0.0056

6 1 0.0294

7 1 0.0912

8 1 -0.0559

9 1 0.0217

i0 1 0.0372

2 2 0.0106

3 2 0.0329

4 2 -0.0104

5 2 0.0107

6 2 -0.0008

7 2 0.0285

8 2 -0.0028

9 2 0.0000

I0 2 -0.0207

3 3 -0.0174

4 3 0.0282

5 3 0.0077

6 3 0.0156

7 3 0.0255

8 3 0.0201

9 3 -0.0343

i0 3 0.0074

4 4 -0.0048

5 4 -0.0337

6 4 -0.0014

7 4 0.0179

8 4 0.0319

9 4 0.0079

i0 4 O.0108

5 5 0.0039

6 5 0.0173

7 5 0.0282

8 5 0.0012

9 5 0.0221

I0 5 -0.0117

6 6 0.0109

7 6 0.0244

8 6 0.0081

9 6 -0.0049

10 6 -0.0092

7 7 0.0205

8 7 -0.0060

9 7 0.0018

i0 7 -0.0013

s o(c) a(s)
0.0010

0.0341

0.0292

0.0277

0.0257

0.0229

0.0189

0.0150

0.0119

0.0090

0.0268

0.0173

0 0179

0 0185

0 0160

0 0164

0 0142

0 0119

0 0117

0.0084

O.O2OO

0.0281

0.0293

0.0255

0.02O8

0.0172

0.0144

0.0123

0.0095

0.0165

0.0191

0 0204

0 0189

0 0153

0 0127

0 0116

0 0084

0 0134

0 0170

0 0166

0 0151

0 0124

0.0106

0.0078

0.0129

0.0139

0.0135

0.0117

0.0101

0.0074

0.0124

0.0111

0.0101

0.0092

0.0068

0.0099

0.0097

0.0083

0.0065

-0.0978

0.0366

-0.0308

0.0015

0.0149

0,0119

0.0290

-0.0389

0.0429

-0.0224

0.0324

-0.0511

-0.0400

-0.0024

0.0188

0.0302

0.0145

-0.0267

0.0017

-0.0269

-0.0107

-0.0266

-0 0718

-0 0356

0 0064

0 0282

0 0150

-0 0265

0 0180

-0 0094

-0.0229

-0.0162

-0.0032

-0.0168

0.0050
0.0029

0.0024

0.0054

-0.0172

O.0O7O
-0.0179

0.0161

-0.0050

-0.0056

0.0121

0.0056

0.0053

0.0098

0.0065

0.0333

0.0409

0.0392

0.0305

0.0273

0.0241

0.0205

0.0160

0.0140

0.0095

0.0181
0.0209

0.0216

0.0206

0.0181

0.0158

0.0134

0.0118

0.0093

0.0177

0.0203

0.0221

0.0207

0.0163

0.0132

0.0117

0.0082

0.0157

0.0162

0.0170

0.0159

0.0127

0.0106

0.0077

0.0135

0.0141

0.0135

0.0120

0.0102

0.0075

0.0100

0.0114

0.0103

0.0090

0.0066

0.0086

0,0090

0.0081

0.0062
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8 8 -0.0030 0.0151 0.0085 0.0081

9 8 0.0024 0.0075 0.0079 0.0082

i0 8 -0.0180 0.0103 0.0060 0.0060

9 9 0.0098 0.0108 0.0074 0.0074

I0 9 -0.0094 0.0165 0.0063 0.0060

i0 I0 0.0135 -0.0012 0.0064 0.0069

The standard error of the sea surface topography is shown for the degree 10 solution in

Figure 15. This map is comparable to Figure 9 of Denker/Rapp. From this figure we see that the

standard deviation is fairly uniform over the oceans, increasing as one approaches land areas. The

standard error of the SST has been computed in the ocean areas (-70 ° < _ < 70°); h < -200 m) for

three solutions developed for this report. There values are shown in Table 16.

Table 16. Standard Error of Sea Surface Topography in the Ocean Areas. Units are cm.

Solution

FYS 10.W24GW

FYS 10.W96GW

FYS 15.W96GW

Standard Deviation

+7.0

8.4

11.6

Through Delg Variances
14.9

16.6

20.6

From Table 16 we see that the standard deviation of the sea surface topography in the ocean

areas increases from 7.0 cm with the 1/24 weighting to 8.4 cm with the 1/96 weighting (for the

degree 10 case). These values are approximately 50% of that found through the error degree
varianced. Recall that the error degree variances reflect the higher standard deviations in the land

areas. The error for the 15, 15 solution is higher because twice as many coefficients are included

in the degree 15 model.

It is usual to plot the power spectrum of the sea surface topography and compare it to

corresponding error (SST and geoid) spectra. Denker and Rapp (1990) have pointed out serious

limitations of this process since the SST is defined only over the oceans. Nevertheless, for

continuity purposes we show in Figure 16, the square root of the power spectra of the two sea

surface topography solutions, as well as the errors, by degree, of these models and the geoid

undulation errors that are part of solution leading to the degree 10 SST model.

From Figure 16 we see that up to degree 6, the spectrum from the degree 15 solution is less

than that of the degree 10 solution. For example, at degree 10, the signal from the degree If)

solution is 6.9 cm while it is (at the same degree) 5.0 cm from the degree 15 solution. This

suggests some spectral leakage from the higher harmonics into the lower hamaonics. After degree

10, the signal from the degree 15 solution is nearly fiat.

The degree errors of the degree 15 solution are always greater than the degree 10 solution.

At degree 10, it is 30% higher. The geoid undulation error is always smaller than the signal

suggesting that SST determination out to degree 15 could be made. However the discussion in

Denker and Rapp (1990, p. 13,157) notes the high negative correlation between the SST

coefficients and the potential coefficients (geoid information) between degree 10 and 15. This case

would still exist for the solutions described in this report.

We next examine the second degree zonal harmonic of sea surface topography. In principle

this harmonic is independent of the tidal (non-tidal, zero, mean) reference system, if the sea surface

and geoid are consistently treated. Some papers, however, have published c2,0 values in non-

consistent systems. However, knowing the system, one can convert to a common system. Some

of the conversion procedures are described in Rapp (1989). Other solutions are describcd in

Nerem et al (1990, p. 3167) and Marsh et al. (1990, p. 13,143). The SST coefficients given in
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Table 15. SeaSurfaceTopographyHarmonicCoefficientsandTheirStandardDeviationImplied
by theFirst Yearof theERM. De,Tee15Model. Units aremeters.
n rn c s _(c) o(s)
1 0
2 0

