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The recent expansion of multidrug resistant and pan-drug-resistant pathogens poses

significant challenges in the treatment of healthcare associated infections. An important

advancement, is a handful of recently launched new antibiotics targeting some of the

current most problematic Gram-negative pathogens, namely carbapenem-producing

Enterobacteriaceae (CRE) and carbapenem-resistant P. aeruginosa (CRPA). Less options

are available against carbapenem-resistant Acinetobacter baumannii (CRAB) and strains

producing metallo-beta lactamases (MBL). Ceftazidime-avibactam signaled a turning

point in the treatment of KPC and partly OXA- type carbapenemases, whereas

meropenem-vaborbactam was added as a potent combination against KPC-producers.

Ceftolozane-tazobactam could be seen as an ideal beta-lactam backbone for the

treatment of CRPA. Plazomicin, an aminoglycoside with better pharmacokinetics and less

toxicity compared to other class members, will cover important proportions of multi-drug

resistant pathogens. Eravacycline holds promise in the treatment of infections by CRAB,

with a broad spectrum of activity similar to tigecycline, and improved pharmacokinetics.

Novel drugs and combinations are not to be considered “panacea” for the ongoing

crisis in the therapy of XDR Gram-negative bacteria and colistin will continue to be

considered as a fundamental companion drug for the treatment of carbapenem-resistant

Enterobacteriaceae (particularly in areas where MBL predominate), for the treatment

of CRPA (in many cases being the only in vitro active drug) as well as CRAB.

Aminoglycosides are still important companion antibiotics. Finally, fosfomycin as part

of combination treatment for CRE infections and P. aeruginosa, deserves a greater

attention. Optimal conditions for monotherapy and the “when and how” of combination

treatments integrating the novel agents will be discussed.

Keywords: ceftazidime avibactam, ceftolozane tazobactam, colistin, combination, monotherapy, carbapenemase

producing Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2019.00151
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2019.00151&domain=pdf&date_stamp=2019-06-11
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gpoulakou@gmail.com
https://doi.org/10.3389/fpubh.2019.00151
https://www.frontiersin.org/articles/10.3389/fpubh.2019.00151/full
http://loop.frontiersin.org/people/706037/overview
http://loop.frontiersin.org/people/706097/overview
http://loop.frontiersin.org/people/727671/overview
http://loop.frontiersin.org/people/713305/overview
http://loop.frontiersin.org/people/88465/overview


Karaiskos et al. Old and New Antibiotics for MDR Gram-Negatives

INTRODUCTION

Treatment and outcomes of healthcare-acquired infections
have been threatened by the worldwide increasing incidence
of antimicrobial resistance among Gram-negative bacteria
(1). New terminology was launched to describe extensively
drug-resistant (XDR) and pan drug-resistant (PDR) Gram-
negative microorganisms (2), with very limited treatment
options and major representatives Klebsiella pneumoniae,
Acinetobacter baumannii, and Pseudomonas aeruginosa (1,
3). Several official reports including those of the World
Health Organization (WHO), the Infectious Diseases Society
of America (IDSA) and the UK Government in 2015 have
designated antimicrobial resistance as one of the major problems
affecting human health and health economy (4–6). As a result
of the pressure exerted from regulatory bodies and social
waves, we have a handful of already launched new antibiotics
targeting some of the current most problematic Gram-negative
pathogens, namelyKlebsiella pneumoniae carbapenemase (KPC)-
producing Enterobacteriaceae and multi-drug-resistant (MDR)
P. aeruginosa. There are more new antimicrobials in the
final stage of development, some of them targeting pathogens
expressing metallo-beta lactamases, MDR A. baumannii and
other problematic pathogens, whereas novel non-antibiotic
approaches are in development, in order to confront pathogens’
ability to develop resistance to new antibiotic classes (7–
9). Currently, ceftazidime-avibactam, ceftolozane-tazobactam,
meropenem-vaborbactam, and eravacycline have been added to
our armamentarium in US and Europe, whereas plazomicin
has already got Food and Drug Adminstration (FDA) approval.
For all recently launched antimicrobials, evidence about the
optimal use outside registration trials is accumulating, though
not clear yet. Unmet clinical needs may be geographically
diverse and different from regulatory-approved indications (10).
Furthermore, lessons learned from the previous antibiotic dawn,
call for vigilance for emergence of resistance in every new
antibiotic. Prudent use of these precious additions in our
antimicrobial armamentarium is important to ensure their
longevity (1). In this narrative review, first we will appraise
old- revived (colistin, fosfomycin) or established (tigecycline-
aminoglycosides-carbapenems) antibiotics that are being used in
the treatment of XDR pathogens, with focus on their drawbacks
as optimal treatment options and their potential as treatment
components along with new antibiotics. Then we will present
a summary of new antibiotics centered in real-life use and try
to define the most appropriate candidate-patient to whom they
must be prescribed. Finally, the “when and how” of combination
treatments will be appraised.

PREVALENT MECHANISMS OF
RESISTANCE AMONG
DIFFICULT-TO-TREAT PATHOGENS

New drugs are called to encounter pathogens with accumulating
mechanisms of resistance. Carbapenem resistance is a pivotal
event in the generation of XDR pathogens, because a potent

antibiotic class is inactivated, along with all beta-lactams,
when the underlying mechanism is the production of a
carbapenemase, which acts as a broad beta-lactamase (11).
Clinical implications are profound, due to the exhaustion
of therapeutic options. Enterobacteriaceae, with Klebsiella
pneumoniae the most representative, P. aeruginosa and A.
baumannii are the most common pathogens in clinical practice
that harbor carbapenemases. Table 1 shows the most relevant
mechanisms of resistance encountered among XDR and PDR
isolates (11–14). The majority of acquired carbapenemases
belong to either Ambler class A, or class B (metallo-beta-
lactamases–MBLs), or class D (oxacillinases–OXAs) (13).
Extended-spectrum beta-lactamases (ESBLs), although not
conferring resistance to carbapenems, are important contributors
of resistance traits because ESBL-, and carbapenemsae- encoding
plasmids are frequently vectors of resistance determinants
for other antimicrobial classes, such as aminoglycosides
(aminoglycoside-modifying enzymes or 16S rRNA methylases)
and fluoroquinolones (Qnr, or efflux pumps) (11–13).

Outer membrane modifications and particularly mutations
in membrane porins may confer resistance to carbapenems
without resistance to other beta-lactams. Efflux pumps confer
resistance to carbapenems without carbapenemase production;
they may affect multiple antibiotics. Aminoglycoside-modifying
enzymes confer resistance to aminoglycoside class; usually
they are located in mobile genetic elements along with other
mechanisms of resistance (11–13). Finally resistance to colistin
was chromosomally mediated for years; a plasmid-mediated
mechanism through mutation in mcr1 gene is a new threat, first
identified from Enterobacteriaceae in China (14).

OLD AND ESTABLISHED ANTIBIOTICS

Colistin
Colistin, systemically administered in the form of the prodrug
colistin methanesulfonate (CMS), is a revived antibiotic that
has been addressed as the last resort antibiotic of the twenty-
first century due to the steep increase of resistance rates
and the lack of new effective antimicrobial agents (15). The
antimicrobial spectrum of colistin includes MDR and XDR
Gram-negatives regardless of mechanism of resistance, mainly K.
pneumoniae, A. baumannii, and P. aeruginosa, whereas Proteae
are inherently resistant (15). In vitro activities of colistin and
novel combination ceftazidime/avibactam (CAZ-AVI) against
isolates of Enterobacteriaceae collected in Europe as part of
the International Network For Optimal Resistance Monitoring
(INFORM) global surveillance program from 2012 to 2015
revealed CAZ-AVI as the most potent active agent with a
susceptibility rate of 99.4%, whereas susceptibility to colistin was
82.8% (16). Regarding P. aeruginosa, colistin was the most active
drug followed by CAZ-AVI with a susceptibility rate of 99.6 and
92.4%, respectively (17).

During the last decade, a better characterization of the colistin
pharmacokinetics (PKs) has been made feasible due to advanced
technology, resulting in minimization of hydrolysis of CMS to
colistin during workup, introducing colistin into a revolutionary
period (15). The necessity of a loading dose and longer dosing
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TABLE 1 | Prevalent mechanisms of resistance among pathogens with extended-drug resistance (XDR) (11–14).

Classification Mechanism Common bacterial species Examples Substrate

B-lactamase

Ambler class A

Extended-spectrum

Or ESBLs

Enterobacteriaceae, Pseudomonas

aeruginosa, Acinetobacter spp.,

Kluyvera spp.

SHV-like, CTX-like,

KLUG-like

Penicillins, cephalosporins

(except cefamycins), aztreonam

Frequently co-transferred

with VIM

B-lactamase

Ambler class A

Serine carbapenemases

Acquisition of a mobile

genetic element

Klebsiella spp. KPC-like, IMI-like Penicillins, cephalosporins,

aztreonam, carbapenems

B-lactamase

Ambler class B

Metallo-β-

lactamases, carbapenemases

Acquisition of a mobile

genetic element

Stenotrophomonas maltophilia, P.

aeruginosa, Bacteroides fragilis,

Acinetobacter baumannii

VIM-like, IMP-like, NDM-like,

GIM, SPM, SIM

Penicillins, cephalosporins, and

carbapenems. Monobactams

are stable

B-lactamase

Ambler class C

Extended-spectrum,

cephalosporinases,

Mainly Chromosomal

Enterobacter spp., Klebsiella spp.,

Proteus spp., Citrobacter spp., E.

coli

AmpC, P99, ACT-like,

CMY-like, MIR-like

–

B-lactamase

Ambler class D

Carbapenemases A. baumannii, P. aeruginosa, E. coli, OXA-like (OXA-51, OXA-23) Penicillin, aztreonam, and

carbapenems

Porin mutations

(Loss of outer

membrane permeability)

Chromosomal mutation P.aeruginosa,

A. baumannii

OprD CarO, Imipenem

Efflux pumps Chromosomal mutations

Different antimicrobial classes

may be substrates of a single

pump: exposure to a given class

(e.g., beta-lactams) may thereby

select mutants with resistance to

other classes

P. aeruginosa MexAB-OprM Ticarcillin, aztreonam, cefepime,

meropenem, quinolones

– – A. baumannii AdeABC Beta-lactams (variable),

aminoglycosides,

fluoroquinolones, tigecycline

Topoisomerase

modifications

Gyrase modifications

Chromosomal mutation P.aeruginosa, A. Baumannii,

Enterobacteriaceae

– Fluoroquinolones

Qnr Plasmid mediated Enterobacteriaceae A, B, C, D and S subtypes Fluoroquinolones

Aminoglycoside-modifying

enzymes

Acquisition of a mobile genetic

element Aminoglycoside

phosphotransferase, APH,

aminoglycoside

nucleotidyltransferase, ANT and

aminoglycoside

acetyltransferase,

AAC

Enterobacteriaceae, A. baumannii AAC(3), AAC(6’) and

APH(3
′
)

Aminoglycosides

Methylases of the 16S

ribosomal subunit

Acquisition of a mobile genetic

element

NDM-1 producing strains (mainly

Enterobacteriaceae)

ArmA

Rmt

Plazomicin is stable against the

majority of AMEs but is being

hydrolysed by Rmts

Lipid A (LPS) modifications Chromosomal mutation P.aeruginosa, K. Pneumoniae, A.

baumannii

– Colistin

PmrA–PmrB

two-component system

genetic modifications

Chromosomal mutation A. baumannii, P.aeruginosa, K.

