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The year 2019 has seen an emergence of the novel coronavirus named severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease of 2019

(COVID-19). Since the onset of the pandemic, biological and interdisciplinary research is

being carried out across the world at a rapid pace to beat the pandemic. There is an

increased need to comprehensively understand various aspects of the virus from

detection to treatment options including drugs and vaccines for effective global

management of the disease. In this review, we summarize the salient findings pertaining

to SARS-CoV-2 biology, including symptoms, hosts, epidemiology, SARS-CoV-2

genome, and its emerging variants, viral diagnostics, host-pathogen interactions,

alternative antiviral strategies and application of machine learning heuristics and artificial

intelligence for effective management of COVID-19 and future pandemics.
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ORIGIN, TAXONOMY, AND HOSTS OF CORONAVIRUSES

Coronaviruses (CoVs) are single-stranded RNA viruses of size around 65-125 nm in diameter. Due

to the presence of crown-like spike structure on the viral outer surface, they were named

Coronaviruses (1). The CoVs are known to cause respiratory and gastrointestinal tract infections

in humans, poultry, and animals (2, 3). These are a large group of viruses that belong to the order
Nidovirales, family Coronaviridae, and subfamily Orthocoronavirinae, which in turn is divided into

four genera: Alphacoronavirus (a-CoV), Betacoronavirus (b-CoV), Gammacoronavirus (g-CoV)
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and Deltacoronavirus (d-CoV) (4). Among seven humans CoVs

identified to date including SARS-CoV-2, two of them belong to

a-CoV (HCoV-NL63 and HCoV-229E) and the remaining five

belong to b-CoV (HKU1, HCoV-OC43, SARS-CoV, MERS-CoV

and SARS-CoV-2) (5, 6).

Coronaviruses are known for their ability to rapidly mutate,
effectively cross the species barriers, and adapt to novel host

environments (7). Out of the four genera, a-CoV and b-CoV are

known to infect only mammals, while g-CoV and d-CoV primarily

infect birds, with some reports indicating infections in mammals

(8). Several studies have shown that bats, rodents, and avian species

are natural reservoirs of diverse CoVs (9–12). For example, bats
(Rhinolophus spp.) were identified as reservoirs of more than 30

CoVs including SARS-CoV (1, 13, 14). Currently, SARS-CoV-2 has

been speculated to be transmitted to humans from bats through an

unknown intermediate, which still needs to be conclusively proven

(15). It is also possible that humans might have contracted an

avirulent strain or a strain with lesser virulence directly or indirectly
and then the virus might have undergone virulence-enhancing

mutations resulting in human-to-human transmission (3).

Whatever may be the causes for the origin of SARS-CoV-2, it

remains to be proven with more supporting data.

Phylogenetic studies of SARS-CoV-2 revealed 79% nucleotide

homology with SARS-CoV (16, 17) and 89% and 96% homologies

with the two other SARS-like CoVs isolated from Chinese
horseshoe bats Rhinolophus sinicus and Rhinolophus affinis,

respectively (16, 18). However, these two SARS-like CoVs differ

significantly in their receptor-binding domains. Upon comparison,

SARS-like CoVs isolated from Malayan pangolins (Manis

javanica) exhibited 85-92% nucleotide homology and stronger

similarity in receptor binding domain with SARS-CoV-2 (19).
Based on these findings, pangolins have also been considered as

possible hosts in the emergence of SARS-CoV-2 (19). Besides

pangolins, multiple species of wild or domestic animals like camels,

mink, may also carry SARS-CoV-2 (8, 17, 20). Whether or not the

suspected hosts are naturally infected by SARS-CoV-2 from

humans remains to be proven.

DISEASED PHENOTYPES ASSOCIATED
WITH SARS-CoV-2

The SARS-CoV-2 infection causes multiple disease phenotypes

such as pulmonary dysfunction, hematological alterations,

inflammation, electrolyte imbalance, coagulation dysfunction,

liver and kidney dysfunctions, cardiac muscle injuries (21). It

has been surmised that due to coagulation dysfunctions,

COVID-19 patients are at increased risk of venous and arterial
thromboembolism (TE) and consequential mortality. These

findings highlight the need to implement thromboprophylaxis

protocols, while treating COVID-19 patients (22). However,

more symptoms are still being discovered, some of which

appear to be rare. Due to the diverse symptoms, it has been a

challenging task to diagnose and manage the disease on time
(23). Moreover, the impact of comorbidit ies (e .g . ,

cardiomyopathies, hypertension, diabetes, etc.) on SARS-CoV-

2 infection and disease progression makes the disease

management even more challenging (24). Typically,

symptomatic individuals with high body temperature pose a

greater risk for transmitting the virus to others. However, such

symptomatic individuals can be easily identified and isolated. On

the other hand, the asymptomatic individuals may continue to
remain unidentified through the regular screening procedures,

thus jeopardizing the efforts to minimize viral transmission

through identification and isolation of the virus-carrying

individuals (25). Therefore, the existing precarious situation

demands the identification and deployment of reliable

serological markers to enable the identification of
asymptomatic individuals (26). Application of susceptible-

exposed-infectious-removed (SEIR) models to understand the

COVID-19 epidemiology has estimated the R0 value of 2.03 for

SARS-CoV-2, highlighting the importance of factors like

hygiene, social distancing, and wearing PPE in reducing

human-to-human and environment-to-human transmission of
the virus (27). A recent meta-analysis by Heneghan et al. (28)

indicated that firm conclusions cannot be drawn in the absence

of recoverable viral culture samples of SARS-CoV-2. On the

contrary, Greenhalgh et al. discuss reasons with supporting

evidence to argue in the support of airborne transmission of

SARS-CoV-2 (29). However, this is beyond the scope of this

review as we limit the dissensions.
Over the past year, several studies have identified the presence of

SARS-CoV-2 RNA in anal/rectal swabs and stool specimens of

COVID-19 patients, even after the clearance of the virus in the

upper respiratory tract (14, 30–34). With SARS-CoV-2 angiotensin-

converting enzyme 2 receptor (ACE2) reported to be highly

expressed in gastrointestinal epithelial cells (35, 36), it is suggested
that the virus can actively infect and replicate in the gastrointestinal

(GI) tract and thus has critical implications to the disease

management, transmission, and infection control. In the past,

symptoms such as diarrhea, nausea, vomiting and abdominal pain

have been observed in patients infected with other coronaviruses

such as SARS andMERS (37–39), indicating that the presence of the

virus in the GI tract may be a common feature of the CoV
infections. These studies collectively highlight the need for

screening multiple clinical specimens from a single patient other

than nasopharyngeal swabs, such as lung and tracheal aspirate,

blood, pleural fluid, and fecal samples (40). Although different

clinical specimens are of particular interest, whether or not this is

done during the course of treatment of patients to ensure full
recovery and no viral shedding is a subject of debate (41). Some

evidence shows that SARS-CoV-2 can be vertically transmitted to

the fetus or neonates from the infected mothers (42).