3 0
4 0

5 0

6 0

7 0

8 0

9 0
10 0
ii 0

12 0

13 0

14 0

15 0
1 1
2 1
3 1

4 i
5 1
6 1
7 1
8 1

9 1
10 1
11 1

12 1
13 1

14 1
15 1
2 2

3 2

4 2

5 2
6 2

7 2

8 2

9 2

10 2

11 2
12 2

13 2

14 2

15 2

3 3

4 3

5 3

6 3

7 3

8 3

9 3

10 3

Ii 3

12 3

13 3

14 3

15 3

4 4

5 4

0.1297

-0.5173
0.1899

-0.0761
0.1070

0.1659

-0.0188

0.0186
-0.0351
0.0099
0.0029

-0.0125
-0.0O09
-0.0008

0 0007
-0 1540
-0 0585
-0 0455

0 0320
-0 0108
0 0243

0 0685

-0.0380

0.0206

0.0259

-0.0108

0.0121

-0.0034

-0.0060
0.0113
0.0160
0 0335

0 0036
0 0060

-0 0066

0 0335

0 0110
-0.0207

-0.0016

0.0182
0.0002

-0.0105

0.0218

-0.0152

-0.0143

0.0169
0.0129

0.0096
0.0088

0.0206
-0.0221

-0.0027
-0.0025
0.0020

0.0022
-0.0016
0.0119

-0.0118
-0.0270

-0.0913
0.0207

-0.0410

0.0148
0.0055
0.0265

0.0251
-0.0356
0 0151

-0 0020
-0 0022

0 0044
-0 0186

0 0218
0.0000
0.0296

-0.0540

-0.0381

0.0009
0.0160

0.0184
0.0012

-0.0170
-0 0OO6

-0 0072
-0 0079
0 0033

-0 0080

0 0086
-0 0185
-0.0248

-0.0247
-0.0575

-0.0419
-0.0050
0.0240
0.0084

-0.0084
0.0021

0.0056
-0.0070
-0.0046
-0.0250

0.0105

0.0010
0.0375
0.0328
0.0300

0.0288
0.0252
0.0222

0.0175

0.0154

0.0108

0.0101

0.0090

0.0084

0.0082

0.0077
0.0286
0.0190

0.0199
0.0203

0.0178

0.0179

0.0176

0.0146

0.0143

0.0103

0.0101

0.0092

0.0093

0.0084

0.0079
0.0223

0.0296
0.0306
0.0267

0.0221
0.0193
0.0163
0.0149
0 0106

0 0104
0 0092
0 0093
0 0090

0 0091
0.0190
0.0209

0.0220
0.0204

0.0173
0.0148

0.0136
0.0104
0.0099
0.0094

0.0094
0.0089
0.0086
0.0153

0.0186

0.0350

0.0428
0.0411
0.0319

0.0288
0.0258
0.0232
0.0180
0.0166

0.0111
0.0108
0.0099
0.0096

0.0090
0.0084

0.0213
0.0227
0.0232
0.0222
0 0196

0 0180
0 0156
0 0147
0 0105

0 0104
0 0093
0.0093
0.0091

0.0091
0.0203
0.0217

0.0234
0.0221
0.0180

0.0150
0.0134

0.0103
0.0098
0.0092

0.0093
0.0087

0.0085

0.0186
0.0179
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6
7

8

9
I0
II
12

13
14

15
5

6
7

8

9
I0
Ii

12
13

14
15
6

7

8

9
I0
Ii

12
13
14

15
7

8
9

I0
ii
12
13

14
15

8
9

I0
Ii

12
13
14
15
9

I0
ii
12

13

14
15
I0
ii
12
13

14

4

4
4

4
4
4
4

4
4

4
5
5

5

5

5

5

5

5
5

5

5

6

6

6

6

6

6

6

6

6

6

7

7

7

7

7

7

7

7

7

8

8

8

8

8
8

8

8
9

9

9

9

9

9

9

10

10

10

10

10

0.0045
0.0165
0.0272

-0.0012
0.0091
0.0035

0.0041
-0.0006

0.0018
O.0O06
0.0076

0.0163
0.0323
0.0065

0.0216

-0.0118
-0.0021
-0.0080

0 0015
0 0042
0 O075
0 0054

0 0303

0 0032

-0 0056

-0 0073

-0.0059
0.0142

-0.0018

0.0082
0.0064
0.0128

0.0106
0.0011

-0.0076
0.0011

-0.0046
-0.0012
-0.0150

-0.0120
-0.0028
0.0096

-0.0190

-0 0019
0 0063
0 0016

-0 0093
0 0017
0 0116

-0.0045
0.0015

-0.0058

0.0072
-0.0083
0.0022
0.0126

-0.0029

0.0104

-0.0052

0.0033

-0.0078
-0.0090
-0.0126
0.0030

-0.0117
0.0074
0.0006

0.0099
-0.0107
-0.0OO3

0.0049
0.0062
0.0013

0.0167
-0.0171

-0.0097
-0.0123

0.0091
-0.0017

0.0035
0.0008

-0.0117
0.0054

-0.0027
0.0016
0.0034

-0.0063
-0.0036

-0.0034
-0.0123
0.0117

-0.0024
0.0062
0.OOO4
0.0009

O.0010
0.0036

-0 0066

0 0049
-0 0098

0 0139
0 0111
0 0179
0.0031

0.0054
0.0034

-0.0027

O.0110

0.0081
0.0181
0.0031
0.0123

-0.0061

0.0012
-0.0121
-0.0069
0.0069

-0.0039
0.0063

0.0131

0.0178
0.0167

0.0142
0.0126

0.0099
0.0096

0.0092
0.0088

0.0086
0.0087
0.0155

0.0160
0.0154

0.0134
0.0122

0.0095
0.0092
0.0088

O.0090
0.0087
0 0081

0 0154

0 0136
0 0123
0 0113
0 0091

0 0088
0 OO84
0 0084

0.0079
0.0080
0.0135
0.0123

0.0108
0.0087

0.0085

0.0079
0.0081
0.0080
0.0076

0.0120
0.0102
0.0084

0.0078
0.0076
0.0076
0.0073

0.0071

0.0104

0.0086
0.0080

0.0071
0.0071
0.0067
0.0069
0.0084
0.0074

0.0069
0.0064
0.0062

0.0189
0.0175
0.0144
0.0126

0.0099
0.0095
0.0093

0.0088
0.0086
0.0087

0.0159
0.0160
0.0152

0.0137
0.0122

0.0095
0.0093

0.0087
0.0090
0 0088
0 0081

0 0127
0 0136
0 0121
0 0107
0 0090

0 0087
0 0083

0 0084
0 0079
0.0080
0.0120

0.0112
0.0106
0.0084
0.0084

0.0079
0.0080
0.0079

0.0075

0.0110
0.0103
0.0081
0.0076

0.0074

0.0075
0.0072
0.0070
0.0104
0.0082

0.0079
0.0070
0.0071

0.0066

0.0069

0.0089

0,0078

0.0070

0.0063

0.0062
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15 i0 0.0015 0.0086 0.0060 0.0060

Ii Ii 0.0019 -0.0092 0.0081 0.0081

12 Ii -0.0072 0.0105 0.0070 0.0072

13 Ii 0.0043 -0.0085 0.0069 0.0069

14 ii 0.0029 0.0027 0.0059 0.0059

15 ii -0.0071 -0.0072 0.0057 0.0057

12 12 0.0047 -0.0035 0.0071 0.0071

13 12 -0.0013 0.0095 0.0064 0.0063

14 12 0.0010 -0.0013 0.0059 0.0059
15 12 -0.0032 0.0100 0.0051 0.0051

13 13 0.0074 -0.0022 0.0064 0.0066

14 13 0.0015 0.0020 0.0060 0.0062

15 13 0.0059 -0.0061 0.0051 0.0052

14 14 0.0034 0.0001 0.0061 0.0062

15 14 0.0006 -0.0048 0.0054 0.0053

15 15 0.0140 0.0004 0.0060 0.0061

Table 14 have been derived from a consistent tidal system and no correction term is needed.

17 summarizes some determinations of c2,0 for SST.

Table

Table 17. The Second Degree Fully Normalized Harmonic Coefficient of Sea Surface

Topography. Units are cm.

Solution

Mather (1978)

Mather(1978)

Engelis (1987)
Ohio State (1988)

Marsh et al (1990)

Nerem et al (1990)

Denker/Rapp(1990)

Putney et al (1991)

TEG-2 (1991)

This paper

Data

Geos-3

Oceanographic

Oceanographic

Seasat (17 days)
Seasat

Geosat (3/17 days)

Geosat (one year)
Geosat (3 months)
Geosat

Geosat (one year)or

Value

-43

-46

-28

-47

-44

-33
-39

-34

-40

-49

From Table I7 we see there is a wide range of values for this coefficient. The value obtained in

this paper is consistent with the ocean results of Mather (1978) and the Ohio State 1988 Seasat

(17day) solution carried out by Knudsen (1988, private communication). The value is smaller for
the Geosat solution that has used less data than the new Ohio State solution.

5.2 Temporal Variations of the Ocean Surface

The sea surface heights developed from the GEM-T2 improved orbits enables us to study

the time variations in the ocean surface. For this paper we will examine the variations in two ways

that are described in the next two sections. The study of large scale time variations has been

described by Denker (1990, Section 4.4) and Nerem et al. (1990b).

5.2.1 Temporal Variations Through Data Related to the Harmonic Analysis of Sea

Surface Topography

The sea surface topography defined so far represents the average over the first year of the

ERM mission, November 1986 through October 1987. It is possible to study time variations in

this year by creating SST expansions for specific time periods using the altimeter data from the

time period. This expansion can be referred to the one year surface by removing the coefficients

defined by the one year mean. Then sea surface height differences can be calculated. This
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procedure was used by Denker (1990, Section 4.4) who examined differences with 2 month

averages. He found the differences to be small, approximately 4 cm over the oceans.

In this study a modification of the procedure developed by Denker was made. First, the

orbit correction parameters and the adjusted gravity field to degree 50 was held fixed using the (10,

10) SST model. Then a SST model to degree 15 was computed on a monthly basis starting from

November 6, 1986. The degree 15 field was chosen to see if time changes at the higher resolution

(vs degree 10) could be seen. It was recognized that the coefficients between degree 1 and 15
could be contaminated by constant (in time) geoid error but the time variations would be

meaningful. In doing this the mean sea surface topography was defined by averaging 12 monthly

solutions to degree 15. The residual fields were then generated by removing the mean field from

the monthly field in the spectral domain. The actual values of the residual sea surface topography"
were then calculated on a monthly basis. In Figure 17 the residual SST is shown for the month

(starting on the 7_) of April 1987. The most significant feature is the -20 cm depression near the

140

120

I00

80

4O

20

0

Average Sea Level

16-20 N

11-15 N

6-i0 N

1-5 N

10S-0N

-2O

MJ JAS JAS0 ASOND

1985 1988 1987

Figure 18. Geosat-derived Sea Level, Avcraged in Zonal Bands Between 130 ° and 165°E. Each
Band Contains Approximately 80 Independent Time Series Expressed as Anomalies

Relative to the Annual Mean, April 1985-1986. Curves are Offset by 20 cm Relativc

to Each Other. (From Cheney and Miller (1990, p. 2982)).
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Figure 19. Sea Surface Topography Residuals in the Pacific Ocean, November 86-October 87.
Monthly Averages in 130°E to 163°E Using a Degree 15 Expansion for Five Latitude

Bands. Units are era.
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equator at longitude 240 °. This residual is weaker (-10 cm) in February March, and stronger April.
Starting in June 1987 there is no significant deviation from the annual mean in this area. This

deviation is probably related to the El Nin6 current in this time period as will be discussed shortly.

Variations in other geographic regions are on the order of 5 cm, as found by Denker (ibid). Since

the expansion of SST is only to degree 15 (corresponding to a resolution of 1332 kin) mesoscale
variations can not be seen with this procedure. However large scale variations can be quantified as

will be discussed in the next section.

We next examine the sea level changes implied by the degree 15 analysis to see if one can

detect the 1986-1987 El Nino event. In this study we first considered the results of Cheney and

Miller (1990) and Miller and Cheney (1990). Figure 6 in Cheney and Miller, shown in this report

as Figure 18, shows sea surface height residuals with respect to the annual mean of April 1985-

April 1986. This figure is based on "approximately 80 independent, time series...". The data was

averaged in zonal bands between 1300 and 165°E.

In order to see if our results showed similar signals the relative degree 15 SST was

evaluated on a 1° x 1° grid. The data was then averaged in the same bands as used by Cheney and
Miller. In our case this meant an average of 160 points except for the lowest latitude band in which

234 points were averaged. The results shown in Figure 19 are plotted on a scale similar to that

shown in Figure 18. Comparison of Figures 18 and 19 indicates a good, but not perfect

agreement. The positive residual at the two northern latitude bands during May-July 1987 is quite
consistent in the two figures. The negative anomaly during June-August 1987 for the southern

most latitude band agrees well in both figures. But our results show a positive anomaly in

November 1986, a feature not seen in Cheney and Miller (ibid). The change in the residual from

November 1986 to August 1987 is 20 cm from Figure 18 and is 14 cm from Figure 19.

One should be cautious in interpreting the positive and negative residuals because the

absolute zero in the Cheney and Miller analysis is arbitrary. The point here is that temporal

changes of the ocean surface can be detected through a degree 15 SST representation. The changes

show a significant agreement with other analysis carded out in a significantly different way.

Another test carried out was suggested by the results plotted in Fig. 4a of Cheney and

Miller (1990). This plot shows the variation of sea level in a 8 ° x 1° cell in the Pacific near Ponape.

To compute our results the 12 sea surface topography degree 15 representations were evaluated in
the 8 ° x 1° cell whose northwest corner was 7" in latitude and 154 ° in longitude. The 1° x 1° grid

values were averaged. The average was then removed from the 12 values. The residual plot is

shown in Figure 20.

---% ...--,
...i'"

N D J F M A M J

1986 1987

I

J A S O

Figure 20. Sea level Variation Over One Year Based on A Degree 15 Representation of SST.
Cell's northwest comer is 7 ° (¢), 154 ° (Z).
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Thediagramshowsa low in December(86)with achangeof 15cm to a peakin February(87).
TheCheney/Millerresultshowsthelow in Januarywith thepeakin March. Thechangeis 20cm.
Our solution shows a near linear decreaseof 13 cm from February to August while the
Cheney/Millerchangeis20cm from March (87) to September(87). Thetimesappearto beoffset
by amonthandtheamplitudeof thechangessomewhatlessinour analyses.Howeverthegeneral
agreementis quiteencouraging.

5.2.2 Temporal Variations Through Spectral Analysis

As described in previous sections a solution was obtained in which the sea surface

topography, the geopotential and the orbit error were simultaneously determined by processing the

one year Geosat altimeter data. Based on this solution the time variation of the sea surface

topography will be studied.

The geoid is assumed to have no time variation in some time period. The assumption may

not be exactly correct, but it is believed that it is a very good approximation for studying the time

variation of the sea surface topography and the current geoid determination accuracy, l_ct sea

surface topography _ be represented in a series involving time:

;(_p, _,, t)= Z [C/m(t)cosm_, + Stm(t) " sinm_,] Ptm(sinq_)

/,m (5.i)

The coefficients of the spherical harmonics Ctm and Stm are functions of the time. The non time

dependent version of (5.1) is eq. (2.3). SST may change continuously in time. The fi'cqucncies

of the SST time variation range from zero to infinity. In practice, the SST can only be sampled at a
time interval for a limited time period. Therefore only the frequencies of a limited band can be

detected.

By fixing the geopotential and orbits correction from the one year solution, the SSq' can be

expanded into a series for every month. Approximately 6 six days arcs of Geosat data were used

to form a monthly SST solution: The 12 monthly solutions can be written as

;(q_, _., tk) = Z [Ctm(tk)cosm_. + gtm(tk)sinm_.] Ptm(sinq))

t,m (5.2)

k =0, 1,... , 11

where k is the number of the month starting from November 8, 1986.