Pneumoniae

– Colistin

Mcr1 gene mutation Plasmid mediated Enterobacteriaceae – Colistin

intervals (18, 19) as well as a dosing scheme based on creatinine
clearance (CrCL) have been proposed (20) and assimilated in
clinical practice (19–21). The updated colistin daily maintenance
doses have been shown to achieve target attainment of clinically
relevant plasma colistin concentrations (around 2 mg/L) for
approximately 90% for patients with CrCl < 80 ml/min (22).
However, the recent observation that a high CrCL of >80

mL/min decreases the ability to achieving the appropriate steady-
state colistin levels attributed to a higher amount of colistin
cleared by the kidneys, probably mandates either the necessity of
combinations or higher dosing (5, 8, 19, 22).

The current clinical efficacy of colistin is extrapolated from
reported studies focusing mainly on bacteremias and VAP caused
by MDR and XDR Gram-negative pathogens. However, the
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major drawbacks of publications are their retrospective, non-
randomized design, with a variety of dosages, and the absence
of a loading dose, whereas the simultaneous administration
of other active in vitro antibiotics renders inconclusive the
efficacy of monotherapy with colistin (15). The issue of
combination therapy with colistin has received considerable
critical attention and is a debated and controversial topic
(23, 24). Regarding carbapenem resistant Enterobacteriaceae
(CRE), the combination of colistin with another active in vitro
antibiotic has been reported to be beneficial in terms of survival,
as depicted in a big number of patients and despite their
retrospective source of the studies (23–25). The combination of
meropenem (if MIC is ≤8 mg/L) with gentamicin or tigecycline
or colistin have resulted significantly in reduction of mortality
particularly in patients with septic shock, high mortality score,
or rapidly fatal underlying diseases (25, 26). However, in low-
risk bloodstream infections (BSIs) and non-bacteremic urinary
and abdominal infections, monotherapy seems as an adequate
therapeutic choice (25). There are currently minimal and of low-
quality clinical evidence suggesting superiority of monotherapy
over combination therapy for treatment of carbapenem resistant
P. aeruginosa (CRPA). However, many clinicians, taking into
consideration PK/PD limitations of colistin and the development
of resistances favor combination treatment (23, 24). Similarly,
colistin has been frequently used in combination for the
treatment of carbapenem resistant A. baumannii (CRAB),
with the same concerns regarding the suboptimal PK of
polymyxins (23, 24). This concept has recently been challenged
by randomized control trials focusing on infections caused
by CRAB demonstrating superior efficacy of monotherapy of
colistin vs. combination therapy (27–29). The most recent study
enrolled 151 patients with CRAB infections treated with colistin
alone vs. colistin plus meropenem and rates of clinical failure (83
vs. 81%, p = 0.64) and mortality (46 vs. 52%, p = 0.40) were
found similar in both groups. However, the unexpected high rates
of clinical failure and mortality, highlights the necessity of novel
agents to effectively treat CRAB infections (29).

Fosfomycin
Having been discovered in the ‘60s, fosfomycin in its intravenous
form, fosfomycin disodium (FD), was soon almost abandoned
due to the availability of other agents and the peculiarities of
susceptibility testing (30). It was not until about a decade ago that
it was reintroduced into clinical practice, with a new role in the
ongoing fight against XDR and PDR Gram-negative bacteria in
critically ill patients (30, 31).

Fosfomycin exerts bactericidal action against susceptible
organisms and possesses a unique mechanism of inhibiting the
first step of peptidoglycan synthesis, making cross-resistance
with other agents unlikely (32). FD has straightforward
pharmacokinetics, though less well studied in the critically ill.
High concentrations are achieved in serum and urine, well-
above minimum inhibitory concentrations (MICs) of susceptible
organisms, while penetration to compartments relevant to
the ICU setting (lung, cerebrospinal fluid, abscess fluid) is
satisfactory (33–35). FD has very few toxicity concerns (36,
37). Hypokalemia and sodium overload stand out as the

most important; however, they are usually controlled in the
ICU setting.

In contemporary in vitro studies fosfomycin was active against
more than 80% of Staphylococcus aureus, Enterococcus faecium,
ESBL-producing Escherichia coli, and K. pneumoniae and slightly
less against carbapenem-resistant (CR) K. pneumoniae (38). Less
information was available for P. aeruginosa, but at least in one
study, 80.6% of strains were inhibited by 128 mg/L of fosfomycin
(39). Against a recent collection of 396 K. pneumoniae isolates
originating from Greek hospitals, fosfomycin was the third most
active agent, being active against 58% of strains by using the strict
EUCAST criteria for E. coli (where susceptibility break point is
32 mg/L as opposed to 64 mg/L for CLSI) (40). These results
were confirmed in a recent collection of US bacterial isolates
(41). Of great interest to intensivists is the absence of activity
against A. baumannii strains (30). The in vivo development of
resistance during treatment is themost feared complication of FD
use (41) driving repeated recommendations for use only within
combination regimens (8, 30). Recent reports however even with
monotherapy did not verify this fear (37).

A great heterogeneity is represented in intravenous
fosfomycin studies, further plagued by the absence of
control groups. Grabein et al were able to identify only 10
controlled studies with solely one having been published the
current decade; fosfomycin had similar clinical efficacy when
compared with various agents (37). Recently, the results of a
multicenter, randomized, double-blind phase 2/3 trial were
announced, showing non-inferiority of intravenous fosfomycin
to piperacillin/tazobactam, in patients with complicated urinary
tract infections (cUTIs), or acute pyelonephritis (42). These
results however should be extrapolated with caution within the
ICU environment, since only one in three pathogens exhibited a
resistance phenotype.

Fosfomycin is not extensively used against MDR infections,
with only 10 among 342 patients with bloodstream infections
by CRE in the INCREMENT cohort being treated with FD
(43). These data imply that FD is still regarded as salvage
treatment for CR infections or treatment for breakthrough
infections in patients already receiving anti-XDR treatment.
Indeed, a few years ago our group was able to show that
almost 2/3 of 48 critically ill patients suffering from CR
infections, were already receiving colistin for a median of
13.5 days (31). Apart from the fear of resistance development
during treatment, several reasons might account for FD under-
prescription. Absence of high-quality evidence of efficacy could
be implicated, along with difficulties of unobstructed access
to FD with only few countries excepted (44). Lately FD has
been approved for use in at least 14 European member states
(45), while in the US ZTI-01 (Contepo R©) has been granted
Qualified Infectious Disease Product and Fast Track designations
by the US Food and Drug Administration in several indications
(44). In addition, several laboratory issues may stand in the
way of FD use, such as the poor performance of diffusion
gradient and broth microdilution techniques in comparison with
gold standard agar dilution (39, 46–48), the particularity of
disc diffusion susceptibility determination (49), the absence of
susceptibility thresholds adapted to intravenous use (49, 50) and
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the difference in proposed susceptibility thresholds between CLSI
and EUCAST (50, 51). Finally, labeling information in most
European countries encourages salvage use (52). A few years ago
our group showed that less than half of 48 fosfomycin-treated
critically ill patients, received the first dose of the drug within
the first 24 h from infection onset, and these patients tended to
have better outcomes than their delayed initiation counterparts
(31). As antimicrobial treatment exerts its maximum effect when
applied early (53), surveillance cultures (54), or rapidly detection
of carbapenemase production in microbiological samples (9),
may early identify patients that might benefit from FD treatment.

It is undisputable that there is a place for FD within the ICU,
against CR infections (8, 23). Probably, the greatest unmet need
that FD is qualified to cover are XDR and PDR CRE infections,
especially in the presence of colistin resistance or production
of metallo-β-lactamases. Against CR pseudomonal infections,
more agents are available and fosfomycin MICs are higher (44),
however FD might be occasionally useful. It is questionable
whether recent results implying modest in vivo synergistic effects
with colistin against A. baumannii infections (28) will expand its
use in this indication. Regarding specific sites of infection, it is
anticipated that FD will have its best performance in the urinary
tract. Nevertheless, currently available data imply comparable
activity in other conditions, as well, such as ventilator-associated
pneumonia (VAP) or bloodstream infections (BSIs) (31, 31).
Doses up to 16–24 g/daily have been used in MDR infections,
which seem justified based on pathogens MICs and fosfomycin
pharmacokinetic properties (55). However, according to a recent
population pharmacokinetic (PK) study, significant variance
in exposure exists in critically ill patients under modern
dosage regimens. This variance is not thoroughly explained by
differences in renal function and identifies an area where future
research is warranted (56). It is evident that an unexplored
potential exists for the intravenous form of fosfomycin.

