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Abstract

We all recognize 0, 1, 1, 2, 3, 5, 8, 13, . . . but what about 1, 2, 4, 6, 3, 9, 12, 8, 10, 5, 15, . . .?
If you come across a number sequence and want to know if it has been studied before, there
is only one place to look, the On-Line Encyclopedia of Integer Sequences (or OEIS). Now in
its 48th year, the OEIS contains over 200,000 sequences and 15,000 new entries are added
each year. This article will briefly describe the OEIS and its history. It will also discuss
some sequences generated by recurrences that are less familiar than Fibonacci’s, due to Greg
Back and Mihai Caragiu, Reed Kelly, Jonathan Ayres, Dion Gijswijt, and Jan Ritsema van
Eck.

1 The Fibonacci numbers.

The Fibonacci numbers have been in the On-Line Encyclopedia of Integer Sequences R©
(or OEIS R©) right from the beginning. When I started collecting sequences as a graduate
student in 1964, the Fibonacci numbers became sequence A000045 (incidentally, 48 years
later, sequences being added have A-numbers around A2170002). Over 3000 sequences in
the OEIS mention Fibonacci’s name in their definition.

Some especially noteworthy variations on the Fibonacci numbers were recently defined
by Back and Caragiu [2] in the Fibonacci Quarterly. The simplest of their examples replaces
the Fibonacci recurrence by

a(n) = gpf( a(n− 1) + a(n− 2) ), (1)

where gpf stands for greatest prime factor (A006530). If we start with 1, 1 we get

1, 1, 2, 3, 5, 2, 7, 3, 5, 2, 7, . . . (2)

(A175723), and the cycle 3, 5, 2, 7 repeats for ever. Back and Caragiu show that no mat-
ter what the initial values are, (1) always becomes periodic and that 3, 5, 2, 7 is the only
nontrivial cycle. On the other hand, consider

a(n) = gpf( a(n− 1) + a(n− 2) + a(n− 3) ) . (3)

1Based on an invited talk given at the Fifteenth Conference on Fibonacci Numbers, Eger, Hungary, June
2012

2Throughout this article, six-digit numbers prefixed by A refer to entries in the OEIS [15]. As in the
OEIS, we adopt the convention that a(n) denotes the nth term of the sequence being discussed.
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If we start with 1, 1, 1 we get

1, 1, 1, 3, 5, 3, 11, 19, 11, 41, 71, 41, 17, 43, 101, 23, . . . (4)

(A177904), which after 86 steps enters a cycle of length 212. Now it is only a conjecture that
(3) always becomes periodic, for any initial values.

Another interesting variant of the Fibonacci sequence3 was very recently introduced into
the OEIS by Reed Kelly [12]. Kelly’s recurrence is

a(n) =
a(n− 1) + a(n− 3)

gcd{ a(n− 1), a(n− 3) } , (5)

with initial values 1, 1, 1:

1, 1, 1, 2, 3, 4, 3, 2, 3, 2, 2, 5, 7, 9, 14, 3, 4, 9, 4, 2, . . . (6)

(A214551). This sequence appears to grow exponentially (a(n) ≈ constant · e0.123...n ?), but
essentially nothing has been proved about it.

The OEIS is an endless source of lovely problems!

2 How the OEIS is used.

However, the main use for the OEIS is as a reference work for identifying sequences and
telling you what is known about them. If you come across a sequence of numbers, and you
want to know if it has been studied before, there is only one place to look, the OEIS [15]
(http://oeis.org).