Basically, the information of the sea level change during the time period November 1986 to

October 1987 is included in the 12 monthly SST solutions. Assume that we can fit the SST to the

following model:

_(q_, _., I:)= ;o(q_, k) + _(q_, _.)t (5.3)

where _ denotes the sea level change rate. The _ and _ are in the form:

_o(q0, _) = 2 (_m c°smL + g_msinm_') P--tm(sinq_)

l,m
(5.4)
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_((P, _')= Z (_tmCOSm_, + _tmsinm_,} Ptm(sinq))

g,m

and the coefficients Ctm, _lm and "ff_m, _lm are determined by fitting a straight line to the 12 sets of

coefficients Ctm(tk) and S/m(tk) in the least squares sense. That is:

O

C/m(tk) = C'-/m + _/mtk + Rck

k=0 .... ,11

S/m(tk) = S-_m + _tmtk + Rsk (5.5)

where Rck, Rsk are the residuals of the misfit. The Ctm, _tm and Stm, _tm will be determined by

11

Rc2k = Minimum
k=O

11

Rs2k = Minimum
k=0 (.5.6)

If the standard errors of the coefficients C/m(tk) and S/m(tk) are available, condition (5.6)
becomes

11 R 2

_ = Minimum

k=00"2c./mk

11 2

R_k = Minimum

k=0 _mk

(5.7)

The condition (5.6) is a special case of (5.7). It was assumed that the standard error of thc

coefficients are equal to one. The solution with condition (5.7) can be found in many books, e.g.,

Press et al., (1986, p. 504).

In order to study the energy distribution of the time variation of the sea surface topography

corresponding to frequencies, eq. (5.2) is written in a discrete Fourier-series:

N-1

;(¢P, _" k) =1 Z Z ( An/mcOsm)_ + Bn/msinm_') Plm(sin(p) e2nikn/N

N n=0 l,m

k=O,..., 11 (5.8)

where i = ._'S_. N is the number of the monthly SST solutions and it is assumed to be even. The

coefficients Antra and Bntm are time independent and defined by:
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N-1

Balm " _ Slm(tk) e'2nikn]N

k=-0 (5,9)

The dtsereLe Fourier _sfo_rmation and its inverse can be found in many books, e.g,, Brigham

(1988, Chapter 6), The frequency fk is defined by:

fk- k k= 0, .... !1 (5.10)
N'A

where A is the ttm¢ interval and for our ease that is ! month.

B_s_. on the sampling theorem, the Nyquist frequency is given by

fN = _1 (5.11)
2 •

whi_ch is ! cycle/2 month, Therefore,the frequency band ranges from 0 to 1 cycle/2 month lbr our
$ST time v..ariafion studies, The phys_ca! mefi.ningof the frequencies is:

k=0
k_!
k*.2
k_3
k=4

k'_5
k=6

_mual average of SST
annual SST vari'_fion
se_-_nu_ SST variation
4 mor_th SST v_ation
sea.8ona! SST v_ation
2,4 moo_ SST v_ation
2 month SST vafia.tion

Eq. (5.8) c_ also be written in a cosine series, By setting

(5.12)

we _thenhave:

(A_mcosm_, + B_msinm_.)

(ant " ' X) i(b " X).. m_COSm_,+ antmsmlll + rttmCOSm_ + bntmSinm (5.13)

!.n_c.rting (5,!3) into (5,8), we get

_(¢p, _, k)_ _ _ Z (Centre + il]ntm)e2ninklN
n=0 l,m (5,!4)

wi_h
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Otntm=(anzmCosrn + msinmX)Ptm(sin(p)

 ntm= (br_mCOSmX + bn/msinmE) Pgm(sin(p) (5.15)

If we write e2nink/N = cos2nnk/N + isin2nnK/N, and note that the _ is a real function, so that cq.

(5.14) becomes:

N-1

_(t,p, _,, k)= N_- n_0 E (O_rttmCOS2_g.___+ _ntmSin27_)= l,m N (5.16)

The Fourier coefficients of a real function satisfies the following relationship (ibid, p. 397):

FN-n = (Fn)* (5.17)

where Fn is the Fourier coefficient of a real function, and the asterisk denotes the complex

conjugate. If we write

Fn = t_ntm + il]ntm , (5.18)

then we have from eq. (5.17)

Otntm = O_(N-n)/m

_ntm = -[3(N-n)/m

In addition we have

(5.19)

2nkn 2nk(N- n)

cos- N - cos N

2nkn 2nk(N - n)
sin N --sin. N

By using eqs. (5.19) and (5.20), (5.16) becomes

N/2

_((P' _" k) = N_/,_m _°/m + N_" E E _n " ((/'n/mCOS_ff'_ "an=l t,m Pn/m,S in2nnk_]

with

_5n=10.5 if n=N/2
I1 if n=l ..... N/2-1

If we set

O_rdm = _'_n/mCO S0.Jn

_rdm = _rttmSinCOn

(5.20)

(5.21)

(5.22)

(5.23)
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with

_m : 40_,m*_,m

O_n= tan_ 1_n/m
0{nt m (5.24)

eq. (5.21) then can be written as a cosine series:

x, iX  o,m+ X 8."o,mCO +
Lm = t,m (5.25)

The frequencies contained in (5.25) are positive and range from 0 to the Nyquist frequency fN.

Eq. (5.25) gives the SST at the time t = k month, k = 0 .... 11. If SST needs to be computed at
the arbitrary time between Nov. 1986 and Oct. 1987, eq. (5.25) can be easily written as (c.f.

Cizek, 1986, eq. (5.36b)):

_(¢p, ;L, t)= N_- _ Ototm + 2_ _ _n_"_n/m. cos( N2_t + COn) ,
l,m n=l t,m (5.26)

and SST can be evaluated at the time t by summing the above series. If N is a large number, a

more efficient computation procedure using FFT is described in (ibid, p. 94).

The power spectrum of the SST is defined as

N2 _ _ntm

= _otm
N 2 l.m

_2,-,2 c_dLg_k_v- con)On_Zntm o:_ N +

n=l ..... N/2

n=0

(5.27)

Based on Parsevars theorem, the sum of the power spectrum of the SST is the square mean of the

SST:

P(q),Z,,fn)= _ _ _2(q),_,,tk)
n=0 k=0 (5.28)

From eq. (5.28) the mean square of the SST time variation is given by:

N-I

N k=o
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n=l n=l N2 l,_ _"_,r_m

n

where _ denote the mean value of the SST and it is given by

(5.29)

N-1

= 1 _ 0to/m

N t,m (5.30)

The estimation of the power spectrum of the SST is based on the means of the periodogram

(Brigham, 1988 p. 367). The statistical meaning of the power spectrum is discussed in (ibid) and
Elliott et al. (1982). A brief and comprehensive discussion can also be found in Press et aI. (1986,

p. 422). These discussions are interesting and important for interpretation the power spectrum
defined by eqs. (5.27) and (5.29) correctly but it exceeds the scope of this report, and we simply

interprete the quantities defined by eq. (5.27) as the power of the SST corresponding to different

frequencies.

It is worthwhile to mention that Nerem et al. (1990b) modeled the coefficients of the sea

surface topography by:
5

Ctrn(t) = C-lm + _tmt +_ (AintmCOS03it + BintmSin¢-0it)

i--1 (5.31)

5

Sere(t) = S_,m + _tmt +Z (a_trnC°SC0it + b_tmSinc°it)

i=l (5.32)
O O

where E_ ands'tin are the coefficients of the mean sea surface topography topography. Tile
Ctm and s/m are the coefficients of the sea level change rate. The series fire the periodic timc

variation of the SST.

If the coefficients are detemfined by using the least-squares technique, the model can fit tile

actual SST well in the meaning of best fit. But the interpretation of the amplitude or power

spectrum must be carefully made.

Two years of Geosat ERMs data were used for the SST time variation studies (ibid). The

frequencies in the ERMs data range from zero to 1 cycle/34.10 days. Only selected frequencies

(eqs. (5.31), (5.32)) were included in the model. The frequencies which were not modeled in

(5.31) and (5.32) would be aliased into the model and mixed with the selected frequencies. The

amplitude of the selected frequencies would be falsified by unmodeled frequencies. Because of the

aliasing problem it is not meaningful to talk about the annual or semi-annual SST variation at_d so

on.

Another consideration is the separation of the coefficients of the secular SST change

_trn and_tm from the coefficients of the Fourier-series in (5.31) and (5.32). The secular SST

changes _tmt and _trnt are not orthogonal to the base function of the Fourier-series, the cosine and

sine. It will be of interest to look at the correlation between them in the least-squares solutions.
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In this sectionthesecularSSTchangesweresolvedby usingeq.(5.5). Theperiodic SST
variationwascontainedin thetermsRckandRskwhich wereconsideredasmisfit. Onecanargue
thatwehavethesimilarsituationasdescribedin thelastparagraph.Thedifferenceis thatonly the
secularSSTchangesweresolvedby usingeq.(5.5). We feela little saferfor thereasonthat the
periodicSSTvariationmayeffect thestraightline fit very little.

In thefollowing wewill givetheresultsof thesecularSSTchangeduring theperiodNov.
1986to Oct. 1987and thetemporalvariationsof the SST throughspectralanalysis. Figure 21
showstheyearly seasurfacetopographychangeratecomputedfrom eq. (5.7). TheSSTchanged
considerablyin someregions.For example,in thewestPacificoceana -15cnVyrrateof theSST
is foundbetweenthelongitude140° to 180° aroundtheequator.This decreasemaybeduc to the
E1Nin6 phenomenon(CheneyandMiller, 1990). TheSSTratewasabout-15cm in theAtlantic
Oceanbetweenlatitude0° to 20°. A small SSTchangeis foundin theregionof the Brazil and
Falklandcurrents. Globally the RMS valuesof theSSTchangeduring thc periodNov. 1986to
Oct. 1987is 8.6 cm. The global mean,basedon a 1° x 1° grid, of the SSTchange(this is
equivalentto theglobalsealevelchange)wasfoundto be-0.2mm in theoceanwhich isdefinedas

J- 70 ° < _ < 70 °
ocean

_h < - 200 m ,

where h is depth of the ocean. The very small mean value means that ahnost no change in the
oceanwide mean sea level has been detected by our solutions.

The spectral analyses of the SST time variation enable us to study the SST variation in the

frequency domain. The variation is decomposed into the components of the annual, semi-annual
and seasonal variation and so on (cf. eq. (5.25)). The power spectrum of the components of the

SST variation is half of the square of the amplitude of the Fourier-series in (5.25). It is more

convenient in the geometric sence to use the amplitude rather than the power spectrum defined by

eq. (5.27). Table 18 gives the RMS value of the amplitude of the SST time variation

corresponding to different time periods:

Table 18. RMS Values of the Amplitude Corresponding to Frequency fk-

k RMS V_ilue

1

2

3

4

5

6

5.8 cm

4.2

2.5

2.0

1.7

0.8

Table 18 shows clearly that the amplitude becomes Smaller, when the frequency gets higher. No

strong seasonal variation (k = 4) was found.