Combination treatment is the rule for CRE infections in
the severely ill host, while for pseudomonal infection it is
frequently recommended, even in the absence of carbapenem
resistance (7, 8, 26, 57, 58). In the case of FD, combination
treatment is being proposed with greater intensity, as a means
to overcome selection of resistant mutants. The dogma was
recently challenged by the results of the previously mentioned
ZEUS study (42), showing that there might be certain patient
subgroups that may inconsequently deviate from the norm of
combined treatment. Regarding the companion agent choice,
no specific recommendation can be made on the companion
antimicrobial, since consistent synergistic patterns have not been
observed (32, 59–63) and only rarely has antagonism between
fosfomycin and another agent been noted (61). Recent in vitro
evidence implies that co-administration with aminoglycosides
might be beneficial in terms of efficacy, while according to older
reports fosfomycin might lessen aminoglycoside toxicity (64, 65).
However, the addition of nebulized amikacin-fosfomycin at a
5:2 ratio to standard treatment did not lead to improved VAP
outcomes in a recent randomized-controlled trial (RCT) (66). No
synergy with colistin has been demonstrated, but here is in vitro
and in vivo evidence of synergy with carbapenems (61, 67, 68)
and it is extremely interesting to see whether these effects are

replicated (or potentiated) with modern, more active against
CRE beta lactams, such as novel beta-lactam beta-lactamase
inhibitor combinations.

Tigecycline
The glycyclcycline tigecycline has been used in the last decade
as a salvage treatment for infections caused by CRE and CRAB
(69). Treatment outcomes have been hampered by the low serum
concentrations of the drug in the approved dosing regimen
and the low penetration in the epithelial lining fluid (ELF) of
mechanically ventilated patients (70). A higher dose of tigecycline
(HDT) (100mg twice daily after 200mg of loading dose) has been
suggested, particularly for VAP/HAP, A. baumannii infections
and bacteraemic infections, although all the above represent off-
label use of the drug (71, 72). Decreased fibrinogen levels have
been reported with augmented dose regimens of tigecycline (73).
A systematic review encompassing 263 patients from 11 studies
(including only one RCT), reported significantly higher rates of
gastrointestinal adverse events (nausea, diarrhea and vomiting)
with HDT compared to standard dose (74).

Combination treatments of tigecycline seemmandatory, given
the above-mentioned characteristics of the drug and the early
warnings about increased mortality, particularly in critically ill
patients and when given as monotherapy (75). Before the advent
of the new antimicrobials listed in the next section, possible
companions were limited to colistin and meropenem (25, 69, 76).
Tigecycline-colistin or -polymyxin B combinations have shown
in vitro and in vivo synergy in animal model studies with KPC-
2 (77–81). Real life data on colistin-tigecycline combination
were captured in the INCREMENT retrospective cohort, in
which high-risk patients with CRE-BSI on tigecycline-containing
combinations (79 patients) had lower mortality compared with
those who received colistin monotherapy (27).

Small size and heterogeneity are the rule of almost all reports
of HDT in the treatment of MDR pathogens. In a study of 30
postoperative patients admitted in the ICU with two or more
positive blood cultures with KPC producing K. pneumoniae,
HDT was compared with standard dose combined with colistin
in both arms. Significantly lower mortality was demonstrated
in the HDT group (82). De Pascale et al. studied HDT in a
cohort of patients with VAP by CRE (27 patients) or CRAB
(28 patients), in which HDT was the only predictor of clinical
cure (83). A retrospective study of 40 patients with BSI caused
by CPKP (23 on HDT and 17 on standard-dose tigecycline
combinations) found no difference in hospital mortality (84).
A systematic review of 2016 compiled 25 studies (21 controlled
and 5 single -arm studies) of tigecycline in the treatment of
CRE infections (85). No difference in overall mortality, clinical
response and microbiological response was found between
tigecycline-containing arms and comparator arms. Subgroup
analyses elucidated a significantly lower 30-day mortality for
patients on tigecycline combination regimens than those who
received monotherapy (OR = 1.83 [95% CI = 1.07–3.12; P =

0.03]) and other antibiotic regimens (OR = 0.59 [95% CI =

0.39–0.88; P = 0.01]), respectively. In addition, ICU mortality
was significantly lower in HDT compared to standard dose (OR,
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12.48; 95% CI, 2.06–75.43; P= 0.006) (85). A great heterogeneity
of the studies included in thismeta-analysis was reported (85, 86).

Tigecycline will continue to be a valuable antibiotic, as part
of combination regimens in the new era of antibiotics (75).
HDT is almost mandatory when treatment of difficult to -treat
organisms is considered, probably excluding intraabdominal
non-bacteremic infections. As part of empiric regimens, it
can offer coverage against A. baumannii, depending on local
epidemiological data (82). Emerging data on possible synergy
with new antibiotics such as plazomicin, need further evaluation
in order to define other possible combinations (87).

Aminoglycosides
The worldwide expansion of XDR pathogens and particularly
that of CRE has brought into light aminoglycosides, which may
retain activity even in XDR isolates (88). In vitro susceptibility
rates may vary significantly, depending on the dissemination
of aminoglycoside modifying enzymes, which are frequently
co-transferred along with other resistance genes on mobile
genetic elements (89–91). It is of concern that expression of 16S
rRNA methyltranferases, enzymes which confer resistance to all
aminoglycosides, is especially common in NDM-producing CRE
(40). In a recent multicenter study from Greece, 396 consecutive
CRKP isolates were tested for susceptibility to antibiotics and
mechanisms of carbapenem resistance. Gentamicin exhibited
61.9% susceptibility against this collection of strains, being
higher for KPC-producers and dual KPC-VIM producers
(69.1 and 90.1%, respectively); in vitro susceptibility against
NDM-1, VIM, and OXA-48 producers was 42.6, 38.2, and
28.6%, respectively (92). Taking into account that colistin
resistance was 40.6%, with the highest rates (>90%) observed
among isolates exhibiting dual VIM-KPC production, it easily
understood how important have become aminoglycosides in the
contemporary armamentarium.

Aminoglycosides have been traditionally used as part of
combination regimens and only in urinary tract infections
they have been used as monotherapy. Response rates of
88% have been reported with aminoglycoside monotherapy
in UTIs compared to only 64% with polymyxins (93, 94).
Treatment of other body compartments is hampered by
the PK/PD obstacles of the drug; monotherapies of CRE
except UTIs have been associated with unacceptably high
mortality rates of 80% (95). Therefore, combinations with
other antibiotic(s) active against the targeted pathogen are
recommended. Observational studies including large cohorts
of patients with KPC-KP infections have shown that the
combination of a carbapenem with an aminoglycoside was
associated with the lowest mortality rate, provided that the MIC
of the pathogen against meropenem was ≤8 mg/L (25, 26,
95). Aerosolised aminoglycosides may represent an important
alternative for VAP, due to suboptimal PK/PD targets attained
with iv administration (96, 97). Despite promising preliminary
studies, RCTs failed to demonstrate improved mortality when an
inhaled aminoglycoside was added as definitive treatment of HAP
and VAP through an optimized device; lack of target population
(i.e., MDR and XDR infections) among persons enrolled in the

study may have obscured any added benefit from aerosolized
antibiotics (66, 97).

Current optimal use of aminoglycosides has important
drawbacks. First, established breakpoints of resistance differ
between the two major relevant societies, being set at 16 mg/L
(CLSI) and 8 mg/L (EUCAST) for amikacin; and 4 mg/L (CLSI)
and 2 mg/L (EUCAST) for gentamicin (51, 98). Many MDR
and XDR pathogens have borderline susceptibilities against
these breakpoints, a fact further complicated by great the
difficulty to predict PK/PDs of aminoglycosides in critically ill
patients (88, 99–104). Recent reports from critically ill patients
have shown that for isolates with an MIC of 16 mg/L for
amikacin and 4 mg/L for gentamicin, the necessary doses to
achieve therapeutic concentrations in plasma that achieve the
PK/PD target would be up to 30–40 and 8–10 mg/kg for
amikacin and gentamicin, respectively. Even with the more
conservative EUCAST breakpoints, the PK/PD target of 8 mg/L
for amikacin would not be achieved despite administration
of higher doses than approved (101–103). When the desired
therapeutic concentration is not in the blood but in the
lung parenchyma, further PD obstacles arise (104). Given the
PK/PD limitations of aminoglycosides, a high dose has been
recommended followed by renal replacement therapy as a
measure of minimizing associated renal toxicity (105).

Clinical experience with aminoglycosides as monotherapy
or as “active monotherapy” when co-administered antibiotics
were inactive in vitro against the targeted pathogen. However,
small published series verified PK/PD considerations and
consistently reported clinical failure with isolates having MICs
on the breakpoint of susceptibility, whereas clinical success was
demonstrated in infections by isolates with low MICs (106,
107). According to the PK/PD data listed above, monotherapy
with aminoglycosides would be very risky for critically ill
patients for infections in compartments outside the urinary
tract (88, 93, 95, 108, 109).

Short duration courses of aminoglycosides (5–7 days) given
as once-daily regimens are associated with less nephrotoxicity
compared to multiple daily dosing (110, 111). Even high doses of
aminoglycosides were well tolerated in terms of nephrotoxicity
(101, 102). Acute kidney injury rates (AKI) between 12 and 17%
have been reported in reports of critically ill patients; septic
shock and prolonged administration (>10 days) were associated
with increased nephrotoxicity risk (110, 112). Consequently,
therapeutic drug monitoring should be undertaken, to ensure
that therapeutic and non-toxic levels will be delivered to the
patient. As shown in Table 2, amikacin and gentamicin are
recommended to be given once daily, without a loading dose
(111). Higher doses recommended for patients treated for serious
CRE infections to attain a maximum serum concentration of 30
and 60 mg/ml, respectively corresponding to a PD target of 8
times the MIC of the pathogen (111, 123). Peak levels of 15–
20 mg/ml for gentamicin and tobramycin and 20–40 mg/ml for
amikacin are targeted with once-daily regimens. Trough levels
indicative of low nephrotoxicity risk are 1 mg/ml for gentamicin
or tobramycin, and 1–4 mg/ml for amikacin (111, 123).

When combination treatment is considered, aminoglycosides
have been combined with almost all classes of antibiotics (88).
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TABLE 2 | Intravenous novel and older antimicrobial agents against MDR and XDR Gram-negative pathogens (1, 8, 24–26, 59, 64, 99, 110, 113–122, 136).