SARS-CoV-2 GENOME AND
ITS VARIANTS

The SARS-CoV-2 carries the largest genome size of ~ 29.7 kb, which

shares similarities with the genomes of other b-CoVs that have
caused many epidemics in the past (43–50) (Figure 1). The SARS-

CoV-2 consists of at least 16 non-structural and 4 structural
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proteins (51). The list of the genes encoded by SARS-CoV-2

genome and their known/predicted functions in the virus and the

host is given in Table 1. After entering the host cell, the positive

(sense) strand of viral RNA undergoes translation to synthesize

non-structural proteins (nsps) from two protein-coding genes

ORF1a and ORF1b (Figure 1). The CoV genome consists of six
open reading frames (ORFs) of which the first ORF (ORF1a)

encompasses about 2/3rd of the genome and produces polypeptide

1a, which is further cleaved into 11 nsps. Due to ribosomal

frameshift occurring upstream of ORF1a stop codon, translation

of ORF1b yields another polypeptide called ORF1ab, which is

further cleaved into 16 nsps. Cleavage of ORF1a and ORF1ab

polypeptides is mediated by the virus-encoded proteases nsp3 and
nsp5, which harbor papain-like domain and 3C-like domain,

respectively. In addition, diverse forms of CoVs encode structural

and accessory proteinS for example orf3 a/b protein, translated from

the sub-genomic part of CoVs (52). Apart from the accessory

proteins that have been found to play an important role in the

viral-host interactions, several viral structural and accessory
proteins, and a number of host proteins have been shown to

interact with the viral RNA (74). Examples of host proteins that

interact with the viral RNA include poly-A-binding protein,

mitochondrial aconitase, pyrimidine-binding protein, and nuclear

ribonucleoprotein which were known to be shown for SARS-CoV

(75) and it is anticipated that that a similar interaction could be seen

in SARS-CoV-2. However, this study is in infancy and beyond the
scope of this review.

Genome studies revealed that while SARS-CoV-2, SARS-CoV,

and MERS-CoV share many similarities, they have multiple

differences in their genomic and phenotypic structure which

influence their pathogenesis (76). The RNA polymerases of most

of the RNA viruses either lack or have a poor proof-reading activity
(77). As a consequence, single-stranded RNA viruses mutate at a

faster rate than DNA viruses, and as a result, genetic variants

emerged as quasispecies (78). For instance, it was estimated that

SARS-CoV can mutate its genome at the rate of 0.80-2.38 × 10-3

nucleotide substitutions per site per year which is similar to other

RNA viruses (79). It is therefore anticipated that mutations at such

rates allow the viruses to evolve faster, enabling them to escape host

immune surveillance, develop resistance to drugs, vaccines and

switch hosts. Moreover, the rapid rate of mutations could also

increase the frequency of false negatives during nucleic acid-based

viral diagnostics. Gustine and Jones have highlighted the role of a
dysregulated innate immune response associated with

hyperinflammatory syndrome in severe COVID-19 patients (80).

Several researchers have identified mutations in the SARS-CoV-

2 genome with mutations identified in the SARS-CoV-2 genome

that cause variants to become hotspots. Oster et al. have reviewed

the trends in impending mutational hotspots ever since the covid

infection rate has drastically been accounted for in various patients
(81). Pachetti et al. identified eight novel recurrent mutations of

SARS-CoV-2 in addition to 5 previously identified hotspots. Of the

novel mutation hotspots, one was in the RdRp (RNA dependent

RNA polymerase) gene involved in proof-reading machinery. This

mutation was associated with a higher number of point mutations

in Europe than viral genomes from Asia. The authors speculated
that observed RdRp mutation could result in an enhanced viral

replication, influencing mortality rates (56). analyzed 220 genome

sequences from the GISAID database (www.gisaid.org) derived

from patients infected by SARS-CoV-2 worldwide from

December 2019 to mid-March 2020. The SARS-CoV-2 genome

sequence available from the GenBank database was used as the

reference in their study. They identified eight novel recurrent
mutations of SARS-CoV-2, in addition to previously identified 5

hotspots. Of these 13 hotspots, 5 were predominantly present in the

European isolates, and 3 were found exclusively in the North

American isolates. Among the 13 hotspots, 6 were not observed

in Asian isolates. It is assumed that the non-synonymous mutation

(proline to leucine) in the RdRp gene could be affecting its proof-
reading ability presumably by disrupting its interaction with the

other protein cofactors such as the Exon domain of nsp14, nsp7, or

nsp8, further alter the mutation rate of the virus (56). Further, they

speculate that the observed RdRp mutation could result in an

enhanced viral replication, influencing mortality rates. Several

FIGURE 1 | Genome comparison of SARS-CoV and SARS-CoV-2 along with ORFs depicting the common ancestry.
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TABLE 1 | Genes encoded by SARS-CoV-2 and their known or predicted functions.

Sl.

No.

ORF/

Protein

Name

Type of

protein

Gene

size

(in

bp)

Role of the protein in

viral replication and

assembly

Role of the protein in host-poathogen

interactions

The features that are unique to

SARS-CoV-2 if any

Reference

1 ORF1a

(codes for

16 nsps)

Non-

structural

13218 Associated with

gene expression/

regulation, proteases

involved in cleaving viral

polyproteins, membrane

rearrangement, RNA

polymerase activities,

proteins involved in viral

replication (helicases,

methyltransferases,

exonucleases, etc.)

Involved in repression of host gene

expression, disruption of host cell responses,

dysregulation of autophagy.

NA (52)

2 S (Spike

protein)

Structural 3822 Helps in entry to host

cells

Binds with ACE2 to gain entry into human

cells. One of the most immunogenic viral

antigens.

A furin cleavage site. A key protein

being targeted for vaccine

development. It carries several non-

synonymous mutations in the RBD

region and some in the hinge region.

Collectively several mutations are

predicted to enhnace binding of S

protein with hACE2.

(53–55)

3 E (Envelope

protein)

Structural 228 Participates in viral

assembly, budding,

envelope formation and

pathogenesis

Interacts with several host cell proteins such

as PALS1 disrupting tight junctions of

epithelial cells and promotes viral spread.