Figure 22 and 23 show the amplitude of the annual (k = 1) and seasonal (k = 4) SST

variation, A relative strong (9 cm) annual variation appears in the west Pacific ocean and around

the equator. Another relatively strong variation occurs in the Atlantic ocean above the equator.
The seasonal variation is small. In the western Pacific 2 to 4 cm SST variation can be found.
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The time variation of the SST was studied on a global basis. We considcr the SST _ls :1

function of the geographic location (¢, _.) and the time (t) and sampled it at the monthly time

interval. The sampling interval can be smaller, but it is limited by the repeat time of Geosat which

is 17.05 days. The SST was expanded up to degree and order 15 so that the resolution (- 1300

km) is somewhat too broad to identify the detailed SST variation, e.g., the variations due to

narrow currents. Such variations can be examined by working directly with the altimeter data and

with the improved orbits. The use of the harmonic analysis will be limited, for now, to broz_d

feature changes. These results are preliminary and could be expanded if additional (in time) Geos_lt

data were analyzed.
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6.0 The Estimation of the Potential Coefficients Above Degree 50.

The previous discussion has described how a potential coefficient model to degree 50 has
been selected on the basis of a combination of the GEM-T2 potential coefficients, surface gravity

normal equations, and one year of Geosat altimeter data. We now incorporate these coefficients in

a development leading to a complete set of potential coefficients to degree 360. The general

procedure followed is based on the analysis described by Rapp and Pavlis (1990).

The first step in this process was the updating of the global 30' x 30' mean anomaly file

used in the OSU89 model development. The f'trst updating was to incorporate the new data in the

30' data file. The first step was to split the new 1° x 1° mean anomalies into 4 identical 30' x 30'

values. A total of 3776 30' values were estimated from the original 944 values of anonMy Source

97. The following corrections were then applied to the 30' values: ellipsoidal corrections; gl

corrections; transformation to the GEM-T2 implied gravity formula; atmospheric corrections, and

second order gravity formula corrections. The details of these corrections are given in Section 2.2

of Rapp and Pavlis (ibid, p. 21,887).

The corrected 30' file was then merged with the 30' input file used for the development of

the OSU89B degree 360 model The merging criteria were that a new value would replace a

previous (OSU89B) value only if the previous value was a "fill-in" value, or it was the rest, It of tile

split up of a previously available 1° x 1° value. More specifically the previous value had to belong

to either the SET 3 or SET 5 case of Table 2 in Rapp and Pavlis (ibid, p. 21,896). The standard

deviations assigned to the new 30' defined anomalies was equal to that of the value being replaced.

The code assigned to these anomalies was 4097. The newly created file contained 3669 out of the

3776 (by split up) 30' anomalies. Of the 3669 values, 3144 replaced fill-ins while 525 values

replaced previous 30' values from 1° values (see section 2).

The next step in the updating process was done to reflect a change in philosophy in the

calculation of fill-in gravity anomalies from GEM-T2 and topographic/isostatic information. In the

OSU89B development the fill-in anomalies (i.e. anomalies in areas where no data was available)

were computed from the GEM-T2 model to degree 36 with contributions from degree 37 to 360

from the topographic/isostatic model (see Rapp and Pavlis, ibid, Section 3.4). In the new case we

decided to reduce the maximum degree of the T2 model to 9 and then use the topographic/isostatic

model from degree 10 to 360. This procedure makes our adjustment procedure somewhat more

correct since we do neglect the correlation between the fill-in anomalies and the GEM-T2

coefficients in our adjustment process.

The second modification, then, took place by first generating a set of 30' anomalies, using

program F431 using the GEM-T2 potential coefficients to degree 9 and the potential coefficients
implied by the topographic/isostatic model from degree 10 to 360. These anomalies replaced the

"fill-in" values after the China data had been merged. The code assigned to these fill-ins was
3003. The standard deviations used were identical in the new case and the older case. This data

was merged with the anomalies derived from satellite altimeter data using the same process
described in Rapp and Pavlis (ibid, Section 3.5). The location of the 30' anomalies, with an

indication of their origin is given in Figure 24. This figure can be compared to Figure 4 of Rapp
and Pavlis where the only change will be seen in China. Statistics on the number of anomalies that

are in the 30' data file (TS0040.DG30X30.MRGD.GEMT209.TI10360.CHINA) are given in
Table 19.
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Table 19. StatisticalInformationon theVarious30'Anomaliesin theMergedDataFile.
AnomalyUnits aremgal.

Numberof values
Percentageby area
Minimumvalue
Maximumvalue
Meanvalue
RMSvalue
RMS standarddev.

30'
Terrestrial

45,166
17.51
-196
391
3.8
33.8
8.5

Altimeter
Derived

136,270
64.81
-284
309
-1.7
25.0
3.5

Split Up
30,187
7.95
-175
214
6.2

40.1
33.4

Fill-Ins
47,577
9.74
-243
310
-0.3
27.3
36.0

Using the GEM-T2 model, its error covariancematrix, and therevised 30' data file the
combinationsolutionwascarriedout usingthesameproceduresasdescribedin RappandPavlis
(ibid). The solutioncouldbecalledaOSU89Btypewith arevised30'anomalydatasetthatwas
consistentwith the 1° normal equation, development described in Section 2. The 30' anomaly

weighting procedure used in this analysis was identical to that used for OSU89B; that is the

original standard deviation was multiplied by 2 and the resultant value restricted to fall in the range

14-27 regals. In Table 20 statistical information for this combination solution is given.

Table 20. Statistical Information on the OSU89B Type Combination Solution with the OSU91
30' Data File.

Quantity

Standard Deviation Range

Number of V_g > 7 mgal
k

RMS v, mgal
Maximum Ivl

Value

14-27 mgal

4.51

14,492

1.096
3.21

25

The location of 14492 30' anomaly residuals exceeding 7 mgal in absolute value is shown

in Figure 25. This number is substantially higher than the 4130 values shown in Fig. 5 of Rapp

and Pavlis (ibid). The primary reason for this is the use, in our current solution of the fill-in
anomalies from GEM-T2 to 9 while the OSU89B solution used GEM-T2 to degree 36. The

patterns in Figure 25 are primarily those in regions where the fill in anomalies ,are used.

After the least squares adjustment was completed a set of adjusted 30' mean anomalies was
calculated. These anomalies were then converted to potential coefficients using the

orthogonalization process described in Rapp and Pavlis (1990, Section 2.1). This led to a set of

potential coefficients complete to degree 360. The coefficients from degree 51 to 360 will be used

to augment the 2 to 50 coefficients found from the adjustment described in Section 4.0. However

it still is of interest to compare the coefficients of the two solutions, up to degree 50, just to obtain

a feeling for the differences to be seen from the two adjustment methods using two very different

ways in which the altimeter data are treated. These comparisons are shown in Table 21. From the
table we see that the undulation difference of the two models is 48 cm. It will turn out that the

accuracy of the OSU91A model is 25 cm to degree 50 (see Table 22) and the accuracy of the

OSU89B type adjustment, to degree 50, is approximately 34 cm, so that the difference noted in
Table 20 are consistent with the accuracy estimates of the two models.
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Table 21. Comparison of Two Potential Coefficient Models, To Degree 50, That Differ in

Adjusmaent Procedure and Treatment of Altimeter Data

De_ee
2

5

10

15

20

30

40

5O

%

Difference

.02

.37

3.3

9.8

16.4

22.7

16.2

17.2

Undulation

Differences (cm)
Anomaly

Difference (m_al)
0.3

2.8

7.5

8.8

9.6

8.2

4.0

3.9

48"

0.00

0.02

0.10

0.19

0.28

0.36

0.24

0.30

Cummulative 1.79

At this point we have the set of potential coefficients to degree 50 from the adjustment

described in Section 4.0 and a set of coefficients from degree 2 to 360 using the procedure

described in the previous sections. In the next section we turn to the merger of the two models.

63



7.0 The Merger of the Two Potential Coefficients Sets Leading to the OSU91A
Potential Coefficient Model

We now simply take the potential coefficients to degree 50 from the combination solution

of Section 4.0 and add the coefficients from degree 51 to 360 of the solution described in Section

6. This merger leads to the OSU91A potential coefficient model.

The standard deviations of the coefficients are also established in two steps. For the

coefficients to degree 50 the standard deviations are based on the square root of the diagonal

elements of the FYS 10.W96GW solution. The standard deviation of the coefficients from degree

51 to 360 are exactly the same as the OSU89B coefficients because the anomaly accuracy estimates

remain unchanged. The accuracy estimates for these higher degree coefficients are based on a

propagated error and a sampling error as described in Section 2.3 of Rapp and Pavlis (ibid). Tablc

22 shows the geoid accuracy, on a sphere of radius a, for the OSU89B solution and fiom the
OSU91A solution.

Table 22. Geoid Undulation Commission Error, by Spherical Harmonic Degree, for OSU89B and
OSU91A. Units are cm.

OSU89B OSU91A

By Degree
2 0.2

6 1.8

10 3.9

20 5.4

30 5.5

50 4.6

75 3.7

100 3.2

180 2.2

360 1.3

Cumulatively
0.2

2.8

7.6

17.6

24.8

33.5

39.3

42.9

48.7

53.6

B_¢De_ree
0.2

1.3

2.4

3.6

4.3

3.0

3.7

3.2

2.2

1.3

Cumulatively
0.2

2.2

5.0

10.6

16.8

24.8

32.3

36.5

43.2

48.7

Up to degree 50 the OSU91A has slightly smaller standard deviations than OSU89B.

Beyond degree 50 the two solutions have identical accuracies at each degree. Overall, OSU9 IA, to

degree 360 has a commission error, only, of 48.7 cm vs 53.6 cm for OSU89B.

The standard deviation of the anomaly degree variances, on a sphere of radius a, are plotted

in Figure 26. Also shown on the plot are the anomaly degree variances (Cn) and the Cn values

implied by the Kaula rule for the decay of the fully normalized potential coefficients (Rapp and

Pavlis (ibid, eq. 74). The anomaly power spectrum of OSU89B and OSU91A are very similar as

can be seen by comparing Figure 26 with Figure 12 of Rapp and Pavlis (ibid). From Figure 26 we

see that the signal to noise ratio becomes 1 near degree 260. Rapp and Pavlis (1990) have argued

that coefficients above the degree at which the ratio becomes one should be retained in the solution.

This also speaks to setting the error degree variances above degree 260 to be equal to the signal

degree variances since the latter are smaller. In this case the commission error, now on a sphere
whose mean radius is 637i km, is 51.9 cm, which, combined with the omission error (based on

the Tscherning/Rapp model with the Jekeli parameters) of 24.1 cm, yields a total point geoid
undulation error of 57.2 cm. Recall this is a global average and can be poorer or better depending

on the data availability in the area. One also should note in Figure 26 the break in the errors at

degree 50. This break is caused by the inconsistency in the error estimates from the two

combination models. We considered several techniques for artificially avoiding the break and

finally decided to leave the errors as they were from the solutions.

In the next section we evaluate the OSU91A model, and several preliminary versions, by

comparisons with a variety of data types,
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8.0 Model Comparisons and Evaluations

In this section we will evaluate some of the preliminary models, as well as the final

geopotential model, OSU91A, developed for this report. In addition, for some evaluations, we

will incorporate other recently published or developed geopotential models.