Drug Dose Adjustment to renal function CRRT Comments

NEW DRUGS

Ceftazidime/avibactam 2.5 g (2 g/0.5 g) q8h (infusion

over 2 h)

CrCl >50: 2.5 g q8 h

CrCl 31-50:1.25g q8h

CrCl 10-30: 0.94g q12h

CrCl <10: 0.94g q48h

Hemodialysis: 0.94g q48h

(administration after hemodialysis

session)

1.25 g q8h FDA and EMA approved for cUTI, cIAI, HAP, and

VAP

EMA additionally approved for aerobic Gram-

negative infections in patients with limited

treatment options

Ceftolozane/

Tazobactam

Dose for pneumonia (off label):

3g q8h (infusion over 1 h)

CrCl >50: 3 g q8h

CrCl 30–50:1.5 g q8h

CrCl 15–29: 750mg q8h

CrCl <15: no data

No data FDA & EMA approved for cIAI (in combination with

metronidazole) & cUTI, including AP

Clinical trial in progress to assess the value in

treatment of VAP

Dose for other indications: 1.5g

(1g/0.5g) q8h (infusion over 1h)

CrCl >50: 1.5 g q8h

CrCl 30–50: 750mg q8h

CrCl 15–29: 375mg q8h

CrCl <15: 750mg loading dose then

150mg q8h

Hemodialysis: 750mg loading dose

then 150mg q8h (administration after

hemodialysis session)

No data

Meropenem/

Vaborbactam

4g (2g/2g) q8h (infusion over 3 h) CrCl >50: 4g q8h

CrCl 30–49: 2 g q8h

CrCl 15–29: 2 g q12h

CrCl <15: 1 g q12h

Hemodialysis: 1 g q12h (administration

after hemodialysis session)

No data FDA approved for cUTI, including AP

EMA approval for cUTI, cIAI, VAP, HAP, and

treatment of infections due to aerobic Gram-

negatives in adults with limited treatment options

Plazomicin 15 mg/kg q24h (infusion over

30 min)

CrCl ≥60: 15 mg/kg q24h

CrCl 30-60: 10 mg/kg q24h

CrCl 15-29: 10mg/kg q48h

CrCl <15, Hemodialysis: No data

No data FDA approved for cUTI, including AP EMA approval

pending

Eravacycline 1 mg/kg q12h (infusion over

60min)a
No dose adjustment No

dose adjustment

FDA and EMA approved for complicated

intra-abdominal infections,

OLD DRUGS

Colistin Loading dose: 9 MIU (infusion

30min to 1 h) Maintenance

dose: 4.5 MIU q12h after 12 h

Daily dose divided by two:

CrCl ≥ 90: 10.9 MIU

CrCl: 80 to < 90: 10.3 MIU

CrCl 60 to < 70: 8.35 MIU

CrCl 70 to < 80: 9.00 MIU

CrCl 50 to < 60: 7.40 MIU

CrCl 40 to < 50: 6.65 MIU

CrCl 30 to < 40: 5.90 MIU

CrCl 20 to < 30: 5.30 MIU

CrCl 10 to < 20: 4.85 MIU

CrCl 5 to < 10: 4.40 MIU

Hemodialysis: 3.95 MIU and

supplementary dose 1.2–1.6 MIU for a

3- or 4-h session after the dialysis

6.5 MIU

q12h

FDA approved for serious infections that are proven

or strongly suspected to be caused by susceptible

Gram-negative organisms EMA approval for

treatment of infections caused by MDR

Gram-negative pathogens with limited options

Dosage proposal by International Consensus

Guidelines for the Optimal Use of the Polymyxins

Polymyxin B Loading dose: 2.5 mg/kg (1-h

infusion) Maintenance dose: 1.5

mg/kg q12h (1-h infusion) after

12 h

No dose adjustment No

dose adjustment

Not available in Europe

Fosfomycin 6–8 g q8h CrCl 40: 70% (in 2–3 divided doses)

CrCl 30: 60% (in 2–3 divided doses)

CrCl 20: 40% (in 2–3 divided doses)

CrCl 10: 20% (in 1–2 divided doses)

Hemodialysis: 2 g q48h (administration

after hemodialysis session)

No

dose adjustment

In combination therapy with other active drugs

IV fosfomycin not FDA approved. EMA started

reviewing in 2018 medicines containing fosfomycin

(Continued)
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TABLE 2 | Continued

Drug Dose Adjustment to renal function CRRT Comments

Gentamicin 5 mg/kg q24h (7 mg/kg q24h if

critically ill)

CrCl > 80: 5 mg/kg q24h

CrCl 60–80: 4 mg/kg q24h

CrCl 40–60: 3.5 mg/kg q24h

CrCl 30–40: 2.5 mg/kg q24h

CrCl 20–30: 4 mg/kg q48h

CrCl 10–20: 3 mg/kg q48h

CrCl 0–10: 2 mg/kg q72h

Hemodialysis: 2 mg/kg q72h

(administration after

hemodialysis session)

1.7–2

mg/kg q24h

Approved for the treatment of serious infections

caused by Gram- negative and MDR infections

causing cUTI.

Optimal efficacy with once-daily dosing is preferable

to multiple daily doses and peak levels of 8–10

mg/ml and trough levels of 1 mg/ml are desired.

Aminoglycosides can be useful as part of

combination regimens for treating KPC producing

Enterobacteriaceae infections.

Tigecycline Loading dose 100–200mg,

Maintenance dose: 50–100

mg q12h

No dose adjustment No

dose adjustment

FDA & EMA approval for cIAI, SSSI

FDA additionally approval for CAP

High-dose recommended (off-label) in critically ill

patients with CRE infections and limited treatment

options

Inadequate serum and pulmonary drug

concentrations for effective treatment of

bloodstream infections and pneumonia

Meropenem 2g q8h (extended infusion 3 h) CrCl ≥50: 2 g q8h

CrCl 30–49: 1g q8h

CrCl 10–29: 1g q12h

CrCl <10: 1 g q24h

Hemodialysis: 1 g q24h (administration

after hemodialysis session on

dialysis day)

2gr q12h In combination with another in vitro active drug for

CRE infections (when meropenem MICs ≤ 8 mg/L)

Ertapenem 1 g q24h CrCl 30–90: No dose adjustment

CrCl <30: 0.5 g q24h

Hemodialysis: 0.5 g q24h

(administration after hemodialysis

session on dialysis day)

1 gr q24h Indicated only as part of a double-carbapenem

combination for XDR and PDR

Enterobacteriaceae (KPC or OXA-48 producing

strains)

FDA approved for cIAI, SSSI, CAP, cUTI

AP, acute pyelonephritis; CAP, community acquired pneumonia, CrCL, creatinine clearance (calculated as ml/min/1.73m2); cIAI, complicated intra-abdominal infections; CRE,

carbapenem resistant Enterobacteriaceae; SSSI, skin and skin structure infections; cUTI, complicated urinary tract infections; CRRT, continuous renal replacement therapy; EMA,

European medicines agency; FDA, US food and drug administration; h, hours; HAP, hospital-acquired pneumonia; min, minutes; MDR, multidrug-resistant; MIU, million IU; PDR,

pandrug resistant; q8h, every 8 hours; q12h, every 12 hours; q24h, every 24 hours; q48h, every 48 hours; VAP, ventilator-associated pneumonia; XDR, extensively drug-resistant.
a Increase dose to 1.5mg/kg q12h if co-administered with a strong CYP3A4 inducer: e.g. rifampicin, carbamazepine, fosphenytoin.

Synergy of aminoglycosides with carbapenems has produced
encouraging in vitro results in CRE isolates with resistance to
carbapenems (124, 125). Further clinical evidence is important
on these observations.

Carbapenem-Containing Combinations
and Double Carbapenem Combination
Before the launching of the new combinations of beta-
lactams/beta-lactamase inhibitors with activity against KPC
producers, carbapenems have been used as a life-saving
therapeutic approach in infections caused by strains producing
carbapenemases, despite the apparent paradox (25, 76). High
doses and extended infusions were used (particularly for
meropenem), along with other active in vitro agents. Studies
from Greece showed that combinations including meropenem
in the treatment of patients with CRKP BSIs had the lowest
mortality when the MIC of the pathogen was ≤8 mg/L (19.3
vs. 35.5% in patients with carbapenem MICs > 9 mg/L) (25).
Data from Italy, in a study of 36 BSIs by KPC-KP showed
that meropenem-containing regimens had a significantly lower
30-days mortality rates when the isolate’s meropenem MIC
was 8 mg/L or less (15.8 vs. 35.2% when the MIC was at

>16 mg/L) (76). Although these data derived from small
observational studies, they were verified in larger cohorts.
Subsequent Italian cohorts of 661 CRKP infections of various
sources and 595 BSIs, respectively, highlighted the importance
of high-dose meropenem combinations in achieving successful
clinical outcomes with isolate’s MIC against meropenem up to 16
mg/L (26, 126). Non-carbapenem regimens were associated with
worse outcomes across all these studies, particularly when they
consisted of monotherapies (25, 76, 127).

Interestingly, multidrug carbapenem-containing combinations
were most effective in patients at high risk for mortality (i.e.,
those in septic shock (25). Based on the experience gathered
from KPC-KP infections in Italy and Greece, in a position
document, 13 experts from these two countries concluded that
“administration of high-dose (e.g., 2 g every hours), prolonged
infusion meropenem could be beneficial in KPC-KP infections
if MIC is ≤8 mg/L,” whereas for MICs up to 32–64 mg/L,
“meropenem administration should be considered if therapeutic
drug monitoring is available to monitor optimal drug exposure”
(8). With the advent of the novel antibiotics with activity against
KPC-KP, carbapenems are no longer preferable to a beta lactam
antibiotic against which the isolate is susceptible. However,
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early studies have demonstrated similar effects of carbapenem-
containing regimens on mortality in severe infections caused by
VIM-1 producing K. pneumoniae, provided that the carbapenem
MIC of the isolate was <4 mg/L (127). Since we don’t have new
antibiotics active against MBL-producers, experience acquired
so far could be still life-saving against XDR isolates, particularly
when the underlying mechanism of resistance is VIM or the
isolate coproduces KPC and VIM. Further evaluation is needed
and rapid communication of carbapenem MICs to the treating
physicians, irrespective of the mechanism of resistance produced
by the recovered pathogen.