Also affects host cellular activities by

interfering with endoplasmic reticulum (ER),

Golgi and ER-Golgi intermediate

compartment

Carries several non-synonymouos

mutations which could play a role in

enhanced viral pathogenesis; e.g., The

changes resulted in Ser (56), Phe (57),

Arg (58) and the C-terminal end

(DLLV:72-75) are speculated to

improve E protein interaction with tight

junction-associated PALS1 which

could play a critical role in SARS-CoV-

2 pathogenesis and viral spread

(59–62)

4 M

(Membrane

protein)

Structural 669 Role in cell attachment

and entry, viral particle

assembly, and budding

Interacts with host cell proteins. Inhibits the

production of type I interferon by blocking the

formation of TRAF3.TANK,TBK1/IKKepsilon

complex

Carries several non-synonymouos

mutations which could play a role in

viral pathogenesis.

(63)

N (Nucleo-

capsid)

Structural 1260 Protectis the genomic

RNA of the virus,

interacts with the M

protein durin virion

assembly and helps in

viral transcription and

assembly and budding.

Highly immunogenic, recognized as antigen in

hosts. Associates with the host ER-Gologi

complex. Modulates host cell cycle by

regulating cyclin and cyclin-dependent kinase

activities resulting in cell cycle arrest in S

phase. Interacts with host translation

elongation factor 1a (EF1a), suppressing host

mRNA translation. Intereferes with interferon

type I production and signaling. Antogonizes

host anitviral RNAi responses.

Carries multiple non-synonymous

mutataions. Some of these mutations

might create a unique potential RNA

binding pocket.

(64–66)

5 ORF6 Accessory 186 Role in viral

pathogenesis.

Localizes at the nuclear pore complex and

inhibits nuclear translocation of STAT1,

antagonizing IFN-I signaling. Interacts with

host cell proteins.

Not known yet (67, 68)

6 ORF7a Accessory 366 Not known yet, although

it is under selective

pressure with a possible

role in host-switiching.

Interacts with host cell proteins and

speculated to facilitate viral growth and

replication. It is primarily localized to Gologi

apparatus and also found on host cell

surface. It interacts with Bcl-XL protein and

induces apoptosis via caspase-dependent

pathway. Inhibits antiviral mechanisms by

inhibiting glycosylation of host protein BST-2

(also known as CD317)

Not known yet (69, 70)

7 ORF7b Accessory 132 Not known yet Interacts with host cell proteins and

speculated to facilitate viral growth and

replication. Localized yo Gologi apparatus.

Possseses leucine zipper motif with a

Not known yet (71)

(Continued)
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polymerase inhibitors are currently being tested in clinical studies

targeting the RdRp protein of the virus. Some of these drugs have a

predicted binding site in the SARS-CoV-2 RdRp hydrophobic cleft,
which is adjacent to the identified mutation at the 14408 positions.

Henceforth, it is possible that the observed mutation might also

impart drug resistance to the virus, however, the proposed

hypothesis needs to be experimentally proven.

As algebraic topology-based machine learning models were

introduced to evaluate the SARS-CoV-2 spike glycoprotein (S

protein) and host ACE2 receptor binding free changes, a number
of mutations were identified (44). From the cluster analysis and the

transmission dynamics, it is assumed that future SARS-CoV-2

mutations tend to have higher chances to mutate into significantly

more infectious COVID-19 strains than the original one from

Wuhan. Given the fact that the “infectivity-strengthening”

mutations spread faster than “infectivity-weakening” mutations,
the study concluded that the proportion of asymptomatic cases

have drastically increased despite impending cases in South Korea

(82). In another study, phylogenetic analysis of ~1,400 SARS-CoV-2

genomes isolated from India yielded 7 clusters, of which one was

unique to India. This unique cluster (Clade I/A3i) included three

variants; C6312A, C13730T, and C28311T, which resulted in amino

acid changes T2016K (orf1a), A97V (RdRp) or A88V (orf1b) and
P13L (N protein), respectively (83). These changes are hypothesized

to enhance the virulence and/or infectivity of the virus. Themutation

A97V in theRdRpprotein is located in itsNiRANdomain, suggested

to be relevant in RNA binding and nucleotidylation activity (84).

Mutations have also been identified in other viral proteins with

potential functional consequences (57, 85, 86). However, the impact
of all these mutations on the functions of the respective proteins and

their consequences on viral pathogenesis needs to be experimentally

tested. Among the recently identified variants of SARS-CoV-2, the

one carrying D614G mutation in the spike protein of the virus has

emerged as the most prevalent variant in the global pandemic,

possibly due to its greater fitness advantage (87). This variant was

found to bemore infectious resulting in a higher viral titer in patients.
In addition to viral variants, a recent genome-wide association study

(GWAS) in theUKidentifiedeighthumangeneticvariants consisting

of a combination of alleles at multiple loci that are predicted to

increase the risk ofmortality amongCOVID-19 patients (88). Lately,

someof the SARS-CoV-2 variantswithmutations in the S protein are

behind the surge in the second wave of SARS-CoV-2 infections in
many countries including India. Among the three sub lineages of

B.1.617, namely B.1.617.1, B.1.617.2, and B.1.617.3, the variant

named B.1.617.1.2 has been found to rapidly spread in many

countries including India. Recently, B.1.617.1.2 was classified by
WHO as a ‘variant of concern’ based on evidence showing higher

transmission rates and reducedneutralizationby antibodies obtained

from the convalescent serum of infected or vaccinated individuals

(89). Similarly, many other variants are being identified globally and

being monitored for their epidemiology.

VARIANTS OF INTEREST/CONCERN

Several variants have been identified globally, which appear to
spread more quickly, potentially increasing COVID-19

infections. Based on the factors, including the severity of the

virus and their ability to spread, four variants viz. B.1.1.7,

B.1.351, P.1 and B.1.617.2, also known as alpha, beta, gamma

and delta, respectively, have been characterized as the variants of

concern (Table 2). An alpha variant, identified initially in the
United Kingdom and delta variant, first identified in India, is

outspread with a much faster rate than beta and gamma variants,

first determined in South Africa and Japan/Brazil, respectively.

Hence, alpha and delta variants may potentially cause more

sickness and increase the number of deaths globally. On the

other hand, treatment with monoclonal antibodies is less
effective against beta, gamma, and delta variants, while

treatment for alpha variants is known to be effective (101).

These variants have different alterations in the spike protein

leading to increased susceptibility, virulence and transmission

that may affect viral replication and host immune response. More

recently, a novel South African variant C.1.2 was identified which

would escape antibody response. BNT162b2 (Pfizer/BioNTech)
and mRNA-1273 (Moderna) use a formulated vaccine which is

used to elicit potential response against the aforementioned

SARS-CoV-2 variants thereby combating rapid diagnosis (102).