8.1 Orbit Accuracy Assessment

In this section we discuss orbit fits or orbit residuals when a geopotentia! model is used in

an orbit determination process. In principle the smaller the residual fit the better the mode/.

However the situation is not as simple as this because a potential coefficient model is only one part

of a package used in the orbit estimation process. For example, one needs a set of station

coordinates that should be consistently estimated with the geopotential model. In the tests to be

described here the station coordinates, tidal models, etc., are held fixed at previously determined

values, In some cases drag, radiation, etc. parameters may be estimated. Rapp and Pavlis (1990,

Table 10) report, orbit accuracy assessments for a variety of models being evaluated at that time.

The first group of tests were carried out by Fell (199t, private communication) using

Doppler data acquired from 45 tracking station for Geosat and NOVA 3 satellites. The results of

the tests are given through "station navigation statistics which are the weighted RM_=in the radial

and tangential directions computed from adjusting the geodetic position of each station on a single

pass basis to best fit the estimated ephemeris for the satellite which is held fixed in the adjustment"
(Sloop' 1991, private communication).

These statistics are given for several models in Table 23.

Table 23, Navigation Statistics for Various Geopotential Models Based on Doppler Tracking of
Geosat, Units are meters.

RMS Residuals

Model

"GEM-T!

GEM-T2

OSU89A

OSU89B
S 10.W24GW

S 10.W96GW(91A)

Radial

2.2

2.3

2.4

2.4

2.4

2.4

Tangential
2.3

2.2
2.2

2.2

2.2

2.2

This table does not indicate much sensitivity to the geopotential models tested. In Table 24

statistics for the NOVA 3 satellite are given.

Table 24. Navigation Statistics for Various Geopotential Models Based on Doppler Tracking of
NOVA 3. Units are meters.

RMS Residuals

Model
GEM-T1

GEM-T2

OSU89A

OSU89B

S 10,W24GW

S 10.W96GW(91 A)

"Radial

1.8

1.4

!.3

1.3

1.3

1.3

Tangential
2,5

1.6

1.6

1.6

1,3

1.4
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Again the results, except for GEM-T1, are all about the same indicating that the preference between
the models can not be determined from the table. On the other hand the combination solution that

are represented here do not show a deterioration in fit over a satellite alone model. This, in itself is

encouraging.

Additional orbit fits were carried out at the Goddard Space Flight Center by Klosko (1991,

private communication) with the 1/24 and 1/96 weighting procedures. Results using "fmzcn" data

sets are given in Table 25.

Table 25. RMS of Fit for Selected Geopotential Models On Selected Satellite Using Laser

Tracking and Frozen Data Sets. Units are cm.

Model

Satellite GEM-T2 W24GW W96GW

Lageos
BEC

Geos-1

Geos-2

Geos-3

Ajisai
Starlette

5.2

28.5

20.9

50.9

17.9

10.9

14.7

5.4

26.5

22.1

48.3

19.6

11.7

17.0

5.3

25.5

21.7

46.9

19.2

11.6

17.0

These tables seem to give a consistent picture that indicates the W96GW (OSU91 A) modcl

gives slightly better fits than the W24GW solution. The results are mixed when compared against

GEM-T2. In some cases the T2 models gives better results while in others the OSU models are

slightly better.

Putney et al. (1991) have reported data fits in orbit tests with independent data with several

geopotential models. The TEG-2 model was developed at the University of Texas at Austin

(Tapley, private communication, 1991). Results for laser observation on three satellites are given
in Table 26.

Table 26. RMS of Fit for Selected Geopotential Models On Three Laser Tracked Satellites (Putney

et al., 1991). Units are cm.

Model Lageos
GEM-T2 3.05

GEM-T3 2.91

TEG-2 2.93

OSU91A 2.97

Ajisai
10.15

9.99

9.77

10.18

Starlette

13.28

11.77

12.04

13.17

These results show that OSU91A gives fits similar to the other models tested but it is always
slightly poorer (2% to 12%) than the GEM-T3 model.

Putney et al. (ibid) also described orbit fit tests with SPOT-2 Doris data. Selected results

from Putney et al. are shown in Table 27.
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Table27. RMS FitsTo Spot-2Doris Data.Unitsaremm/sec.

Arc
Model 503 702

GI_M-T2 6.1 6.6
GEM-T3 3.5 3.4
TEG-2 4.0 4.2
OSU91A 4.7 3.7

This tableshowsthattheOSU91Ahasmadeasignificantimprovementovcr theGEM-T2
model for botharcs. The fit for arc503,is significantly betterandmarginally betterfor arc702
with theGEM-T3 modelasopposedto OSU91A. Theresultsindicatethat theOSU combination
model hasyielded better results than the initial model but other models are better in these
comparisons.

Fromthetestsreportedin this sectionweconcludethatOSU91Aperfomaswell in theorbit
fit testsbut it is not thebestmodelfor thesatelliteorbit fits. Based on the results of Putney et al.

(ibid) GEM-T3 gives better fits by 2 to 25%. Whether this is important or not must be judged in

the context of the other tests to be reported in the next sections.

8.2 Model Undulation Comparisons at Doppler Positioned Stations

The principle in this comparison is to calculate the geoid undulation from the geopotential

model and compare the value to that implied by an ellipsoid height from Doppler positioning, and

an orthometric height of the station. Before the comparison can be done the Doppler heights must

be put into a geocentric reference system that is properly scaled. The procedures followed for this

report are identical to those described by Rapp and Pavlis (1990, Section 4.2). The results ,are
given in Table 28 where the mean difference (Doppler minus model), the standard deviation of the

difference, and the number of accepted stations are given. Two models, GEM-T3 and TEG'2,

were augmented in these comparisons, with the coefficients from degree 51 to 360 from the
OSU91A model.

Table 28. Comparison of Geoid Undulations from Doppler Positioning with Geoid Undulations
from Potential Coefficient Models

Mean Standard Number of

Model Difference, m Deviation, m Stations

OSU89B .14 +1.60 1782

OSU91A .15 1.58 1802

GEM-T3 .12 1.57 1788

TEG-2 .10 1.77 1767

These results indicate a slight improvement of OSU91A over OSU89B. The T3 comparisons
shows 14 less stations (than 91A) used in the comparisons while the TEG-2 model has a

significantly larger standard deviation.

One can also test to see if the undulation discrepancies in these comparisons !iave a

correlation with elevation. This is done by making a linear fit to the residuals and examining the

height dependent term. Table 29 shows results of these comparisons including the RMS residual

(after adjustment).

?

=

z

=

|

i
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Table29. BiasandSlopeFits to UndulationResidualsasaFunctionof Elevationfor theGlobal
StationSet

Model
OSU89B
OSU91A
GEM-T3
TEG-2

Bias,m
.059 +. 104

.034 + .099

.006 + .105

-.131 -1-.140

Slope, m/km
-.008 ± .086

.037 + .082

.038 ± .087

.159 ± .116

RMS

Residual, m

.226

.216

.230

.3O5

This table shows that the 91A gives smaller residuals than the 89B model. The slope is negligible

for 89B, 91A, and T3 and at the edge of being significant for TEG-2. The RMS residual is 41%

higher than that found for 91A.

We conclude by noting the 91A model and the augmented T3 model appear to have

comparable accuracy although 91A would have the edge because more stations are accepted for
use, and the RMS residual, from Table 29, is smaller.

Recently Shibuya (1991, private communication) made available the ellipsoidal height of a

station (the S point) at Breid Bay, East Antarctica whose position was determined in the WGS84

terrestrial reference frame using the precise DMA ephemeris. Also available (Shibuya, Fukuda,

Michida, 1991) was a mean sea level height for the station. Taking into account the significant

(-2.0 m) sea surface topography in this area, and referencing the undulation to the equatorial radius

of 6378136.3 m, the geoid undulation was estimated as 22.8 m. Using OSU91A the geoid

undulation was 22.2 m, an excellent agreement. A nearby Geosat track, again after correction for

sea surface topography, implied a geoid undulation of 21.6 m. These two values are in excellent

agreement.

8.3 Comparison with Undulations and Undulation Differences at
GPS/Orthometric Height Stations

In the past several years GPS measurements have been made to accurately position

stations, primarily in a relative sense. The positions are generally determined by fixing one station

through coordinates defined in a terrestrial reference frame. This frame might be in a geodetic

datum (e.g. NAD83) or in a space related frame defined by satellite laser ranging or VLBI

measurements. Rapp and Pavlis (1990, Section 4) describe four GPS/leveling traverses that will

also be analyzed here. In addition Rapp and Kadir (1988) describe an area network of GPS
stations in the State of Tennessee that will also be examined here. The Tennessee network

consisted of 49 stations distributed uniformly across the State of Tennessee. The positions were

not placed in a geocentric system so that systematic undulation differences are to be expected

between the geoid undulations implied by the potential coefficient model and the GPS ellipsoidal

height/leveling orthometric height. A complete description of other traverses may be found in

Rapp and Pavlis (1990, Section 4.3).

Table 30 shows the mean differences (model minus GPS/leveling) between the two
undulation estimates.
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Table30. MeanUndulationDifferenceat GPSStations.Unitsarecm.

Numof Stations
Model

OSU89B
OSU91A
GEM-T3
TEG-2

Traverseor Networks
TennesseeEurope

60

26
40
35
78

Canada
63

-38
4

-16
43

Australia
38

-3
-49
-18
61

Scandinavia
46

29
33
28
64

49

149
157
183
262

This tableshowsvariationsbetweenthemodelsandthetraverse/networkbeingtested.Thelargest
meandifferenceoccursfor Tennesseewhichhasnotbeenplacedin ageocentricsystem.

Table31showsthestandarddeviation(meanremoved)of theundulationdifferencefor
thesametraverse/networkshownin theprevioustable.

StandardDeviationof theUndulationDifferenceat GPSStationsin Five Areas.Units
are cm.

Table 31.

Model

OSU89B

OSU91A

GEM-T3

TEG-2

Europe Canada

32 39

33 36

42 36

70 57

Traverse'or"lqetworks

Australia Scandinavia

34 3_2 ......

35 32

35 48

68 75

Tennesscc

30

21

23

73

Table 31 shows that 91A is Slightly better than 89B although a significant improvement takes place

for the Tennessee area. GEM-T3 is comparable to the other OSU solutions in Canada, Australia,

and Tennessee and poorer for the European and Scandinavia traverse. The TEG-2 model performs

poorer than the other models in these tests.
L

The next comparison is a relative comparison where undulation differences are compared.

Such a comparison removes or reduces long wavelength error in the data. In these computations

the differences are computed between adjacent stations in the traverse. In the Tennessee networks

comparisons are made provided the station spacing is less than or equal to 55 km. This distance
limits the comparisons to adjacent stations in the network. The results are given in terms of RMS

differences and in ppm (parts per million) by dividing the RMS difference by the length of thc line.

The values are given in Table 32.