Double carbapenem combination (DCC) has emerged as a
salvage treatment option against XDR and PDR CRE, based
on a preliminary concept study by Bulik and Nicolau on the
combination of ertapenem and doripenem (128). They’re in
vitro and in vivo observations, suggested that ertapenem acts as
a “suicide inhibitor of KPCs” due to its higher affinity to the
enzyme, leaving the other carbapenem intact and active against
the isolate (128). Further in vitro studies showed that only KPC
and not MBL enzymes respond to this maneuver and various
carbapenem combinations were proven successful in vitro (129).
These observations were verified in small observational studies
with inherent biases (lack of randomization and controls) (23,
130–132). A recent publication summarized the experience
among 211 patients treated with this modality in observational
studies (133). The most common combination was ertapenem
(1 g q24h IV, infused over 30min) plus meropenem (2 g q8 h,
3 h infusion). The administration of other antibiotics in almost
one third of cases (mostly colistin) obscures the evaluation of
DCC per se, however, a clinical success rate of 70% with all-
cause mortality of 26% seems promising in a population of
critically ill patients (50% bacteraemic). It is noteworthy that
in a study encompassing 27 patients, the majority of whom
received only DCC, PDR infections had a successful clinical
and microbiological outcome in 78.5% (131). In a similar study
in which the authors preferred triple drug combination with
colistin, similar clinical efficacy was shown (75%) (132). In the
single study employing a case control approach, 48 patients
receiving DCC were compared to 96 control patients who
were administered standard treatment (i.e., colistin, tigecycline,
aminoglycoside) for documented infections by CPKP. DCC
was associated with significantly lower 28-days mortality (47.9
vs. 29.2%, p = 0.04) and was shown to have a protective
effect on mortality in the multivariate analysis (OR: 0.33, 0.13–
0.87) (133).

Administration of a double carbapenem (with or without
colistin) seems a promising salvage treatment in infections
caused by PDR isolates harboring serine-carbapenemases.
In vitro data showed synergistic activity of DCC against
OXA-48 producing MDR and XDR K. pneumoniae (134).
Finally, two kidney transplant recipients were reportedly
cured with DCC plus oral fosfomycin from urinary tract
infections caused by NDM-harboring Enterobacteriaceae
(135). Further randomized controlled trials are needed
to assess DCC as salvage treatment in infections by XDR
pathogens exhibiting various mechanisms of resistance
to carbapenems.

NEW ANTIBIOTICS

Ceftolozane-Tazobactam
Ceftolozane/tazobactam (C/T) is a combination of a β-lactamase
inhibitor in use for decades, with a new oxyimino-cephalosporin
with structural similarity to ceftazidime. It possesses a potent
activity against P. aeruginosa, due to the inherent high affinity
of ceftolozane for the penicillin-binding proteins that are
essential for these species (113, 136). Common mechanisms
of resistance in P. aeruginosa (Table 1) such as overexpression
of efflux pumps, loss of the outer membrane porin OprD
and AmpC overproduction do not affect ceftolozane, whereas
development of resistance to C/T requires several mutations
leading to an overexpression of AmpC enzymes and structural
modifications (113). Tazobactam offers stability against most
ESBLs (136). C/T is being hydrolyzed by carbapenemases (KPC,
VIM, NDM, GES) with possible exception OXA-48 against
which the combination may retain some activity (113). In
vitro studies have shown an excellent in vitro activity against
P. aeruginosa and Enterobacteriaceae. Of interest for ICU
patients is also a demonstrated in vitro susceptibility against
Burkholderia spp. and Stenotrophomonas maltophilia isolates
with relatively low MICs, but no substantial susceptibility
against A. baumannii (113, 137, 138). C/T has considerable
activity against Streptococcus spp (except for S. pneumoniae),
no activity against staphylococci and enterococci and minimal
activity against anaerobes (113, 137–139). Time kill studies
have verified that C/T is the most potent antibiotic against
susceptible P. aeruginosa, whereas carbapenems were more cidal
against Enterobacteriaceae (140). Recent data from 53 ICU
VAP infections by P. aeruginosa showed that C/T exhibited the
most potent in vitro activity compared to ceftazidime/avibactam,
imipenem and ciprofloxacin (141).

C/T is approved in the US and Europe for cIAIs and
cUTIs based on two phase 3 registration trials which showed
non-inferiority of C/T (with metronidazole) vs. meropenem
in cIAIs and vs. levofloxacin in cUTIs (142, 143). Results
from a phase 3 clinical trial in HAP requiring mechanical
ventilation and VAP (ASPECT-NP) are anticipated to support
the approval of the relevant indication. Double C/T dosage (3 g
every 8 h for normal renal function) was employed in the trial
of nosocomial pneumonia, based on PK/PD studies showing
that with this dosage there is more than 90% probability of
PD target attainment for pathogens with MIC ≤ 8 mg/L, well
below the breakpoint of susceptibility for P. aeruginosa which
was set by both CLSI and EUCAST at 4 mg/L (144, 145). Dosage
in impaired renal function is displayed in Table 2 (146–149).
Approved dosage corresponds to target attainment for pathogens
with an MIC of 4 mg/L in patients with normal renal function
or augmented renal clearance (146) and 8 mg/L in patients
with impaired renal clearance. Despite this, data from the phase
3 trial investigating cIAIs showed that patients with moderate
renal impairment (CrCl 30–50 mL/min) had lower cure rates in
the C/T plus metronidazole arm compared to the meropenem
arm (48 vs. 69.2%, respectively) (142). Following these reports
daily monitoring of renal function in patients with unstable
renal function and re-adjustment of C/T dosage according to
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creatinine clearance measurement is strongly recommended.
Although the labeled duration of the infusion is 1 h, a 4–5-hours
extended infusion may provide better probability of PD target
attainment for pathogens with elevated MICs (147, 150).

Currently available data on the clinical effectiveness of C/T
for respiratory infections and VAP derive from case series and
case-reports with variable dosage regimens and in combination
with other antibiotics. An overall clinical success of 61.4%
among patients with P. aeruginosa pneumonia treated with C/T
is estimated (151–156), whereas a clinical efficacy of 71% was
reported a single study of infections by MDR P. aeruginosa (152).
Clinical failures have been associated with an MIC higher than 4
mg/L and the use of the lower dosage regimen (157). Of concern
are reports of resistance to C/T during therapy of P. aeruginosa
infections (152, 155, 158). A recent retrospective report on 101
infections by P. aeruginosa (50% of which XDR), showed for
ceftolozane/tazobactam (35% in combination) an overall clinical
success of 83.2%. Continuous renal replacement therapy and
sepsis were identified as factors associated with lower success
rates (159).

The clinical effectiveness of C/T against ESBL-producing
Enterobacteriaceae, was estimated in a secondary analysis of the
clinical trials of cIAIs and cUTIs; clinical cure rates of 97.4%
were reported for C/T in E. coli or K. pneumoniae infections,
compared with 82.6 and 88.5% for levofloxacin and meropenem,
respectively (114).

C/T is a valuable addition to our armamentarium, as the most
potent antibiotic against P. aeruginosa infections with additional
activity against ESBL-producers. The main place in therapy of
C/T would be the empirical or definitive treatment of infections
suspected or caused by P. aeruginosa (Figure 3), in which it could
serve as a beta-lactam backbone of treatment. In settings where
carbapenemase production is low among P. aeruginosa strains,
C/T can provide a reliable empirical coverage (160). In patients
with various risk factors for MDR (hematologic malignancy,
prolonged hospitalization, prior ICU admission, previous receipt
of other anti-pseudomonal agents etc.), C/T can be used as part
of an empirical antibiotic regimen, along with a second agent,
to ensure adequate coverage (136, 161). Pending the results of
the phase 3 study of nosocomial pneumonia, C/T will probably
hold an important role in the reiteration of guidelines for VAP
caused by P. aeruginosa (162). In infections by CR-P. aeruginosa
without carbapenemase production, C/T should be the drug of
choice. C/T holds also an important role against ESBL-producing
Enterobacteriaceae, where it represents a reliable a carbapenem-
sparing option.

Ceftazidime-Avibactam
Avibactam, a novel non-β-lactam, β-lactamase inhibitor, restores
the activity of ceftazidime against the majority of β- lactamases
(ESBLs and carbapenemases, including KPCs– Ambler Class A,
AmpC —Class C and oxacillinase OXA-48—Class D), resulting
in extended spectrum of CAZ-AVI combination against a wide
range of MDR bacteria (115, 163). Notably, avibactam is not able
to inhibit strains producing metallo-β-lactamases (MBL—Class
B), as well as many of the Class D enzymes (115). CAZ-AVI
is FDA and EMA approved for the treatment of complicated

intra-abdominal infections (cIAIs), complicated urinary tract
infections (cUTIs), hospital-acquired, and ventilator associated
pneumonia (HAP/VAP) and (EMA only) infections due to
aerobic Gram-negative organisms in adult patients with limited
treatment options (116, 164).

The International Network For Optimal Resistance
Monitoring (INFORM) global surveillance program from 2012
to 2015 demonstrated 99.4 and 98.5% susceptibility to CAZ-AVI
for all Enterobacteriaceae isolates and for meropenem-non-
susceptible, MBL-negative isolates, respectively (16, 17). In a
recent surveillance study of 394 clinical isolates of CR-KP from
Greece, CAZ-AVI inhibited 99.6% of KPC and 100% of OXA-48-
like-producing isolates (40); data from US were similar, showing
98.7% in vitro susceptibility of CAZ-AVI against KPC-producing
K. pneumoniae isolates (165). Although only few studies
have differentiated activity of CAZ-AVI against KPC subtypes,
emerging data indicate that KPC-3-producing strains have higher
MICs than KPC-2 producers. In a recent study KPC-3 strains
exhibited a ceftazidime-avibactam MIC of 8µg/ml; furthermore
KPC-3 possessed 30-fold greater hydrolytic activity against
ceftazidime than KPC-2 (166, 167). According to European
Committee on Antimicrobial Susceptibility Testing (EUCAST)
(51) and Clinical Laboratory Standards Institute (CLSI) (98).
Minimum Inhibitory Concentration (MIC) breakpoints for
CAZ-AVI is ≤8 mg/L for both Enterobacteriaceae and P.
aeruginosa species.

KPC-producing strains may harbor additional resistance
mechanisms, including overexpression of efflux-pump,
mutations in porin genes, production of multiple
carbapenemases and de novo mutations in the blaKPC-3
gene (168–170). Emerging resistance to CAZ-AVI has been
attributed to the expression of KPC variants with substitutions in
the omega-loop; this knowledge has fueled the research for a new
active formulation of β-lactamase inhibitors, that will potentially
overcome this new resistance mechanism (171, 172). These KPC
variants seem to lose their carbapenemase activity and exhibit
a meropenem susceptible phenotype (173). Unfortunately,
restored meropenem susceptibility is not permanent, since
the isolate after exposure to meropenem rapidly returns to
the initial KPC-expressing status along with the emergence of
porin mutations (174). In some early reports, resistance of K.
pneumoniae to CAZ-AVI (MIC ≥16 mg/L) was observed with
short courses of therapy, especially after monotherapy, reflecting
the need for vigilance in clinical practice (168). As a result of
these reports, some experts suggest combination treatments in
order to prevent emergence of resistance (8).