HOST-PATHOGEN INTERACTIONS, CO-
MORBIDITIES AND IMMUNE RESPONSE

The infection starts with the binding of virus elements to the host cell
surface receptors, followed by viral entry and multiplication.

TABLE 1 | Continued

Sl.

No.

ORF/

Protein

Name

Type of

protein

Gene

size

(in

bp)

Role of the protein in

viral replication and

assembly

Role of the protein in host-poathogen

interactions

The features that are unique to

SARS-CoV-2 if any

Reference

potential to interfere with the functin of host

cellular proteins which employ similar motifs.

8 ORF8 Accessory 366 Not known yet It has ER-localization signal. Within the lumen

of ER, it interacts with a vareity of host

proteins and involved in inactivation of IFN-I

signalling. It is presumably secreted out of

host cells. ORF8 antibodies are one of the

principal markers of SARS-CoV-2 infection.

SARS-CoV-2 has single ORF8 protein

while SARS-CoV has ORF 8a and

ORF 8b. It shares less than 20%

similarity with SARS-CoV ORF8

sequences. Downregulates MHC-I in

cells.

(72, 73)
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Moreover, the binding of virus to the host receptor is primarily
required for viral transmission to other host species as well (103).

Most of the human CoVs (HCoVs) have been ascertained to

recognize protein peptidases as their receptors except HCoV-OC43

and HKU1 which utilize sugar molecules for cellular attachment

(104). For example, theHCoV-229Ebinds tohumanaminopeptidase

N (105), while MERS-CoV binds to human dipeptidyl peptidase 4
(58). On the other hand, SARS-CoV and HCoV-NL63 interact with

ACE2 for viral entry into the host (106). In CoVs, the passage of viral

entry into the host is mediated by the spike (S) glycoprotein, situated

at the viral surface 71. The S protein is cleaved by human proteases

into S1 and S2 subunits, which are involved in receptor identification

and cell membrane arrangement, respectively (53). The N-terminal

and the C-terminal domains (NTD and CTD) of the S1 subunit play
an important role in the functioning of receptor-binding domains

(RBD) in SARS-CoVs and MERS-CoVs (58, 107). The crystal

structures of HCoV-NL63 and SARS-CoV RBD interactions with

humanACE2 (hACE2) receptors are already known (107, 108). The

composite crystal structure of interaction between S1 CTD of SARS-

CoV-2 and hACE2 receptor has revealed that most of the binding
residues of SARS-CoV-2 in hACE2 show similarity with SARS-CoV

binding sites (90). Furthermore, the crystal structures of trimeric S

protein of SARS-CoV-2 published recently with buried and exposed

RBD regions have also been found to be consistent with structural

characteristics of S proteins in MERS-CoV and SARS-CoV (91).

While receptor recognition allows us to identify hCOV pathogenic

determinants, the ACE-2 Receptor recognition is an important
determinant of hCoVs infection and pathogenesis. Comparable to

SARS-CoV RBD, it was assumed that SARS-CoV-2 RBD is less

potent and exposed given the spike proteins’ switching between lying

down and standing up positions (109). The former buried positions

were in turn largerandso themaskingregionsare favoredby immune

evasionof spikeproteins’ throughACE-2. In summary, SARS-CoV-2
has diffident buried and exposed surfaces affecting the chemistry of

pathogenic determinants besides host protease activation.

Furthermore, the newly evolved delta mutations in SARS-CoV-2

may impact disease severity and become immunocompromised. As

it is known that the variant replication is manifold when compared

to its predecessor variants, whether or not vaccinated people have
the highest chance to skip the infection and transmission is under

evaluation (110). This could be due to neutralizing antibodies that

might have evaded the infection. These delta variants host multiple

mutations in the S1 subunit, including the RBD that seem to have

concurrent epitope tags. Therefore, the knowledge of the crystal

structure of interactions between host and viral proteins will not
only allow repurposing of the existing drugs but also the discovery

of new antiviral agents. As a prelude to this, we have developed a

bona fide network of HCoV-host interactome networks which

could be used to identify key putative candidate interacting pairs

responsible for the viral pathogenesis (Figure 2). Among HCoVs,

different viral proteins are being used for viral entry. For example, b-
CoVs use their S protein for cell binding and entry. SARS‐CoV
binds to ACE2, MERS‐CoV utilizes dipeptidyl peptidase 4 (DPP4)

of the host. Recent modelling of the structure of SARS‐CoV‐2 S

protein predicts that it can bind to both human DPP4 and

hACE2 (112).

The diabetic patients appear to be highly vulnerable to SARS-

CoV-2 infection. Given the administration of angiotensin-
directed medications for diabetics, a new treatment regimen is

being suggested for COVID-19 patients with diabetes (113, 114).

Lately, diabetic patients have shown an alarming increase in a

post-covid complication called mucormycosis, which is a highly

invasive opportunistic fungal infection affecting several vital

organs of the body including, the brain, eyes, ear, nose, throat

and mouth (115). Mucormycosis is caused by a group of fungi
called Mucormycetes (also popularly known as black fungus)

and the infection has become one of the factors involved in

increasing COVID-19-associated morbidity and mortality (116).

The use of steroids to reduce inflammation in COVID-19

patients leads to a further increase in blood sugar levels and

reduction in immunity, further increasing the susceptibility to
opportunistic black fungus infections (115). In addition to

diabetes, other factors which further enhance sensitivity

to infection are smoking, age, and obesity (117). Similarly,

hospital-acquired nosocomial infections pose additional

challenges in treating COVID-19 patients, underscoring the

TABLE 2 | List of known COVID-19 variants of concern (6, 55, 59–74, 90–100).

WHO label Lineage First identified Rate of outspread Monoclonal antibody

treatment

Alpha B.1.1.7 United Kingdom Much faster; increased number of deaths Effective

Beta B.1.351 South Africa May spread faster Less effective

B.1.351.2

B.1.351.3

Gamma P.1 Japan/Brazil Faster Less effective

Delta B.1.617.2 India Much faster; increased number of deaths Less effective

B.1.617 or B.1.617.1 India

AY.1

AY.2

AY.3

Epsilon B.1.427/429 California

Eta B.1.525

Lota B.1.526

New beta variant C.1.2 South Africa

Now spreading across Europe and New Zealand

Rapid and fastly increasing.
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need for early diagnosis of these opportunistic pathogens.

Pulmonary dysfunction, asthma, and bronchitis due to air
pollution have also been reported to increase the chances of

SARS-CoV-2-associated morbidity and mortality (118). In this

context, mathematical modeling and artificial intelligence can

serve as valuable tools in predicting the impact of various

environmental variables and comorbid conditions on the

progression of SARS-CoV-2 infection and vice versa (119).