Table 32. Relative Geoid Undulation Comparisons for GPS/leveling and Model Results

Model

OSU89B

OSU91A

GEM-T3

TEG-2

Traverse or Networks

Europe

RMS ppm
25 3.5

23 3.6

24 3.7

30 5.2

Canada

RMS ppm RMS
9 6.6 22

9 6.6 22

9 6.6 22

10 6.8 26

Australia

ppm
5.1

5.3

5.3

5.6

Scandinavia

RMS ppm
24 4.3

25 4.4

26 4.6

33 5.8

Tennessee

RMS ppm
28 4.9

26 3.9

26 3.9

57 6.0

The results in Table 32 indicate the first three models listed are of comparable accuracy while the

TEG-2 model performs somewhat poorer.
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In judging thesedifferences it is of interest to compare the results with what is expected

from the errors given for the coefficients of the OSU91A model. To do this we write the

commission error for a undulation difference computed from potential coefficients to degree N and

perfect gravity data in a spherical cap of radius to _o as follows (Christodoulidis, 1976, eq. (135)):

C_ = -_ _ (_Xl/o)egnsn+_l - Pn(cOs_gpQ)]
2Y_ n=2 (8.1)

where: R is a mean Earth radius:

3' is an average value of gravity

is the Molodensky truncation coefficient at degree n;
eft is the error anomaly degree variances;
s is a factor to refer results to the mean sphere.

The omission or truncation error would be written as:

T_Q= R2 _. Q_(Vo)cnsn+2[1 - Pn(cOs_gpQ)]

2"1,a _+, (8.2)

where Cn are the anomaly degree variances implied by a model.

If only potential coefficient information is to be used, _o = 0 and

2

Qn(_° =0)- n - 1
(8.3)

Equations (8.1) and (8.2) now become:

cb = Z= 13,2 = (n- 1/2
e._ sn+2 [1 - Pn{cosvpQ) ]

(8.4)

Tl_o = 2R2 Z
3'2 n+l (n) 1)2

CnS n+2[ 1- Pn(coswpQ) ]

(8.5)

Letting R = 6371000 m, 3, = GM/R 2 = 9.820 ms -2, and using the Jekeli parameters in the

Tscheming/Rapp degree variance model equation (8.4) and (8.5) have been evaluated. Thc e,]

values have been based on the actual error degree variances of OSU91A to degree 260, and the

actual anomaly degree variances of 91A from degree 261 to 360. The individual results and total

results are given in Table 33 for the OSU91 model. In addition the total error has been expressed

in parts per million of the distance.
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Table33. CommissionandOmissionError in theComputationof GeoidUndulationDifferences
from theOSU91APotentialCoefficientModel

Linear
Separation

0km
10
20
30
40
50
70
90

100
200
400
600
800

1000
1600
2000

10000

Angular
Separation

02.00
.09
.18
.27
.36
.45
.63
.81
.90

1.80
3.60
5.40
7.19
8.99

14.39
17.99
89.93

Commission
Error

0cm
9.2

18.1

26.6

34.4

41.3

52.4

59.6

62.0

71.8

77.1

77.7

77.7

77.8

77.4
77.4

77.4

Truncation

Error

0 cm
10.3

17.9

22.7

25.3

26.2

24.8

22.6

22.1

23.1

23.6

23.6

23.5

23.5

23.5

23.5

23.5

Total

Error

0 cm

13.8

25.5

35.0

42.7
48.9

57.9

63.7

65.8

75.4
80.6

81.2

81.2

81.2

80.9

80.9
80.9

Error in

ppm
0 cria

13.8

12.7

11.7
10.7

9.8

8.3

7.1

6.6

3.8

2.0

t.4

1.0

0.8

0.5
0.4

.08

The results from Table 33 can be compared to results from actual comparisons as represented in

Table 32. Note that the errors given in Table 32 are errors in all data used in the comparison:

geopotential model; GPS; leveling. Even then the actual results are much better than is expected

from the projected OSU91 model errors shown in Table 33 noting the average line length in Table
32 is 30 km.

8.4 Comparison with Undulation and Undulation Differences at Two VLBI Sites.

Forsberg and Madsen (1990) have pointed out that precise ellipsoidal and orthomctric

heights exist at the VLBI sites which have been tied into the geocentric terrestrial reference system
FSC-2. Knowing the ellipsoidal height in the geocentric system and the orthomctric height a

"standard" geoid undulation can be defined. The coordinates of the two stations arc as follows:

Wromso

Onsala

69°40'N, 18°56'E

57°24'N, 11°56'E

The standard undulation, undulation from a variety of models, and undulation differences relative

to the standard are given in Table 34 for Tromso and Table 35 for Onsala.

Table 34. Undulation and Undulation Discrepancies at the Tromso VLBI Station

Solution

VLBI

NKG89*

OSU89B

OSU91A

GEM-T3

TEG-2

Undulation

31.11 m

31.45

31.67

31.22

31.48

31.36

Difference w.r.t.VLBI

34 cm

56

11

37
25

* detailed geoid solution; see Forsberg and Madsen.
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Table35. UndulationandUndulationDiscrepanciesat theOnsalaVLBI Site

Solution
VLBI

NKG89*
OSU89B
OSU91A
GEM-T3
TEG-2

Undulation
36.54m
36.28
36.65
36.71
36.54
36.32

Differencew.r.t.VLBI

-26cm
11
17

0
-22

These two tables show different levels of agreement, all of which are fairly good. It is interesting
to note that the OUS91A and TEG-2 model both show better agreement with the "standard" than

the detailed geoid, NKG89.

A final comparison can be made by calculating the undulation difference, Tromso - Onsala,

from VLBI and from the models. These results are given in Table 36.

Table 36. Geoid Undulation Difference Comparisons Between the Tromso and Onsala VLBI Sites

VLBI

NKG89

OSU89B

OSU91A

GEM-T3

TEG-2

Value Difference w.r.t.VLBI

-543 cm

-483

-498

-549

-506

-496

m

60 cm

45

6

37

47

The results from this table show a great variety of differences, with OSU91A clearly giving the

best agreement with the standard.

8.5 Comparison with Geoid Undulations Derived from Geosat Altimeter Data

In this section we discuss the geoid undulations derived from Geosat altimeter data with the

geoid undulations derived from the various geopotential models. Such comparisons were

described in Rapp and Pavlis (1990, Section 4.4). The basic principle in finding the geoid
undulation from satellite altimeter data is to assume that sea surface topography (0 is known, and

to remove it from a sea surface height that has been determined from an accurate satellite

ephemeris. Specifically we have:

N-- SSH- _ (8.6)

For the calculations to be described here the sea surface heights have been calculated from the

orbits developed as part of the adjustment process described in Section 2 and Section 4. The sea

surface topography was the (10, 10) model, based on the 1/96 altimeter weighting, as described in

Section 5. In the comparisons the Geosat data consisted of 768286 points in the following time

period: 870220 (11 hr 8 min), 870307 (23 hr 55 min). This 17 day time frame corresponds,

approximately, to the Exact Repeat Mission 7. This time period has been used because it

corresponds to the summer time in the Antarctic region so that data, in normally ice covered areas,
is available.

In carrying out these comparisons it is important to recognize the role of the permanent

Earth tides (Rapp, 1989, Rapp et al., 1991). In our case, the Geosat surface is in a "mean"

system. The geoid undulations (Nn) that are computed from the potential coefficient models are
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placedin the non-tidal systemwhich is consistentwith the systemusedfor thedevelopmentof
GEM-T2. We thendefinetheundulationdiscrepancyasfollows:

(8.7)

wherethesecondterm on theright handsideof (8.7) follows from eq.(18) of Rapp(1989)with
k2= 0.3. Table37givesstatisticalinformationon "d" for severalgeopotentialmodels. This table
is analogousto Table 8 of Rappand Pavlis (1990). For consistencyreasonsthe seasurface
topographywaskept at theOSU91degree10model. Howeveronetestwascarriedout with a
degree10 (TEG-2) modelsuppliedby Shum(1991,privatecommunication). The geopotential
modelis definedby themodelidentifiedaugmentedby theOSU91Amodelfrom degree51 to 360
exceptin thecaseof OSU89Bwhich is itselfcompleteto 360.

Table37. Resultsfrom theComparisonof ModelandGeosat(ERM7) ImpliedGeoid
Undulations.Units arem.

Differences
Minimum
Maximum
Mean
Std.Dev.
No> 1.5m
No > 2.0 m

No > 4.0 m

OSU89B

-8.34

5.53

0.005

0.529

14291

4008

82

OSU91A

-'6.92

4.54

0.008

0.342

4505

1456

39

GEM-T3

-6.52

4.49

0.019

0.485

16204

5176

128

TEG-2

-8.67

10.03

0.033
0.739

43181

22280

1774

TEG-2*

-7.71

10.86

0.057

0.785

48298

25929

3196

* with TEG-2 SST model.

From this table we see that the 89B model gives better results (53 cm vs 61 cm) than presented in

Table 8 of Rapp and Pavlis 0bid). This is presumably due to the improved Geosat orbits described

in this paper. The OSU91A model shows a significant improvement over 89B (+ 34 cm vs 53 cm)
with a considerable reduction (14291 to 4505) in the number of discrepancies > 1.5 m. The

augmented GEM-T3 model performs better than the TEG-2 model in these tests but still does not

give as good a fit as the OSU91A model. The last two columns of Table 37 differ in the sense that
the last column uses the TEG-2 SST model while the second from the last uses the OSU91 SST

model. The comparisons are better when the OSU91 model is used. This may be due to the error
in the TEG-2 SST model in geographic areas for which data was not included in the solution. In

assessing these comparisons one must recognize that the orbits being used are those consistent

with the OSU91A gravity field up to degree 50. Since the orbit is dependent on the gravity field, it

would be appropriate to carry out these comparisons with Geosat orbits that are consistent with the
GEM-T3 or TEG-2 model. No such tests were carded out because such orbits were not available.

It is appropriate to point out that the standard deviation of 34 cm associated with the
OSU91 model is smaller than would be expected from the discussion near Table 22 where it was

argued that the total undulation error, at a mean radius of 6371 km, is 57 cm, considerably more
than the 34 cm found from the Geosat comparisons. However the 57 cm is a global estimate and

the results for the ocean area would be slightly smaller but not enough to account for the apparent

pessimistic accuracy estimate obtained through formal error propagation.

We next examine the location of the residuals that exceeded 1.5 m for the 91A (Figure 27),

GEM-T3 (Figure 28), and TEG-2 (Figure 29) models. A similar figure for the OUS89B model is

Figure 8 in Rapp and Pavlis (ibid).

74



Figure27, for theOSU91Amodelshowsthatthediscrepanciesoccurprimarily in areasof
high frequencywherecontributions from the harmonicsabovedegree360 may be significant.
Figure28, for the augmentedGEM-T3modelshowsthehigh frequencydiscrepanciesnotedfor
theOSU91Amodel,butalsodiscrepanciesin theMediterraneanandCaspianSeasaswell aslarge
patchesof discrepanciesbelow-60°. Figure29for theaugmentedTEG-2model(with theOSU91
SST model) shows the high frequency effect as well as substantial discrepancies in thc
MediterraneanandCaspianSeasandlargepatchesof discrepanciesbelow-60° latitude. In addition
trackrelateddiscrepanciesareobviousnorthof Australiaandwestof SouthAmerica.