In vitro activity of CAZ-AVI against P. aeruginosa varies
across studies, owing to the different underlying mechanisms
of resistance, compared to Enterobacteriaceae (175). Data from
recent studies showed higher in vitro activity of CAZ-AVI
compared to ceftazidime, piperacillin-tazobactam ormeropenem
when tested against both MDR and XDR, P. aeruginosa strains
(175–177). A susceptibility rate as high as 85.1% for meropenem-
non-susceptible P. aeruginosa has been reported, rendering
CAZ-AVI the second most potent in vitro agent after colistin;
however, in other studies in vitro activity around 50% was
shown for isolates resistant to ceftazidime and meropenem (16,

Frontiers in Public Health | www.frontiersin.org 10 June 2019 | Volume 7 | Article 151

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Karaiskos et al. Old and New Antibiotics for MDR Gram-Negatives

17, 176, 177). Differences in susceptibility among strains of
P. aeruginosa to β-lactam agents, including CAZ-AVI, may be
attributed to a variable prevalence of the metallo-β-lactamases,
such as VIM-2 (176–178). CAZ-AVI combination is only slightly
active against A. baumannii (due to avibactam’s vulnerability to
OXA-type carbapenemases frequently carried by A. baumannii
species). Marginal activity against anaerobic Gram-negative
bacteria mandates addition of metronidazole in intraabdominal
infections; finally, CAZ-AVI is inactive against Gram-positive
cocci (173, 176).

PK/PD studies for both ceftazidime and avibactam revealed
linear pharmacokinetics, glomerular excretion and human
protein binding 10 and 8%, respectively (116, 164, 179, 180).
As demonstrated by PK/PD studies in humans, ceftazidime and
avibactam equally penetrate into human bronchial epithelial
lining fluid (ELF), with AUC values in ELF ∼30% of those in
plasma (181). The recommended dosage of CAZ-AVI is 2/0.5 g
every 8 h by intravenous infusion over 120min. Dose adjustment
to impaired renal function is shown in Table 2 (116, 164).

Two identical, randomized Phase III trials (RECLAIM I and
II) compared CAZ-AVI plus metronidazole with meropenem
in patients with cIAIs, and proved non-inferiority (182). In
the subgroup of patients with impaired renal function, clinical
cure rates were higher with meropenem, arguing for caution
with dosage regimens in patients with unstable renal function.
Subgroup analysis of patients with ceftazidime-resistant bacterial
infections, showing clinical cure rates similar to meropenem
(83.0 vs. 85.9%, respectively) (16, 17). In line were the
outcomes reported from the RECLAIM III, which enrolled
432 patients from Asia (183). The REPROVE study, enrolling
879 patients with nosocomial pneumonia, including VAP,
proved non-inferiority of CAZ-AVI compared to meropenem;
again, efficacy of CAZ-AVI against ceftazidime-non-susceptible
pathogens was comparable to meropenem (184). Two Phase
III trials (RECAPTURE I, II), proved non-inferiority of CAZ-
AVI to doripenem in patients with cUTIs (185). REPRISE
study, a prospective, pathogen-directed (ceftazidime-resistant,
Enterobacteriaceae or P. aeruginosa), open-label, phase 3 trial,
demonstrated the efficacy and safety of treatment with CAZ-
AVI vs. best available therapy in cUTIs or cIAIs (186),
establishing CAZ-AVI as a potential alternative to carbapenems
in ceftazidime-resistant strains.

An excellent safety and tolerability profile has been shown
for CAZ-AVI, with mild main adverse events, including
hypersensitivity reactions, headache, nausea, constipation,
and diarrhea (164, 183, 187). Physicians should take into
consideration the possibility of positive Coombs direct test
without documented haemolysis (3.2–20.8%) (182–186).

Post market studies showed that CAZ-AVI was mostly
administered as treatment for CRE infections, with clinical
response rates between 55–85%, relapse rates of 23% and
a mortality rate of 10–39.5% (170, 187–194). Real life data
render CAZ-AVI a “game changer” in the treatment of
KPC-producers. Compared to colistin, in a prospective study
of 38 patients treated with CAZ-AVI vs. 99 treated with
colistin, the first group had a 64% probability of a better
outcome at 30 days of treatment (193). Another single-center

observational study in KPC-bacteraemic patients receiving CAZ-
AVI vs. other regimens, showed clinical success more frequently
with CAZ-AVI in terms of higher corresponding rates and
mortality (190). In addition, a promising role for CAZ-AVI was
elucidated from a retrospective analysis of the compassionate
use program of CAZ-AVI from Italy; among patients with
CRKP bacteraemic infections those treated with CAZ-AVI had
significantly lower mortality compared with patients receiving
other regimes (192). Furthermore, in multivariable analysis of
208 patients with CRKP BSI, receipt of CAZ-AVI was the
only independent predictor of survival, whereas septic shock,
neutropenia, Charlson score index >3. and recent mechanical
ventilation were independent predictors of mortality (192).
Patient’s severity of disease, as displayed by the INCREMENT
CPE score > 7 (193) was demonstrated as risk factor of mortality
in another study, whereas pneumonia and renal replacement
therapy have been elucidated as factors associated with treatment
failure of CAZ-AVI treatment (190). Finally, the results of a
recently published meta-analysis encompassing 12 studies and
4,951 patients, further support that CAZ-AVI is as effective as
carbapenems with equivalent safety. In particular, significantly
increased cure rates were achieved with CAZ-AVI in infections
from resistant causative microorganisms (RR =1.61; 95% CI,
1.13–2.29); reduced mortality was also reported (RR =0.29;
95% CI, 0.13–0.63). Similar results were reported for cUTIs
and BSI (195).

Summarizing, CAZ-AVI stands out as one of the most
important additions in our armamentarium, as the first marketed
fixed combination with activity against KPC andOXA producers.
Post market reports, reflecting real-life use are very encouraging,
in terms of safety, clinical response, and survival. Currently,
we do not have enough evidence to relay on monotherapy
with CAZ-AVI, since previous reports on CRE infections
from observational studies consistently favored combination
treatments (26, 57). Expert-driven recommendations issued by
relevant Italian and Greek ID Societies, support combination
treatment (with an aminoglycoside including plazomicin,
or fosfomycin, tigecycline, colistin). However, in non- life-
threatening infections, monotherapy could be considered as part
of a definitive treatment (8). The prerequisite conditions for
monotherapy are illustrated in Figure 1. A proposed algorithm
for the optimization of treatments of CRE is shown in Figure 2.
Companion drugs of CAZ-AVI can be selected based on
the antibiogram and the required PK/PD parameters in the
infectious focus (8). The broad spectrum covering also ESBL-
producing Enterobacteriaceae and significant proportions of P.
aeruginosa, makes CAZ-AVI a strong component of empiric
regimens in patients with risk factors for MDR infections.
When designing an adequate empiric regimen, the probability
of MBL-producing Enterobacteriaceae or A. baumannii should
be balanced according to local epidemiological data and covered
with a second antibiotic (an aminoglycoside, colistin, tigecycline,
or fosfomycin). We believe that empiric use of CAZ-AVI should
be reserved for patients with strong risk factors for infections
by KPC- or OXA-48- producers and audited by antibiotic
stewardship teams to avoid irrational use of this antibiotic
combination (Figure 2).
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FIGURE 1 | Prerequisite conditions for selecting monotherapy as definitive treatment of infections by extensively-drug-resistant (XDR) pathogens. PK/PD,

pharmacokinetic/pharmacodynamic; MDR, multi-drug -resistant; MIC, minimum inhibitory concentration; XDR, extensively-drug-resistant.

Meropenem-vaborbactam
Varobactam, previously referred as RPX7009, is a boronic acid,
non-β-lactam β-lactamase inhibitor with no antibacterial activity.
The addition of varobactam to meropenem, restored the activity
of meropenem against KPC-producing strains due to its high
affinity for serine proteases. Nevertheless, vaborbactam possesses
minimal or no activity against carbapenemases of Amber class
B (metallo-β-lactamases/MBLs) (196–198). More specifically,
vaborbactam inhibits various class A carbapenemases (KPC-
2, KPC-3, KPC-4, BKC-1, FRI-1, and SME-2), class A ESBLs
(CTXM, SHV, and TEM), and class C cephalosporinases (CMY,
P99), while its activity against class D carbapenemases (OXA-
48-like) is minimal (199, 200). The combination provided no
additional in vitro activity against P. aeruginosa, Acinetobacter

spp. and Stenotrophomonas maltophilia compared tomeropenem
alone (199).

Meropenem/vaborbactam became the first available
carbapenem/ β-lactamase inhibitor for clinical use. It has
shown an excellent tolerability profile and no safety concerns,
with main adverse events headache, diarrhea and catheter
site complications, while mild lethargy was observed in the
highest-dose group (201, 202). No seizures were reported from
clinical trials, however, concomitant administration of valproic
acid, and other drugs medications that may compete with
meropenem for active tubular secretion, such as probenecid, is
not advisable (117).

In a study that evaluated the activity of
meropenem/varobactam against Gram-negative strains,
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FIGURE 2 | How to optimize treatment of Carbapenem-Resistant Enterobacteriaceae (CRE). CAZ-AVI, ceftazidime avibactam; CRE, carbapenem-resistant

Enterobacteriaceae; MER/VAB, meropenem vaborbactam; MIC, minimum inhibitory concentration. 6= OXA-48 is permissive only for CAZ-AVI. *Components of the

combination will be based on: (i) epidemiology data (for empirical regimen); (ii) pharmacokinetic/pharmacodynamic considerations relating to the source of infection; (iii)

lower MIC (if possible, avoidance of antibiotics with borderline susceptibility). ∧ Selection of CAZ-AVI or MER/VAB in definitive treatment precludes demonstrated

in vitro susceptibility and absence of detected metallo-beta lactamase mechanism of resistance; for MER/VAB absence of OXA as well. 1 Higher MICs against

meropenem (up to 64 mg/L) may require higher doses and therapeutic drug monitoring.

including MDR and XDR Enterobacteriaceae, meropenem-
vaborbactam at concentration ≤2 mg/L inhibited 133 of the 135
KPC-producing isolates, while all isolates were inhibited at ≤8
mg/L (199).