Given the multifaceted involvement of ACE-2 in SARS-CoV-2
biology and its role in comorbid conditions, there is a need to

understand the association of ACE-2 expression with patient

fatality rate.

Over the last year, multiple studies reported an association

between the ABO blood group and COVID-19 (120–124). All

these studies concur that individuals with blood group A exhibit
a higher risk of SARS-CoV-2 infection, morbidity and mortality.

On the other hand, individuals with blood group O exhibit a

lower risk for the same parameters. In vitro studies by Guillon

et al. (54) demonstrated inhibition of adhesion of SARS-CoV-

expressing cells to ACE2-expressing cells by anti-A antibodies,

which might explain why individuals with blood group A showed
higher susceptibility to COVID-19 infection. However, these

findings need to be further validated before blood groups can

be used as prognostic markers.

Lower levels of certain vitamins such as vitamin D, A, and K

also appear to influence SARS-CoV-2 infection and disease

progression. Given the multifarious roles of these vitamins in

the maintenance of mucosal membrane barriers, innate and
adaptive immunity, maintenance of blood pressure and blood

glucose levels, integrity and functioning of skeletal and non-

skeletal tissues among other functions, their deficiency is
expected to be a potential risk for SARS-CoV-2 infection and

disease severity (125–131).

DOES SARS-CoV-2 HIJACK
MITOCHONDRIA TO INDUCE INFECTIONS?

Mitochondria have been known to be involved in inducing innate

immune responses primarily against viral attacks (132). Upon

viral infection, damage to mitochondrial membrane results in

leakage of the mitochondrial DNA into the cytosol. In addition to

the viral genome, the presence of mitochondrial genome in the
cytosol is sensed by cytosolic surveillance systems that recognize

these cytosolic DNA called Danger Associated Molecular Patterns

(DAMPS) (133). Recognition of DNA by cytosolic DNA receptors

triggers immune response and inflammation leading to the

recruitment of macrophages and dendritic cells. Hence, any

alteration with the mitochondrial membrane during infection

may lead to accelerated immune response and explain the
observed clinical symptoms during COVID-19. The ACE2

receptor and TMPRSS2, a transmembrane serine protease, both

used by hCoVs to enter host cells, can alter mitochondrial

function, which might enable the virus to hijack mitochondria

to its advantage in facilitating its spread to the neighboring cells.

We have earlier shown that mutations in the SARS-CoV-2 may
manipulate mitochondria even as ACE2 is regulated by its

A B

FIGURE 2 | (A) bona fide network analysis of HCoV-host interactome network. A subnetwork illustrating the HCoV-host interactome where colored nodes represent

diverse enriched pathways in host proteins and edge colors represent evidence collected from protein-protein interactions. The Figure was generated using Cytoscape

(111) with the host proteins shown to be interacting with the viral conglomerate proteins. The pink edges indicate the experimentally validated interactions, with green,

grey, orange, and maroon edges representing fusion, subcellular location, coexpression and associations from text mining. (B) A sub-figure with all the viral proteins in

yellow colored nodes and the host proteins in blue colored nodes. This figure is depicted keeping in view of the interplay of various host-pathogen interactions. A

Supplementary Table 1 is added which shows the list of interactants based on the text mining, co-expression network and overall scores. However, as no co-

expression network studies have been deciphered yet between virus and the host, the network is distributed largely based on the text mining interactions. In

conclusion, the network largely explores how the SARS-CoV-2 proteins have an interplay with a lot of host proteins, viz. SPECC1, a mitochondrial like protein, PHB, a

prohibitin associated with cancer and FGL2/fibroleukin prothrombinase, a protein associated with clotting factors and alveolar macrophage activation.
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inherent mitochondrial function (132). Moreover, the 5’ and 3’

UTR regions of the viral transcript have been found to have

mitochondria localization signals (51). Several ORFs like ORF9b,

ORF3b, ORF7a, and ORF8b of the SARS-CoV are also shown to

be localized in the host mitochondria. These sequences have high

similarity with those found in SARS-CoV-2, indicating that it is
highly likely that SARS-CoV-2 transcripts may possess the ability

to localize in host mitochondria too. Several SARS-CoV proteins

have been known to interact with host mitochondrial proteins and

yet, the knowledge remains limited regarding the cellular

significance of these interactions. CoVs have been known to

reside in ER-derived double membrane vesicles to avert host
immune responses and therefore CoVs might have been

adopted to reside in mitochondria-derived vesicles for similar

purposes. These observations suggest that mitochondrial hijacking

may be an essential mechanism in SARS-CoV-2 infection and

therefore, drugs that selectively restore mitochondrial function

and promote its biogenesis may prove to be effective anti-
inflammatory agents in the treatment of COVID-19. Infection

of host cells by SARS-CoV-2 induces a strong immune response

which could be linked to the ability of the virus to use the host

organelles such as endoplasmic reticulum (ER) for its replication.

These observations further emphasize the need to understand the

crosstalk between the viral proteins and the proteins of

mitochondria and ER and its influence on the formation of
mitochondria-derived double-vesicles (MDV) and mitochondrial

antiviral-signaling proteins (MAVS), which induce apoptosis.

Studies are underway to know whether or not the non-

structural proteins (nsps) are an integral part of this mechanism

(51). While it is also not clear how the RNA from the virus enters

the mitochondria in human cells, it is hypothesized that it may
interact with ACE-2 receptors in regulating mitochondrial

function. Higher levels of ACE-2 have been shown to restore

impaired mitochondrial function (134). As SARS-CoV-2 infection

leads to mitochondrial hijacking, it negatively impacts cellular

bioenergetics leading to asphyxiation, further causing fatalities. It

will be interesting to know how the mutations in mitochondrial

genomes in humans might contribute to diverse responses to
SARS-CoV-2 infections, akin to the GWAS study conducted in

the UK which identified a set of alleles associated with increased

risk of mortality among COVID-19 patients (88). An epilog to

this, we have also recently hypothesized how SARS-CoV-2

transgressing non-coding RNAs esp lncRNAs of the host may

allow us to understand the known unknown regions of the viral
genome (110).

DISEASE MANAGEMENT OF COVID-19:
POTENTIAL TREATMENT OPTIONS AND
REPURPOSING THE EXISTING DRUGS
FOR COVID-19 TREATMENT

Since the onset of COVID-19, several attempts have been made

to identify or develop new antiviral agents or to repurpose

existing drugs to antagonize the virus. Among the antiparasitic

agents, hydroxychloroquine (HCQ), chloroquine, and

ivermectin were extensively tested to repurpose them against

SARS-CoV-2. While some studies showed promising results,

others were inconclusive (135). Several antiviral compounds that

are known to act against viruses including CoVs have been

explored to repurpose them against SARS-CoV-2. Among them,
some of them with the most promising outcomes include,

Remdesivir (GS-5734), Favipiravir, Lopinavir, and Ritonavir.