You enter the first few terms4, and click “Submit”. If you are lucky, the OEIS will return
one or more sequences that match what you entered, and, for each one, it will tell you such
things as:

– The definition of the sequence

– The first 10, or 10,000, or sometimes 500,000 terms

– Comments explaining further properties of the sequence

– Formulas for generating the sequence

– Computer programs for producing the sequence

– References to books and articles where the sequence is mentioned

– Links to web pages on the Internet where the sequence has appeared

– The name of the person who submitted the sequence to the OEIS

3Or, more precisely, of another medieval sequence, the Narayana cows sequence, A000930.
4When looking up a sequence, it is recommended that you omit the first term or two, since different

people may start a sequence in different ways.
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– Examples illustrating some of the terms of the sequence (for example, sequence A000124,
which gives the maximal number of pieces that can be obtained when cutting a circular
pancake with n cuts, is illustrated with pictures showing the pieces obtained with 1,
2, 3, 4 and 5 cuts)

– The history of each entry in the OEIS as it has evolved over time

You can also view graphs or plots of the sequence, or listen to it when it is converted to
music.

If your sequence is not found, you will be encouraged to submit it. This will establish
your priority over the sequence, and will help the next person who comes across it. Only
sequences of general interest should be submitted. The sequence of primes whose decimal
expansion begins with 2012 is an example of a sequence that would not be of general interest.
Published sequences are almost always acceptable.

If your sequence was not in the OEIS, you should also try sending it to our email server
Superseeker (see http://oeis.org/ol.html), which will try hard to find an explanation for
your sequence. For example, Superseeker might suggest a recurrence or generating function
for your sequence, or tell you that it can be obtained by applying one of over a hundred
different transformations to one of the over 200,000 sequences in the OEIS. Superseeker is a
vary powerful tool for analyzing sequences.

Accuracy has always been one of the top priorities in the OEIS. Its standards are those
of a mathematics reference work. Ideally, every number, formula, computer program, etc.,
should be absolutely correct. Formulas that are stated unconditionally should be capable of
being proved, and otherwise should be labeled as conjectures. Of course, as the database has
grown, these goals have become harder and harder to achieve. Many non-mathematicians
have difficulty in understanding the difference between a theorem and a conjecture. (“My
formula fits the first 30 terms, so obviously it must be correct.”)

The OEIS has often been called one of the most useful mathematical sites on the Inter-
net. There is a web page (http://oeis.org/wiki/Works Citing OEIS) that lists over 2000
articles and books that reference it.

3 History of the OEIS.

I started collecting sequences in 1964, entering them on punched cards (the original moti-
vation was to find an explanation for various sequences that had arisen in my dissertation,
the simplest of which was the sequence that became A000435). Eventually two books were
published ([16] in 1973, with 2372 entries, and [17], written with Simon Plouffe, in 1995,
with 5847 sequences).

In 1996, when the number of entries had risen to 10,000, I put the database on the
Internet, calling it the The On-Line Encyclopedia of Integer Sequences or OEIS. By 2009,
the database had grown to over 150,000 entries, and was becoming too big for one person
to manage, so I set up a foundation, The OEIS Foundation Inc (http://oeisf.org), whose
goals are to own the intellectual property of the OEIS, to maintain it, and to raise funds to
support it.
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With major help from Russ Cox (of Google) and my colleague David Applegate (at
AT&T), I moved the OEIS off my home page at AT&T to a commercial hosting service, and
attempted to set it up as a “wiki.” However, this proved to be extremely difficult, and it
required a tremendous amount of work by Russ Cox before it started working properly. It
was not until November 11, 2010 that the OEIS was officially launched in its new home at
http://oeis.org. This would not have been possible without the help that Russ Cox and
David Applegate provided.

The fact that the OEIS is now a wiki means that I no longer have to process all the
updates myself. Once a user has registered5, he or she can propose new sequences or updates
to existing sequences. All submissions are reviewed by a panel of about 80 editors. Nearly
two years after it was launched, the wiki system is working well. Since November 2009 the
database has grown from 180,000 sequences to its current number of around 216,000. From
1996 to the present, the database has grown at between 10,000 and 18,000 new sequences
per year, with about an equal number of entries that are updated.

More about the history of the OEIS can be found on the OEIS Foundation web site,
http://oeisf.org.6

4 The poster and the OEIS movie.

To celebrate the creation of the the OEIS Foundation, David Applegate and I made a poster
that shows 25 especially interesting sequences (several of which will be mentioned in this
article). It can be downloaded (along with a key) from the Foundation web site.