In a similar study, meropenem/vaborbactam inhibited 99.0%
of KPC-positive isolates of Enterobacteriaceae at ≤4 mg/L
and compared to CAZ-AVI and tigecycline had equivalent—
if no superior—in vitro activity (meropenem-vaborbactam
at MIC90: 1 mg/L, was four times more potent than
CAZ-AVI and at least 64-fold greater than meropenem
alone) (203). In another in vitro study of CRE, MICs of
meropenem/vaborbactam were elevated for isolates producing
MBLs (MIC, 16->64 mg/L); isolates with decreased expression
of porin OmpK37 or hyperexpression of the AcrAB-TolC
efflux system had also increased MICs(16 mg/L) (198).
Interestingly, in vitro studies showed similar MIC distributions

of meropenem/vaborbactam for isolates producing KPC-2 and
KPC-3 (203).

Meropenem/varobactam obtained FDA approval for
cUTIs including pyelonephritis (117), after completion of
a phase 3 study (TANGO I) demonstrating non-inferiority
compared to piperacillin-tazobactam in cUTIs, including
pyelonephritis (204). The currently tested dosage, approved
for clinical use is 2gr−2gr every 8 h and is mainly excreted in
urine (202). Another multicentre phase 3 rial (TANGO II),
compared meropenem/varobactam to best available treatment
(mono/combination therapy with polymyxins, carbapenems,
aminoglycosides, tigecycline; or ceftazidime-avibactam alone) in
infections caused by CRE—including HAP, VAP, cIAIs, cUTIs,
and bacteraemia (205). The study enrolled 77 patients, 47 of
whom fulfilled criteria for primary analysis. The study showed
increased clinical cure rates 65.6 (21/32) and 33.3% (5/15)
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FIGURE 3 | How to optimize treatment of Multi-drug-resistant Pseudomonas aeruginosa. CAZ-AVI, ceftazidime avibactam; CLZ/TAZ, ceftolozane tazobactam; MDR,

Multi-drug resistant; MIC, minimum inhibitory concentration; XDR, extensively drug-resistant; VAP, ventilator-associated pneumonia. *Components of the combination

will be based on: (i) epidemiology data (for empirical regimen); (ii) pharmacokinetic/pharmacodynamic considerations relating to the source of infection; (iii) lower MIC (if

possible, avoidance of antibiotics with borderline susceptibility). ∧ Selection of CAZ-AVI in definitive treatment precludes demonstrated in vitro susceptibility and

absence of detected metallo-beta lactamase mechanism of resistance.

[95% confidence interval (CI) of difference, 3.3% to 61.3%; P
= 0.03)] at End of Treatment and decreased mortality 15.6
(5/32) and 33.3% (5/15) (95% CI of difference,−44.7 to 9.3%).
Equally important is the reduced nephrotoxicity in the arm of
meropenem/varbobactam. Exploratory risk-benefit analyses of
composite clinical failure or nephrotoxicity favored meropenem-
vaborbactam vs. best available treatment (31.3 [10/32] vs. 80.0%
[12/15]; 95% CI of difference, −74.6 to −22.9%; P < 0.001)
(205). Based on these additional studies, in November 2018
EMA approved meropenem-varbobactam for use in “adult
patients with CIAI, cUTI, HAP, VAP, bacteraemia that occurs
in association with any of these infections, and infections due
to aerobic gram-negative organisms where treatment options
are limited” (206). TANGO III trial assessing meropenem-
vaborbactam vs. piperacillin/tazobactam in patients with HAP
and VAP, estimated to finish in 2020 was withdrawn (207).

Scarce published data exists on real-life experience with
meropenem/vaborbactam, which is extremely important to
define its real position in clinical practice. Among its major

advantages is the potent in vitro activity against KPC-producers
and the low potential for resistance development. It represents
an important player in the battle against CRE mediated by
KPC production.

Plazomicin
Plazomicin is a next-generation semisynthetic aminoglycoside.
As all aminoglycosides, it acts by inhibiting bacterial protein
synthesis. Plazomicin is active against MDR Enterobacteriaceae,
due to its stability against strains that express aminoglycoside-
modifying enzymes (208). However, it is vulnerable to ribosomal
ribonucleic acid (rRNA) methyltransferase enzymes which were
already identified in Enterobacteriaceae, P. aeruginosa, and A.
baumannii, particularly among Enterobacteriaceae harboring
NDM-1 carbapenemases. These enzymes confer broad-spectrum
resistance to all aminoglycosides, including plazomicin; their
identification before plazomicin’s introduction into clinical
practice is of concern (209–212). A major advantage of
plazomicin is its dose-dependent bactericidal activity. Its
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antibacterial spectrum includes Gram-negative bacteria, such as
a wide range of Enterobacteriaceae (including CRE, ESBL, and
MDR isolates) irrespective of resistance to currently available
aminoglycosides (209, 211, 213). Collections of clinically
important KPC-producers with resistance to aminoglycosides
were inhibited by plazomicin displaying an MIC90 of ≤2
or 4 mg/L (210, 213). In a recent in vitro study of 300
CRE K. pneumoniae isolates, susceptibility to plazomicin was
87.0% (≤2 mg/L) with MIC50/MIC90 of 0.5/4 mg/L; rRNA
methyltransferases (mostly rmtB) were found in an alarming 8%
of isolates, never exposed to plazomicin (40).

Although plazomicin is less potent in vitro against non-
fermenters compared to Enterobacteriaceae, OXA-producing
A. baumannii resistant to other aminoglycosides may be
susceptible to plazomicin (211, 212). Tested against 82 isolates
of CRE, plazomicin showed 79% in vitro susceptibility with
MICs≤2 mg/L, including isolates producing metallo-β-
lactamases type VIM or IMP but not NDM-1, due to the
co-production of ribosomal methyltransferases (209). Anti-
MRSA activity offers an extra advantage when plazomicin is
part of empirical regimens in severely ill patients in settings
with MRSA prevalence, despite resistance to previous generation
aminoglycosides (211). Plazomicin demonstrated in vitro activity
with MIC90 of ≤ 4mg/L against isolates of polymyxin-resistant
Enterobacteriaceae, including mcr-1 producing isolates (214).

Plazomicin displays a linear and dose-proportional
pharmacokinetic profile, with an elimination half time (t1/2) of
4 h and lack of accumulation indicative of once daily therapy.
Therapeutic dosage of plazomicin was set at 15 mg/kg (118, 215).

EPIC (Evaluating Plazomicin in cUTI), was the first phase 3
registration trial (NCT02486627), in which plazomicin compared
to meropenem in cUTIs met the non-inferiority endpoint (216).
The second phase 3, CARE descriptive trial (ClinicalTrials.gov
Identifier NCT01970371), published in January 2019, compared
plazomicin vs. colistin as part of a definitive combination
regimen in serious infections due to CRE excluding NDM-
producers (217). CARE enrolled 39 patients with a variety of
infections including 29 bloodstream infections (BSI), and 8
HAP/VAP; the study was prematurely terminated due to low
enrolment. Patients received plazomicin 15 mg/kg every 24 h or
colistin, in both arms combined with a second agent (tigecycline
or meropenem). Using a composite endpoint, patients who
received plazomicin had fewer primary end-point events [4
of 17 patients (24%) compared to 10 of 20 patients (50%)
who received colistin (difference, −26 percentage points; 95%
confidence interval [CI], −55 to 6). The same applied for
bloodstream infections but not for VAP/HAP, probably due to the
low number of patients with the latter infection. Less deaths were
observed at day 14 among patients who received plazomicin-
based treatment, and this trend continued through day 60.
The group of plazomicin had fewer adverse events and fewer
patients with clinically significant increase in serum creatinine at
any point of the trial, demonstrating a safer profile against the
comparator colistin (217–219).

Plazomicin was granted FDA approval in June 2018 for
patients 18 years of age or older with the indication of cUTIs,
including pyelonephritis caused by the following susceptible

microorganism(s): Escherichia coli, Klebsiella pneumoniae,
Proteus mirabilis, and Enterobacter cloacae. In the drug’s SPC it
is advised to be reserved as salvage approach for cUTI patients
who have limited or no alternative treatment options. Potential
nephrotoxicity, ototoxicity, neuromuscular blockade, and fetal
harm have been included in a boxed warning despite scarce data
from clinical trials (119, 219). EMA approval is pending.

In summary, plazomicin a novel aminoglycoside with minor
toxicity issues and a challenging antimicrobial spectrum holds
promise in the battle against difficult to treat organisms. Its
favorable lung penetration make it a candidate for treatment
regimens of VAP, particularly as part of empiric regimens
or as definitive combination treatment where monotherapy is
not advised. Conceptually, aminoglycosides are not used as
monotherapy; in that sense, plazomicin could be a perfect
companion to the new beta-lactam-beta-lactamase inhibitors.
As part of an initial empiric regimen, depending on local
epidemiological data it could replace colistin in pulmonary
infections due to the poor pharmacokinetics of the latter in the
lung, given as companion to a tailored beta-lactam backbone
(Figures 2, 3). More data on combinations and particularly on
monotherapy need to be compiled. Aminoglycosides hold a
pivotal role in the treatment of UTIs, with the potential of
monotherapy; plazomicin, with demonstrated low rates of renal
toxicity could be an option for a targeted monotherapy in XDR
pathogens causing UTIs. Such an approach would spare other
advanced antimicrobials.

Eravacycline
Eravacycline is a synthetic fluorocycline, with similarities to
tigecycline in mechanism of action, structure and antibacterial
spectrum, including: Gram-negative bacilli (P. aeruginosa-
excluded), regardless of resistance to other antibiotic classes
(ESBL and KPC- producing Enterobacteriaceae, MDR A.
baumannii) and Gram-positives (staphylococci, including
methicillin-resistant Staphylococcus aureus/MRSA; enterococci,
including Vancomycin-resistant Enterococcus/VRE) (220, 221).
Potential advantages over tigecycline feature a more potent in
vitro activity for both Gram-positive cocci (2- to 4 fold) and
Gram-negative bacilli (2- to 8 fold) (220, 222), an excellent oral
bioavailability, a lower potential for drug interactions and a
superior activity in biofilm (220).