Remdesivir (GS-5734), an analog of adenosine, is a broad-

spectrum antiviral agent that gets incorporated into nascent

RNA, resulting in premature termination of RNA synthesis

(136–138). Favipiravir is another FDA-approved drug for the
influenza virus that showed antiviral activity against SARS-CoV-

2 via the inhibition of viral RNA polymerase (139). The HIV

protease inhibitors Lopinavir and Ritonavir have been under

clinical focus for their known roles in inhibiting 3C-like

proteases [3CLpro;a cysteine protease that hydrolyses the Viral

proteins (hCoVs)] of CoVs with which SARS-CoV-2 shares up to
96% sequence identity (140). However, recent clinical trials failed

to show any significant benefits of these anti-HIV drugs against

SARS-Co V-2 (141).

Additionally, some of the herbal medicines are being used or

evaluated to treat COVID-19 based on findings from clinical

trials or in vitro studies. For example, the traditional Chinese

medicine made up of Qingfei Paidu Decoction (QFPD)
accelerated the recovery from COVID-19 symptoms and

reduced the mortality rates (142–144). Earlier, QFPD had also

been shown to be effective against SARS-CoV (145). Therefore,

QFPD is currently being used as one of the adjunct treatments

against COVID-19 in China. Similarly, tryptanthrin, a

compound isolated from the leaf of the Chinese herb,
Strobilanthes cusia, has been explored as another treatment

option since it displayed an antiviral activity against human

coronavirus NL63 in a cell-type independent manner in vitro

(146). In addition, several active phytoconstituents obtained

from medicinal plant species such as Curcuma longa

(turmeric), Withania somnifera (Ashwagandha), Tinospora

cordifolia (Giloy), and Ocimum sanctum (Tulsi) have been
subjected to molecular docking studies to identify compounds

with a potential to interact with and inhibit SARS-CoV-2

proteins (147–149). Some of these compounds have shown

promising results and are being pursued further.

Various computational tools have been employed to rapidly

identify potential new drugs and the existing drugs for treatment
of COVID-19 (150). Artificial intelligence (AI) has been

deployed for predicting the structure of SARS-CoV-2 proteins

which will help in identifying new drugs besides repurposing the

existing drugs to treat the virus. For example, Beck et al. (151)

developed a deep learning-based pretrained drug-interaction

model called molecule transformer-drug target interaction (MT-

DTI) to shortlist commercially available drugs for their potential
to target SARS-CoV-2 viral proteins. Their findings predicted

that Atazanavir, an anti- HIV drug to possess the highest

inhibitory potency. Their study also predicted other drugs

including Remdesivir, Efavirenz, Ritonavir, and Dolutegravir to

have anti-SARS-CoV-2.
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Molecular docking studies have been extensively used to

identify molecules that can bind to the SARS-CoV-2

machinery and inhibit its replication (152). Docking studies of

nigelledine and hederin from Nigella sativa with SARS-CoV-2

main protease called 3CLpro (Mpro), showed improved docking

score for ligand binding free energies compared to Chloroquine,
HCQ and Favipiravir. Therefore, these drugs have been

provisionally considered as potential therapeutic agents for

treating SARS-CoV-2 (153). In another study, a chemographic

analysis of anti-CoV structure-activity information from a public

database (ChEMBL) containing a vast pool of 800 million

organic compounds, about 380 potential anti-CoV agents were
identified, which needs to be experimentally tested and validated

for their antiviral activity against SARS-CoV-2 (154).

Elfiky (155) built a model for the viral RdRp to test its binding

affinity to some of the clinically approved drugs and drug

candidates by carrying out molecular modeling, docking, and

molecular dynamics simulations for the viral protein RNA-
dependent RNA polymerase (RdRp). In addition to Sofosbuvir,

Ribavirin, Galidesivir, Remdesivir, Favipiravir, Cefuroxime,

Tenofovir, and Hydroxychloroquine showing effectiveness, new

derivatives were shown to have promising results for the

attachment to the SARS-CoV-2 RdRp. Recently, the crystal

structure of SARS-CoV-2 3CLpro (Liu et al., 10.2210/pdb6LU7/

pdb) was used to screen several approved drugs or drugs in
clinical trials via virtual docking (156). The findings from this

study predicted several promising drugs to inhibit the 3CLpro.

The list includes Carfilzomib (a proteasome inhibitor being used

as an anticancer drug), Eravacycline (a florocycline- a synthetic

analog of tetracycline), Valrubicin (an analog of doxorubicin

which is an inhibitor of nucleic acid metabolism, being used to
treat bladder cancer), Lopinavir (HIV-1 protease inhibitor),

Elbasvir (anti Hepatitis C viral drug, which targets nsp 5A),

and Streptomycin (a known antibiotic that inhibits bacterial

protein synthesis). In a similar docking study, along with HIV

protease inhibitors (Lopinavir, Asunaprevir, Indivavir, and

Ritonavir), new molecules including Methisazone (an antiviral

drug that inhibits mRNA and protein synthesis in poxviruses),
CGP42112A (an angiotensin AT2 receptor agonist), and

ABT450 (Paritaprevir: an antiviral drug that inhibits nsp 3-4A

serine protease of HCV) were predicted to bind and inhibit

3CLpro of SARS-CoV-2 (157).

Furthermore, synergistic studies carried out on Lopinavir,

Oseltamivir, and Ritonavir showed that when used together these
drugs exhibited greater binding affinity and inhibition of the viral

protease proteins than when used alone (158). In another

docking study, ~ 1.3 billion compounds from the ZINC15

database were docked against the active site of the SARS-CoV-

2 3CLpro using the Deep Docking (DD) platform, which provides

a fast prediction of docking scores (159). The authors identified

the top 1000 potential ligands for SARS CoV-2 3CLpro. In a
similar study, the potential drugs from the ZINC15 database

were screened for their binding affinity for S protein and 3CLproo

of SARS-CoV-2. The findings from this study identified

Zanamivir (an anti-influenza drug), Indinavir and Saquinavir

(anti-HIV drugs), Remdesivir (anti-SARS-CoV and an anti-

ebola virus drug) as compounds with high binding affinities for

3CLpro. In addition, flavin adenine dinucleotide (FAD) adeflavin,

coenzyme A, tiludronate, and Dpnh (NADH) were predicted to

bind the S protein with high affinity (160). Recently, 2 deoxy

glucose (2DG), an anticancer drug, has been approved for

emergency use in India as an adjunct therapy to treat COVID-
19. 2DG inhibits host glycolytic pathway, anti-inflammatory

action and interacts with viral proteins (161, 162). An

exhaustive list of repurposed drugs targeting various stages of

virus life cycle and their current status of clinical trials has been

listed in Almasi and Mohammadipanah (163).