The large patternsof residualsfor the GEM-T3 and the TEG-2 model is apparently
traceableto editingcriteriathatdeleteddatafrom theseareasin theanalysisleadingto GEM-T3and
TEG-2. This criteria specificallydeleteddatabelow-60° latitude,in shallowwaterareas,andin
areaswherethetide modelwasnotdefinedon theGDR. Theseeditingcriteria would seemto be
tOO
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restrictive and have led to a gravity model that does not fit the data in areas where the data was not

used in the solution. No surprise.

Another set of comparisons were made when data below -60 ° latitude, and in the

Mediterranean area (30 ° < _ < 46 °, 0 ° < _, < 38 °) were excluded from the comparisons. These

results are shown in Table 38 where 668534 points were compared.

Table 38. Altimeter/Model Geoid Undulation Comparisons Deleting Data Below -60 ° and in the

Mediterranean Area. Units are m.

OSU91A

Std. Dev. 0.34

No > 1.5 m 3656

Model

GEM-T3 TEG-2 TI2G-2*

0.40 O.53 0.53

6054 15672 14589

* with TEG-2 SST model.

From this table we see no change in the standard deviation for the OSU91A model as compared to

the complete case given in Table 37. The results for GEM-T3 are improved significantly although
the TEG-2 model shows residuals 2.5 times greater in number than GEM-T3. Additional tests are

described by Rapp, Wang, and Pavlis (1991a) in which sea surface heights along Geosat tracks on

the Mediterranean Sea were compared with the corresponding undulation from selected models.
With the TEG-2 model the discrepancies reached 6.2 m while other models showed better

agreement. Statistics on the agreement along two Geosat arcs are given on Table 39.

Table 39. Standard Deviation of Geoid Undulation Differences for Two Geosat Tracks (ERM 7)

in the Mediterranean Sea

Model Track 90874 Track 90888

PGS4233 45 cm 242 cm

TEG-2 139 625

OSU91A 20 54

Track 90874 starts south of Italy and goes to the African coast. Track 90888 crosses the Agean

Sea and the Mediterranean. It is in an area of extreme variations of the geoid accounting for the

poorer fit for the track as compared with track 90874.

8.6 Conclusion

This lengthy section has been developed to report comparisons of a number of gcopotential
models with selected data for evaluation purposes. The evaluations range from orbit fit tests to the

comparison of undulation differences from VLBI/leveling data. The orbit fits with OSU91A
showed reasonable results but for some tests (e.g. with DORIS data) not quite as good as GEM-

T3. Many other orbit tests could be run and the results would depend on how the satellite data was

weighted in the solution. The tests with the Doppler undulation data showed the 91A and T3
solutions are comparable and TEG-2 is poorer. The undulation comparisons at GPS/leveling

stations showed 91A gives somewhat better results than GEM-T3 while TEG-2 is significantly

poorer than 91A or T3. Undulation and undulation difference comparisons at two VLBI sites in

Europe indicate good agreement with 91A.

One of the most revealing tests was with the altimeter implied geoid undulations. Using a

complete Geosat ERM statistics on the undulation differences for several models were conaputcd.

The OSU91A model gave the best agreement which is to be expected to some extent since there
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wasGeosatdataused in the solution to degree 50. Poorer comparisons were obtained with GEM-

T3 and TEG-2 although GEM-T3 was significantly better than the TEG-2 model. Examination of

the location of larger residuals indicated areas for which data was edited out in the T3 and TEG-2

data analysis. These results indicate careful consideration must be given to data editing since
models will not fit well in areas where no data has been included in a solution.
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9.0 Undulation Differences Between Models

Rapp, Wang, and Pavlis (1991b, 1991c) have compared several geopotential models

primarily in terms of global undulation differences. Selected results from these papers are
described in this section.

We first compute the geoid undulation on a 1° x 1° grid from the potential coefficient model

to degree 50. Table 40 gives the standard deviation of the global differences, Table 41 gives the

differences for land (positive elevation) and Table 42 gives the differences for ocean (negative

elevations) areas.

Table 40. Standard Deviation of Geoid Undulation Differences on a Global Scale. Units are cm.

Model 91A T3 TEG-2

OSU91A --

GEM-T3 47

47 106

83

Table 41. Standard Deviation of Geoid Undulation Differences in Land Areas. Units are cm.

Model

OSU91A --

GEM-T3 73

91A T3 TEG-2

73 176
-- 131

Table 42. Standard Deviation of Geoid Undulation Differences in Ocean Areas. Units are cm.

Model 91A

OSU91A --
GEM-T3 24

13 TEG-2

24 65

-- 47

The best agreement between the models takes place in the ocean areas. The +73 cm difference

(SD) between 91A and GEM-T3 in land areas can be attributed to different weighting procedures.
The differences between TEG-2 and the OSU91A and GEM-T3 are due to different surface nomml

equations used, TEG-2 used a set of normal equations based on 1986 surface data while OSU91A

and GEM-T3 used a set of normal equations based on 1990 data. Table 43 gives the magnitude of

the largest discrepancies:

Table 43. Maximum Absolute Geoid Undulation Difference Between Selected Geopotential

Models to Degree 50. Units are cm.

Model 91A

OSU91A --

GEM-T3 446

T3 TEG-2

446 910

-- 623

The 9.1 m difference between 91A and TEG-2 occurs in western South America near latitude -19 °.

An additional large difference of 9.0 m occurs in the eastern Mediterranean Sea near longitude 30 °.

The largest difference between the 91A and GEM-T3 model occurs in the Himalaya Mountains.
Figure 30 shows the undulation differences GEM-T3 minus OSU91A. The good agreement (+ 24

cm) in the ocean areas is clearly contrasted with the poorer agreement (+73 cm) in the land areas.

Also clear from this figure is the poorer agreement below -69 ° and in the Mediterranean Sea.

In Figure 31 we show the geoid undulation differences by degree for GEM-T3 and TEG-2

with respect to the OSU91A model. TEG-2 shows significant differences after degree 10. At

degree 10 there is a 5.8 cm difference between OSU91A and TEG-2 while the difference is 3.8 cm

81



G

0

0

0
r_-

0

0

C_
(3o

L_J
C_

_J

0

c_

o

o

o

o

o o

30NIIIU7

o

o 0 0

i I I
I

%

o
(7o

o !

30NlIIU7

82

o
o3

!

c_

O
o

o

o

o
co

o

I--

0

...J

0
m

o

d

0

o

0

_=

=

=



100

Z

U')

LU

Z

IJ.J
nm

b_
i,
I-'-I

C:)

Z

I---
CI:
._I

123
Z
::::)

I,--'I

EZ)
b.J
(.D

I0

0. I

!

GEM-T3 ...........

........... _........ i ................... : ...........................

: i i

j ......... ! .... ! ......... !

2.00 I0.00 8.00 26.00 34.00

-IARMON]C DEGREE
2.00 50.00

Figure 31. Geoid Undulation Difference by Degree With Respect to OSU91A.

83



y-

7

h-
I.I-
H

r7

z
El)

I.--
121

_J

123
Z

l..ul

I-"4

I.--
CE
_J

(J

]00

I0

0. I

............ i ........

!.

GEM-T3

i i

O0 I0.00 18.00 26.00 :34.00 42.00 SOLO0

HARMONIC DEGREE

Figure 32. Cumulative Undulation Difference by Degree With Respect to OSU91A.

84



with GEM-T3. Table 44 gives the undulation differences by degree. Figure 32 shows the

cumulative undulation difference up to the specified degree.

Table 44. Geoid Undulation Differences By Degree With Respect to OSU91A. Units are cm.

Degree
2

5

10

20

30

40

50

Cumulative

GEM-T3

0.7

2.9

3.8

6.7

8.7

8.5

6.4

47

TEG-2

2.4

2.9

5.8

15.9

17.9

19.4

18.4

106

The better agreement with GEM-T3 may be attributed, in part, to the OSU91A model development

starting from the GEM-T2 model.

This section has examined the geoid undulation differences between three geopotential

models: OSU91A, GEM-T3, and TEG-2. All comparisons have been made to degree 50. We

find that OSU91A agrees better with the GEM-T3 model than with TEG-2. The models agree best

in the ocean areas with significant (9 m) differences in some areas.

Similar comparisons could be made for gravity anomalies and for comparisons with the

OSU89B potential coefficient model which is complete to degree 360 as is the OSU91A model.

Table 45 gives such comparisons.

Table 45. Cumulative Undulation and Anomaly Differences Between OSU91A and OSU89B.

Up to Degree 50 and 360.

Geoid Undulation

Gravity Anomaly

Maximum Degree
50 360

57 cm 59 cm

2.2 mgal 3.5 mgal

The small change in going from degree 50 to 360, in the geoid undulation, reflects the small

change in gravity material used in the 91A solution from the 89B model.
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10. Conclusions

This report describes the computation of a geopotential model to degree 360, a sea surface

to.pography model to degree 10/15, and adjusted Geosat orbits for the first year of the exact repeat
mlsslon(ERM). This study started from the GEM-T2 potential coefficient model and it's error
covariance matrix and Geosat orbits (for 22 ERMs) computed by Haines et al. (1990) using the

GEM-T2 model.

The first step in the study followed the general procedures described by Denker and

Rapp(1990). This procedure used a radial orbit error theory originally developed by

Engelis(1987a). The Geosat data was processed to find corrections to the a priori geopotential
model, corrections to a radial orbit error model for 76 Geosat arcs, and coefficients of a hamaonic

representation of the sea surface topo.graphy. The processing of Denker and Rapp.(ibid.) was
extended by the addition of surface gravxty normal equations from a recent 1° x i ° gravity anomaly

data set. Using this data strengthened the separation between the potential coefficients and the sea

surface topography harmonic coefficients. The results of this analysis led to sea surface estimates
that were more realistic than found in the Denker/Rapp study where the sea surface slope across the

Pacific Ocean was unrealistic when judged against oceanographic data. The results presented in

this report appear realistic and attest to the improvement made in the Geosat orbits based on the

GEM-T2 model and consistent tracking station cooMinates. The RMS residual and crossover

discrepancies were about the same as before (20 cm and 18 cm respectively). In this analysis we

included altimeter data in areas not used previously (e.g the Mediterranean Sea and areas of high

frequency gravity signal). This led to improved gravity fields in these areas as well as a sea surface

topography estimate in the Mediterranean area that seems realistic. Our final solution in this first

stage of processing was selected after testing several different weighting options anti testing

(through the help of the Goddard Space Flight Center) the different solutions in orbit fit tests. The

primary weighting considerations related to the altimeter data weights trying to take into account the

duplicative gravity signature sensed by the 22 repeat orbits analyzed. The weights used for the

surface gravity data were not studied in detail but were selected considering the original stand ard

deviations of the original data and calibration factors computed in several test solutions. Error

covariance matrices were computed for the potential coefficients as well as the sea surface

harmonic coefficients. The potential coefficient errors were used to compute geoid undulation

accuracies at specific degree as well as cumulatively. For example up to degree 10 the cumulative

geoid undulation error was 5.0 cm which is 25% smaller than reported by Rapp and Pavlis for the

OSU89B potential coefficient model.