PK/PD studies support once daily administration, whereas
higher serum concentrations and better tolerability are some
more advantages compared to its ancestor (220, 221, 223). In
a phase 1 study of healthy volunteers, eravacycline achieved in
the ELF concentrations greater than plasma by 6-fold and in
the alveolar macrophages by 50-fold, indicating the potential for
treatment of MDR bacteria causing pneumonia (224).

In vitro studies of eravacycline against E. coli resistant to
3rd generation cephalosporines and fluoroquinolones showed a
potent in vitro activity with an MIC90 of 0.5 mg/L (221, 222). A
recent in vitro study compared eravacycline and commonly used
antibiotics against a collection of 284 CRAB isolates possessing
an acquired OXA or a metallo-beta-lactamase, or expressing an
up-regulated intrinsic OXA-51-like enzyme (225). Eravacycline
was demonstrated as the most potent in vitro agent vs. all
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comparators (reference beta- lactams, aminoglycosides, colistin,
tetracyclines, sulbactam and fluoroquinolones) displaying the
lowest MIC50/90 values of 0.5/1 mg/L, respectively. Colistin
resistance in this collection was 13.3% with relevant MIC50/90

values of 1/4 mg/L, respectively. No correlation was found
between blaOXA genes and eravacycline MICs, indicating an
excellent candidate in the treatment of CRAB infections.

IGNITE1 and IGNITE4 (Investigating Gram-negative
Infections Treated with Eravacycline) were randomized, double-
blind, double-dummy, multi-center Phase 3 clinical trials in
cIAIs, in which eravacycline administered at a dose of 1 mg/kg
IV q12h was compared to ertapenem (1 g IV every 24 h) and
meropenem (1 g IV every 8 h), respectively. In both studies
non-inferiority criteria were met (226, 227); adverse events were
low for a drug of this class, with nausea, vomiting, and diarrhea
reported at 5, 4, and 3%, respectively (227). Based on these data
eravacycline was approved for cIAIs by both FDA and EMA in
2018 (120, 121).

IGNITE 2 and 3 were phase 3 randomized, multi-center,
double-blind, clinical trials in cUTIs, in which eravacycline
administered at a dose of 1.5 mg/kg IV once daily was compared
to levofloxacin (750mg every 24 h) and ertapenem (1 g every
24 h), respectively. Non-inferiority criteria were not met and
UTI indication was withdrawn (122). Although failure may be
attributed to the lower dose employed in cUTIs compared to the
cIAI trial, there are additional concerns about clinical efficacy of
tetracycline class in UTIs.

In light of the available in vitro and in vivo data, eravacycline
holds promise as a key player in the treatment of infections
caused by A. baumannii being the first launched antibiotic with
potent activity against this notorious pathogen since decades.
Real life data will determine its real impact on patients severely ill
and with multiple co-morbidities. Keeping in mind the paradigm
of tigecycline for which data from healthy volunteers did not
translate successfully in critically ill patients, and the failure
of eravacycline in pivotal RCTs in UTIs, caution is required.
When this new drug will enter clinical practice, surveillance
for resistance and PK/PD studies in special populations (i. e.
mechanically ventilated patients or on CRRT), are of utmost
importance to ensure optimal patient outcomes (70, 71).

HOW TO INTEGRATE NEW AND OLD
ANTIBIOTICS IN CLINICAL PRACTICE

In this comprehensive review we tried to appraise currently
available treatments for MDR and XDR pathogens. Our ultimate
aim was to provide hints on how to integrate recently marketed
antibiotics in the challenges of clinical practice, particularly
referring to CRE, MDR P. aeruginosa and CRAB. It is of
great importance to emphasize that the novel beta-lactam/beta-
lactamase inhibitor combinations, such as those containing
avibactam and vaborbactam, are promising to be the best
options for the treatment of CRE where carbapenem resistance
is mediated by KPC. In vitro all these inhibitors are active
against Enterobacteriaceae producing ESBL, KPC-2, KPC-3, and

AmpC, whereas only avibactam inhibits certain class D β-
lactamases, mainly OXA-48. Although they have been subjected
to a rigorous program of development, their “real life” efficacy
against CRE remains unascertained because clinical trials design
were not focused on the treatment of infections caused by XDR
and PDR pathogens (115). As far as CAZ-AVI is concerned,
an almost 3-years in-market experience has brought in light
some important studies comparing its efficacy vs. colistin. The
first study employing a prospective design, highlighted the
probability of better outcome of 64% compared to colistin (193),
whereas a second retrospective study demonstrated CAZ-AVI
as the only variable associated with survival (192). These data
indicate that CAZ-AVI may represent the most appropriate
so far choice of CRE mediated by KPC or OXA-48. Further
to the activity against OXA enzymes, CAZ-AVI’s important
antipseudomonal activity is an advantage for empirical regimens
in high risk patients and in mixt infections. The addition of
aztreonam, still marketed individually, could expand CAZ-AVI’s
spectrum to MBL-producers (228, 229). On the other hand,
meropenem-vaborbactam seems to have a lesser potential for
selection of resistance among KPC-producers than CAZ-AVI
(230, 231), while demonstrating similar efficacy against KPC-2
and KPC-3 (203). In addition, meropenem possesses excellent
anti-anaerobe coverage and can stand alone in the treatment of
intraabdominal infections without the addition ofmetronidazole.
Fortunately, so far, no cross resistance is reported between these
two antibiotic combinations (203). The compilation of real-life
data for meropenem-vaborbactam will enable us to understand
better its true position in the treatment of CRE infections.

The disadvantage to be seriously considered by the clinician
is the inability of both CAZ-AVI and meropenem-vaborbactam
to inhibit metallo-β-lactamases (MBLs) i.e., VIM, IMP, and
NDM, as well as A. baumannii (115). The knowledge of the
epidemiology of CRE infections in each country is of major
importance. OXA-48 like enzymes are more prevalent in France,
Spain and Belgium, whereas NDM-1 is most frequently isolated
in Southeast Asia countries and India, whereas regional or inter-
regional spread of NDM in Europe has been reported in Belgium,
Denmark, France, Romania, Poland, Turkey, and Greece (11).
In terms of empiric therapy of CRE infections, taking into
consideration the epidemiological profile of each region, agents
active against both serine β-lactamases and MBLs are indicated.
The predominance of KPC could indicate the administration of
either CAZ-AVI or meropenem-vaborbactam. However, in case
of the emergence of MBLs the combination with colistin, should
be considered to cover both possibilities. Figure 2 provides an
algorithm for optimal integration of new and old antibiotics in
the treatment of CRE.

It is evident that combination empiric regimens are
mandatory in areas with MDR prevalence. The big question,
is whether new antibiotics against CRE would abide the need
of combination in definitive treatments, for which data from
observational studies are clearly in favor, being contradicted
by data from meta-analyses (8, 25, 26, 45, 232, 233). Factors
elucidated as independent predictors of mortality or treatment
failure of CAZ-AVI treatment are septic shock, neutropenia,
high comorbidity scores, recent ventilation, pneumonia, and
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receipt of renal replacement therapy outlining a critical role
for combination with another active in vitro antibiotic in
these cases (190, 192, 193). However, the latter position is
arbitrary and based mostly on experience before the new
beta-lactamase combinations requiring targeted and prospective
randomized trials. Figure 1 summarizes conditions that must be
met in order to decide monotherapy in the treatment of MDR
pathogens, based on the existing literature and expert driven
recommendations (8, 26, 57, 58, 95, 234).

When P. aeruginosa is considered, combination treatment
is the rule in the empirical phase (58). In definite treatment,
data from meta-analyses found no benefit for combination
treatments, however clinicians hardly accept monotherapy in
patients with major risk factors for mortality, in bacteraemic
infections and septic shock (233, 234). The launching of
ceftolozane-tazobactam expands beta-lactam activity in CR
strains, providing a potent backbone; colistin, fosfomycin and
plazomicin could act as companion agents (Figure 3). CAZ-AVI
as well may contribute as a backbone antipseudomonal agent in
the new era (161).

When CRAB is prevalent, colistin or tigecycline are the only
currently available treatments (69). Launching of eravacycline
holds promise, however real-life data from CRAB infections and
critically ill patients are lacking. Other newer agents against
CRAB i.e., cefiderocol are welcomed and high clinical cure rates
are expected (7, 9). Regarding CRAB resistant to colistin, one
unanticipated finding from the exploratory subgroup analysis of
the AIDA study revealed lower mortality among patients with
colistin-resistant isolates when treated with colistin monotherapy
over combination of colistin -meropenem, with a possible
explanation being the loss of fitness and virulence relative
to colistin-susceptible strains (232). Indeed, cumulative data
have shown that combination treatments against A. baumanni

might be less necessary compared to CRE, to ensure optimal
outcomes (233, 234).

In summary, the novel combinations are not to be considered
“panacea” for the ongoing crisis in the therapy of XDR Gram-
negative bacteria and colistin is still considered as possessing a
fundamental position for the treatment of CRE in combination
(particularly in areas where MBL predominate) as well as for the
treatment of CRPA (in many cases being the only in vitro active
drug) as well as CRAB. CAZ-AVI and meropenem-vaborbactam
can be used as backbones in the treatment of CRE and under
circumstances, they could be used as definitive monotherapy.
Similarly, ceftolozane-tazobactam could be seen as an ideal beta-
lactam backbone for the treatment of MDR P. aeruginosa, as
well as a stand-alone antibiotic, when monotherapy is sought
and conditions fulfilled. Plazomicin could absorb some volume
of colistin prescriptions, both in empiric and definitive treatment
of difficult-to-treat pathogens, subject to local epidemiological
evidence. Finally, fosfomycin as a companion antibiotic for P.
aeruginosa and CRE infections, deserves a greater attention,
as it has no cross resistance with other antibiotic classes, may
retain susceptibility against a variety of resistance mechanisms to
other antibiotics and possesses negligible toxicity. Lessons learnt
from the pauci-antibiotic era, make vigilance for emergence of
resistance a priority. Furthermore, it is important to minimize
use of these new precious antibiotics as empiric treatments and
focus on microbiologic documentation of infections; this will
ensure their longevity in our armamentarium.
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