MACHINE LEARNING HEURISTICS AND
ARTIFICIAL INTELLIGENCE FOR
COVID-19 MANAGEMENT

The artificial intelligence (AI) and machine learning (ML)
paradigms have offered effective tools and algorithms to

combat COVID-19 pandemic. AI is being successfully applied

for disease cluster identification, monitoring of COVID-19

patients, in determining mortality risk, disease diagnosis and

management, contact tracing through geotagging, resource

allocation, facilitating training of health care personnel, data
management, and in predicting future pandemic outbreaks and

the disease trend (164–166). The power of AI-ML in viral

diagnostics and the management of COVID-19 have been

summarized in various reviews (167–170) (Table 3). Clinically,

computed tomography (CT), positron emission tomography-CT

(PET/CT), lung ultrasound, and magnetic resonance imaging

(MRI) are being used in COVID-19 diagnosis. The AI can
supplement medical imaging-based COVID-19 diagnosis

particularly reducing the diagnosis time (167, 206). Application

of deep learning to X-ray and CT scan imaging has resulted in

detection of COVID-19 with high accuracy, sensitivity, and

specificity (207, 208). Such applications also effectively

differentiated symptoms due to COVID-19 from bacterial
pneumonia. In another novel study, AI was applied to predict

the outcome of the RT-PCR-based diagnosis of COVID-19 on

the basis of 16 simple parameters derived from complete blood

profile (205).

Randhawa et al. (209) identified an intrinsic SARS-CoV-2

virus genomic signature in combination with a machine
learning-based alignment-free approach for a fast, scalable, and

highly accurate classification of whole SARS-CoV-2 genomes.

They coupled supervised machine learning with digital signal

processing (MLDSP) for genome analyses. Moreover, the authors

claimed highly accurate real-time taxonomic classification of

SARS-CoV-2 genomes simply based on raw DNA sequence,

without any requirement of specialized biological knowledge or
training or gene/genome annotations. Their method is extremely

rapid; for example, analysis of a data set consisting of 5538

unique viral genomes with a total of ~ 62 Mb was carried out

within a few minutes with high classification accuracy. Other

applications of ML and AI in protein structure prediction,

Kaur et al. The Omic Saga of COVID-19

Frontiers in Immunology | www.frontiersin.org October 2021 | Volume 12 | Article 7249149

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


TABLE 3 | Summary of diagnostic methods used to detect SARS-CoV-2 (171–204).

Name of the

method

Salient features/advantages Disadvantages Time

taken for

detection

from the

time of

sample

collection

Feasible

for

pooled

testing?

References

1.

Detection

of RNA

RT-PCR Gold standard method for screening and diagnosis in

the early phase of infection. Advantages include

automation, high-throughput analysis and relatively

reliability. Also determines relatively viral load.

Higher occurrence of false positives and

false negatives, requires thermocyclers,

laboratory set up and expertise to

carryout the test and the analysis. Lack

of symptoms in positive individuals;

Highly vulnerable for errors due to cross

contamination during sample collection,

processing and while performing the

test.

High chance of laboratory error during

sampling

Need of skilled personnel

~ 4-6

hours

Yes (32, 176, 188,

205)

RT-LAMP Performed using isothermal amplification.

Advantages: It does not require specialized laboratory

equipment (e.g. thermocyclers). Can be performed at

a wide range of pH and temperature. Does not

require thermocyclers, faster test results, easy to use,

cost-effective, sensitivity comparable to RT-PCR

Colorimetric visualization of results; Non-processed

samples can be assayed.

Requires more number of primers and

thereby increases chances of primer

dimer formation contributing to false

positives. For the same reason, primer

designing is challenging. Multiplexing

could be problemative. Less versatile

than PCR .

<1 h Yes (172)

RT-RPA Performed using isothermal amplification.

Advantages: It does not require specialized laboratory

equipment (e.g. thermocyclers). Can be performed at

a wider range of temperatures.

Does not require thermocyclers, faster test results,

easy to use, cost-effective, sensitivity comparable to

RT-PCR

Colorimetric visualization of results; Non-processed

samples can be assayed.

Primer and probe design for RPA are

less established; Less sensitive than RT-

PCR and RT-LAMP. Requires higher

concentrations of dNTPs.

<1h Yes (198)

RNA

NASBA

Employs reverse transcription followed by

amplification of RNA by T7 RNA polymerase followed

by detection of the amplified RNA using fluorescent

molecular beacon DNA probe.

It is an isothermal reaction (41°C) and has faster

amplification kinetics compared to RT-PCR and RT-

LAMP; Does not require thermocyclers. Compatible

for multiplexing and high throughput analsysis.

Low temperature of the reaction

conditions increasese the chances of

non-specific primer interactions. Except

one, NASBA enzymes are heat-labile,

requiring the addition of these enzymes

after the melting step. Since the primers

used are not incorporated in the

amplicon and therefore labeled primers

can't be used for detection.

90 minutes Yes (179, 185)

SHERLOCK Viral RNA is reverse transcribed first to produce

cDNA following which fluorescently-labeled single-

stranded DNA (ssDNA) reported probes are

indiscriminately cleaved either through FnCas9- or

Cas12a-sgRNA complex. Alternatively synthesized

cDNA can be used for in vitro transcription and the

RNA thus produced will acticate nuclease activity of

Cas13a, resulting similar cleavage of fluorescently-

labeled ssDNA reported probesor Cas12based. All

components of SHERLOCK can be freeze-dried;

Highly sensitive and specific. Capable of detecting

single target RNA/DNA molecule. Amenable for

multiplexing and is one of the rapid nucleic acid

detection method.

Multi-step detection, protocol

optimization is challenging. Cas13a

depends on intact in vitro-synthesized

RNA and therefore proned to challenges

associated with RNA degradation.

~ 40-90

minutes

? (186)

2.

Detection

of viral

antigen

Rapid

antigen test

Antibodies specific to vrial antigens are used to

detect the virus. One of the most rapid methods,

easy-to-perform and interpret, requiring no

specialized equipment or expertise. Most suitable for

point-of-care diagnostics.

It takes weeks or months to produce

high-titer antibodies and usually they are

not as sensitive and specific as nucleic

acid-based approaches. Often,

confirmation of the negative results by

~15

minutes

No (195)

(Continued)

Kaur et al. The Omic Saga of COVID-19

Frontiers in Immunology | www.frontiersin.org October 2021 | Volume 12 | Article 72491410

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


identification of potential drugs using molecular docking studies,

reverse vaccinology, automating the data collection and

transmission using cyber physical systems (CPS) from the

current and futuristic diagnostic devices (e.g., lab-on-chip) are
described in previous sections.