Time variations of the sea surface topography were also studied through spherical hannonic

expansions carried out at one month intervals. These variations were used to compute sea level

changes on an ocean wide basis. In addition, specific areas in the Pacific Ocean were studied to see

if the sea level changes reported by Cheney and Miller(1990) could be detected. Although the

agreement was not perfect it was clear that the techniques developed for this study gave reasonable

agreement with the Cheney and Miller results. Based on the monthly sea surface topography

solutions, the spectral analysis of the time variations of the sea surface height were also studied.

The analysis of sea surface topography in this report should be regarded as a first step with

additional study needed.

The second stage of geopotential analysis took place by carrying out a combination of the
GEM-T2 coefficients with 30' gravity data derived from surface gravity data and anomalies

obtained from altimeter data, primarily, GEOS-3 and SEASAT. This data was identical to that used

by Rapp and Pavlis (ibid.). For areas lacking gravity information the gravity anomalies were

derived from a potential coefficient model defined by the GEM-T2 model to degree 9 plus the

coefficients from a topographic-isostatic model to degree 360. This was different from the

approach used in the OSU89B model development where the GEM-T2 model was taken to degree

36 plus the topographic information. The combination solution gave a set of coefficients complete
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to degree 50 plus a set of adjusted 30' mean gravity anomalies. These anomalies were used to

compute the potential coefficients to degree 360. The coefficients of this model to degree 50 were

replaced by the coefficients to degree 50 found in the f'trst stage of the analysis. By doing this we
take advantage of the improved analysis of the Geosat data that was carried out starting from the

GEM-T2 Geosat orbits. The merged set of potential coefficients were designated the OSU91A

potential coefficient model. The standard deviations for the coefficients were computed from the
error covariance matrix and the error propagation/sampling error considerations for the coefficients

above degree 50.

The 91A potential coefficient model was evaluated by comparison with several external data

types. Orbit fit tests were carded out at the Goddard Space Flight Center and the Naval Surface

Weapons Center. These tests indicated that the 91A model was comparable to other current

potential coefficient models but other models could be better for some satellite applications. Tests

were made comparing geoid undulations derived from space and levelling data and the

corresponding quantities derived form the geopotential models. These tests indicated that the 91A

model was about comparable with the 89B model although in some cases (e.g. in the State of
Tennessee and at two VLBI sites) better. The undulations computed from the 91A model were also

compared to the undulations implied by a complete ERM of Geosat data computed from the new
Ohio State orbits. The standard deviation of the difference between the two undulation estimates

was 34cm a considerable improvement over the OSU89B 53 cm standard deviation. The 34 cm fit

was considerably better than fits obtained with the GEM-T3 or TEG-2 geopotential coefficient

models (augmented by the OSU91A coefficients above degree and order 50). The most serious

problem encountered with these other models is the large number of residuals in areas where

altimeter data was edited out on the solutions. The specific areas include the Mediterranean Sea and

the region below -60 latitude. Such data was included in the OSU91A model development.

The analysis in this report has shown how we can determine a high degree spherical

harmonic model combining the best aspects of two different analysis techniques. The selection of

weights for the data combination were made to give an overall fit to different data types. In this
sense it is a compromise solution. Tests however indicate the compromise has not significantly

degraded the solution for any of the data type being tested. Additional study is need to learn about

optimum weighting procedures in the sense that data fits tests are needed with a variety of data.

There are a number of things that could be done to improve the solutions described in this

report. For example, we have used the wet tropospheric correction that was given on the original
Geosat GDRs. Literature has shown that these estimates may be in error by an amount that is

significant with respect to the accuracy we are trying to achieve. Study is therefore warr:mted on
the influence of the wet tropospheric correction errors on the parameters estimated in this study.

We are also concerned about the appropriate representation of sea surface topography. As pointed

out in Denker and Rapp(ibid.) the harmonic coefficient representation may not be the most

appropriate when dealing with a non-global data set. Hwang(1991) has recently explored an

altemative approach to this representation which may be much more satisfactory than the current

modeling procedure. This modeling needs to be tested.

The proper reduction of the surface gravity material to the geoid seems to be an important
factor in the analysis where cm accuracy in geoid computations is being attempted. Our studies

have used an assumption about gravity and elevation correlations to compute certain corrections

based on elevation data. We need to investigate this assumption. In addition we need to improve

the elevation data models so that more reliable correction terms can be computed. Specifically this

calls for the improvement of the ETOP5U 5'x5' elevation model that is distributed by the National

Geophysical Data Center.

This report has described the error analysis that has led to the accuracy estimates for all the

coefficients to degree 360. However this analysis from degree 51 to 360 is subject to a number of
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assumptionsthat needto beevaluated.We areconcernedthatthe accuracyestimateprojectedfor
thegeoidundulationis significantlyhigherthanthatfoundby comparisonwith altimeterdatain sea
andundulationdifferenceson land.Thedevelopmentof thehigherdegreecoefficientsthroughout
theorthogonalityrelationshipsalsorestson assumptionsrelatedto thedevelopmentof optimum
desmoothingfactors.Thesolutionsbeingusedin thisreportdatebackto studiesmadein theearly
1980's.Newerstudiesareneededin this area.Themostrecentattemptat doing this is described

by SacerdoteandSanso(1991).

Although the analysesreportedin thispaperhaveshownimprovedways to estimatethe
Earth'sgravitationalpotentialsignificantwork is needto improvethemodellingeffort. We need
additionalsurfacegravitydatafor manyregionsnow lackingdata.We needto striveto getaglobal
landcoverageof 30'meangravityanomalies.We needanimprovedanalysisof satellitealtimeter
datato determinemeananomaliesin theoceanareas.Thisnewsolutionwould takeinto accountthe
improvedGeosatorbitswe nowhaveaswell asthenewreferencegeopotentialdevelopedaspart
of this study. And we needthe analysis in severalareasas noted in the p_agraphs above.
Combiningall this informationtogethercanhelpusreachanimproveddeterminationof theEarth's
gravityfield andtheoceansurfacethroughthealtimeterdata.
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Appendix





Appendix A

Start and Stop Times of the 76 Geosat Arcs Analyzed in This Study

Arc Start Time Stop Time No. of rms No. of' 'rms* overlap

# (UTC) (UTC) rr obs. (cm/sec) xovers _ (Cm) rms(cm)

1 -861108 861114 7057 .5054 1999 51.87

22.40
2 861113 861119 6214 .5127 2053 68.48

38.38
3 861118 861124 6334 .5150 2167 49.40

14.46
4 861123 861124 7236 .5918 2233 57.98

26.58
5 861128 861204 8216 .5175 2283 48.15

13.49
6 861202 861207 2018 7732 .5318 2146 58.98

Burn
7 861207 2100 861214 8037 .4822 2419 53.65

15.78
8 861213 861219 8203 .4955 2409 50.37

13.06
9 861218 861224 7798 .5400 2419 51.13

6.84

10 861223 861229 8570 .5574 2460 50.30

7.99

II 861228 870103 8138 .4788 3446 48.57

8.43
12 870102 870107 2240 9334 .4955 2594 47.97

Burn
13 870107 2323 870114 8663 .5095 2842 47.27

9.04

14 870113 870119 9642 .4970 2505 47.34

6.64
15 870118 870124 9182 .5277 2672 44.28

16.77
16 870123 870129 8677 .4930 2915 49.45

22.97

17 870128 870203 7496 .5161 2919 56.65 ..

31.66

18 870202 870208 7400 .5012 2567 52.16

8.13
19 870206 870212 8654 .4975 2744 47.00

17.30
20 870210 870216 8466 .5087 2729 57.31

36.44
21 870214 870220 1021 11329 .5051 2987 55.49

Burn
22 870220 1103 8702226 8516 .5160 2345 43.72

18.48
23 870225 870303 9302 .4895 2712 50.28

51.65
24 870302 870308 9163 .5140 2953 55.99

68.40
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25 870307

26 870312

27 870317

28 870322

29 870327

30 870401

31 870406

32 870411

33 870416

34 870420

35 870424

36 870428

37 870503 1755

38 870509

39 870514

40 870519

41 870523

42 870527

43 870531

44 870605 1912

45 870611

46 870616

47 870622 1951

48 870628

49 870703

50 870708

51 870713

870313 8674

870318 8494

870323 8817

870328 7677

870402 8920

870407 9371

870412 8675

870417 9916

870422 9393

870426 10202

870430 11321

870503 1713 9874

870510 12071

870515 12247

870520 12082

870525 9322

870529 9003

870602 7394

870605 1829 8359

870612 10995

870617 10406

870622 1910 114.46

870629 9741

870704 9663

870709 10502

870714 9588

870719 _166

.5021

.4963

.5569

.5679

.5261

.5336

.5521

.5169

.5268

.5378

.5371

.5502

.5O36

.5233

.5133

.5165

.5005

.4860

.5310

.5574

.5367

.5626

.5172

.5338

.5268

.4877

.5357

2697

2784

2813

2898

2560

2348

2704

2687

2309

2106

2224

2165

2732

2411

2314

2169

2041

2130

2198

2929

2112

2840

2386

2234

2045

1825

1896

44.71

45.92

51.26

41.80

43.21

44.34

43.77

47.53

44.51

45.54

47.47

48.82

44.23

47.59

54.91

46.04

53.32

55.02

56.52

47.67

58.22

60.52

49.34

51.30

47.38

51.12

52.17

12.67

19.00

30.95

23.28

20.74

24.20

34. I0

32.38

13.71

9.39

35.57

Bum

3.64

48.88

61.58

3.34

52.31

62.07

Bum

15.02

77.35

Burn

18.52

27.94

i3.07

50.07

10.16



52 870717

53 870721

54 870726 1312

55 870801

56 870806

57 870811

58 870816

59 870820

60 870825 1558

61 870831

62 870905

63 870910

64 870915

65 870919

66 870924 1655

67 870930

68 871005

69 871010

70 871015

71 871019

72 871024 1951

73 871030

74 871104

75 871108

76 871112

870723 I0_36

870726 1230 I05_7

870802 11395

870807 10802

-870812 10045

870817 11484

870822 9643

870825 1517 8930

870901 10300

870906 9673

870911 9611

870916 10600

870921 9805

870924 1614 8752

871001 10921

871006 10156

871011 9684

871016 11660

871021 11870

871024 1908 10911

871031 11628

871105 10153

871110 10137

871114 10855

8711180017 11131

.5115

.5230

.5245

.4795

.4920

.5146

.4886

.5356

.5258

.5661

.4992

.5189

.5456

.5443

.5257

.5407

.5402

.5076

.5252

.5340

.5876

.5655

.5591

.5386

.5458

2OO9

1746

2697

2478

2491

2525

2383

2057

2274

2259

2220

2203

1877

1880

2479

2142

1890

1677

1940

1810

2092

2193

2252

1955

1324

43.90

11.20

43.76

Burn

56.78

59.59

49.66

33.98

48.59

64,94

60.00

77.38
57.49

49.40
50.25

Burn
55.67

81,86
56.82

74.11

56.16

81.92

51.04

60.55

54.23

82.27

64.12

Burn

58.95

59.84

52.49

48.60

52.08

4.4.78

62.86

15.45

60.49

9.61

57.68

,, Burn

57.25

8.56

65.18

8.70

58.24

26.17

58.64

5.69

63.90

1st year average ......

Table from Koblinsky et. al (1990)

52.16 31.69

94