CONCLUSIONS

COVID-19 undoubtedly has turned out to be one of the most

destructive pandemics in recent history having a negative

impact on all aspects of human life. The repetitive global

resurgence of apparently more infectious strains of SARS-

CoV-2 has made the pandemic unrelenting. We have
attempted to summarize the various critical findings

pertaining to COVID-19 biology from detection to

treatment. Given the fatic paradigm, there is a need for the

scientific community to apply Thoughts-Action-Debate (TAD)

applying Trikarna shuddhi, a Sanskrit adage of learning as we

say “ome” to prepare for future pandemics.
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Name of the

method

Salient features/advantages Disadvantages Time

taken for

detection

from the

time of

sample

collection

Feasible

for

pooled

testing?

References

rapid antigen test requires RT-PCR to

rule out infection.

3.

Detection

of

antibodies

generated

in

response

to SARS-

CoV-2

infection

Lateral flow

assays

Fast detection of IgM/IgG antibodies specific for

SARS-CoV-2 proteins. Direct detection from plasma,

serum, whole blood or fingertip blood and requires

less amount of sample. Instruments, specialized

expertise not required. Amenable for self-testing at

home as well as for point-of-care testing centres.

Long shelf -life.

Often, confirmation of the negative

results by rapid antigen test requires

RT-PCR to rule out infection. Requires

highly purified antigens for accuracy.

~15

minutes

No (175, 187,

190, 193)

ELISA (IgA,

IgM and IgG)

One of the most commonly used methods to detect

both antigen/antibodies. Hihgly sensitivity in detecting

antiviral antibodies. Allows highthroughput analysis.

Clinical performance data are scarce;

Cross-reactivity has been reported;

Cost per test is high as compared to

other tests

2-3 h Yes (181)

4.

Detection

of

Symptoms

Chest

computed

tomography

(CT) Scan

Chest CT scans help if identifying characteristic lung

pathology associated with the disease such as

ground glass opacity, bilateral consolidation,

interlobular septal thickening and pleural effusion.

Low false-negative rate. Can be used to monitor the

progression of the disease/recoverey.

Requires expensive equipment, proper

lab facility and techincal expertise to

carry out the test and analyze the

results. It requires physical presence of

the suspected individuals/patients.

Diagnosis is not specific to the

pathogen. Imaging protocols vary

across locations

~1h No (206, 207)

Radiography

(X-ray)

Radiography (X-ray) identifies unilateral and bilateral

infilterate.

Rapid, low false-negative rate. Can be used to

monitor the progression of the disease/recoverey.

The cost is lower than CT but at the same less-

sensitive and is more useful in monitoring the disease

during later stages.

It is less sensistive and demostrates

limited pathological features associated

with the disease. Generally it cannot

detect early stages of the disease.

Requires expensive equipment, proper

lab facility and techincal expertise to

carry out the test and analyze the

results. It requires physical presence of

the suspected individuals/patients.

Diagnosis is not specific to the

pathogen.

~ 45

minutes

No (208)
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169. Naudé W. Artificial Intelligence vs COVID-19: Limitations, Constraints and

Pitfalls. AI Soc (2020) 35(3):761–5. doi: 10.1007/s00146-020-00978-0

170. Vaishya R, Javaid M, Khan IH, Haleem A. Artificial Intelligence (AI)

Applications for COVID-19 Pandemic. Diabetes Metab Syndr Clin Res Rev

(2020) 14(4):337–9. doi: 10.1016/j.dsx.2020.04.012

171. Abd El Wahed A, Patel P, Heidenreich D, Hufert FT, Weidmann M. Reverse

Transcription Recombinase Polymerase Amplification Assay for the

Detection of Middle East Respiratory Syndrome Coronavirus. PloS Curr

(2013) 5:ecurrents.outbreaks.62df1c7c75ffc96cd59034531e2e8364.

doi: 10.1371/currents.outbreaks.62df1c7c75ffc96cd59034531e2e8364

172. Augustine R, Hasan A, Das S, Ahmed R, Mori Y, Notomi T, et al. Loop-

Mediated Isothermal Amplification (LAMP): A Rapid, Sensitive, Specific,

and Cost-Effective Point-Of-Care Test for Coronaviruses in the Context of

COVID-19 Pandemic. Biol (Basel) (2020) 9:182. doi: 10.3390/

biology9080182

173. Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, et al. Chest CT

Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration

of Infection. Radiol (2020) 295(3):685–91. doi: 10.1148/radiol.2020200463

174. Brigger D, Horn MP, Pennington LF, Powell AF, Siegrist D, Weber B, et al.

Accuracy of Serological Testing for SARS-CoV-2 Antibodies: First Results of

a Large Mixed-Method Evaluation Study. Allergy (2021) 76(3):853–65.

doi: 10.1111/all.14608

175. Broughton JP, Deng X, Yu G, Fasching CL, Singh J, Streithorst J, et al. Rapid

Detection of 2019 Novel Coronavirus SARS-CoV-2 Using a CRISPR-Based

DETECTR Lateral Flow Assay. medRxiv (2020). doi: 10.1101/

2020.03.06.20032334

176. Bustin SA, Benes V, Nolan T, Pfaffl MW. Quantitative Real-Time RT-PCR–a

Perspective. J Mol Endocrinol (2005) 34(3):597–601. doi: 10.1677/jme.1.01755

177. Cai XF, Chen J, Hu JL, Long Q, Deng H, Liu P, et al. A Peptide-Based

Magnetic Chemiluminescence Enzyme Immunoassay for Serological

Diagnosis of Coronavirus Disease 2019. J Infect Dis (2020) 222(2):189–93.

doi: 10.1093/infdis/jiaa243

178. Understanding Long COVID: A Modern Medical Challenge. Lancet 8: 398

(10302):725. doi: 10.1016/S0140-6736(21)01900-0

179. Deiman B, van Aarle P, Sillekens P. Characteristics and Applications of

Nucleic Acid Sequence-Based Amplification (NASBA). Mol Biotechnol

(2002) 20:163–79. doi: 10.1385/MB:20:2:163

180. Dinnes J, Deeks JJ, Berhane S, Taylor M, Adriano A, Davenport C, et al.

Rapid, Point-of-Care Antigen and Molecular-Based Tests for Diagnosis of

SARS-CoV-2 Infection. Cochrane Database Syst Rev (2020) 3(3):CD013705.

doi: 10.1002/14651858.CD013705.pub2
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