Also, Tony Noe made a movie that shows graphs of the first thousand terms of a thousand
sequences from the OEIS: it is quite spectacular. It runs for 8.5 minutes, and it too can be
found on the Foundation web site. It is also on YouTube (search for “OEIS movie”).

Speaking of “social media”, you can also “like” the OEIS on Facebook.

5 Puzzles.

One of the goals of the OEIS has always been to help people get higher scores on IQ tests,
and the database includes many sequences that have appeared as puzzles. The following are
a few examples. If you can’t solve them, you know where to find the answers!

• 61, 21, 82, 43, . . .

• 2, 4, 6, 30, 32, 34, 36, 40, 42, 44, 46, 50, 52, 54, 56, 60, 62, 64, 66, 2000, . . .

• 0, 0, 0, 0, 4, 9, 5, 1, 1, 0, 55, 55, . . .

• 5, 8, 12, 18, 24, 30, 36, 42, 52, 60, . . .

5All readers are encouraged to register: go to http://oeis.org/wiki and click “Register.”
6As President, it would be remiss of me not to mention that the OEIS Foundation is a charitable orga-

nization and donations are tax-deductible in the USA. The web site is free, and none of the trustees receive
a salary. To make a donation, please go to http://oeisf.org.
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• 1, 2, 6, 21, 85, 430, 2586, 18109, 144880, . . .

The last one is a bit tricky, but it did appear on a quiz.

6 Two sequences that agree for a long time.

People often ask if it is possible for two sequences to agree for many terms yet not be the
same. Here is an extreme example. The sequences

⌊
2n

log 2

⌋
and

⌈
2

21/n − 1

⌉

both begin
2, 5, 8, 11, 14, 17, 20, 23, 25, 28, 31, 34, 37, . . .

(A078608). In fact they agree for the first 777451915729367 terms! There are infinitely many
disagreements, the positions of which form sequence A129935:

777451915729368, 140894092055857794, 1526223088619171207, 3052446177238342414, . . .

7 Theorems resulting from the OEIS.

Another question that is often asked is if there are any theorems that have resulted from the
OEIS. The answer is that there are many such examples. In the list of papers that cite the
OEIS (the link was given above) one will find numerous acknowledgments that say things
like “This result was discovered with the help of the OEIS.”

I will give three concrete examples of theorems that were discovered with the help of the
OEIS. The first concerns the remainder term in Gregory’s series for π/2,

π

2
= 2

∞∑

k=1

(−1)k+1

2k + 1
= 2

(
1− 1

3
+

1

5
− 1

7
+ · · ·

)
, (7)

which is famous for converging very slowly. In 1987, Joseph North observed that if one
truncates the series after 50,000 terms, the answer is of course wrong. There is an error in
the fifth decimal place. Surprisingly, he noticed that the next nine digits are correct, then
there is an error, then there are nine more correct digits, another error, and so on. Here is
the decimal expansion of the truncated sum followed by the true value of π/2 (the sequences
of digits form A013706 and A019669). The digits that differ are in bold-face.

1.570796326794896619231321691639751442098584699687 . . . (truncated)
1.570786326794897619231321191639752052098583314687 . . . (true value)

The differences between the corresponding bold-faced terms are

1, −1, 5, −61, 1385, . . . .

Jonathan Borwein looked up this sequence in [16], and found that (apart from signs) it
appeared to be the Euler numbers, A000364. The end result of this investigation was a new
theorem.
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Theorem 1. (Borwein, Borwein and Dilcher [4]; see also [3, pp. 28–29], [5])

π

2
− 2

N/2∑

k=1

(−1)k+1

2k + 1
∼

∞∑
m=0

Em

N2m+1
, (8)

where the Em are the Euler numbers (A000364):

1, 1, 5, 61, 1385, 50521, 2702765, 199360981, 19391512145, . . . .

The second example is one that I was involved with personally. It began when Eric W.
Weisstein (at Wolfram Research, and creator of MathWorld) wrote to me about a discovery
he had made. He had been classifying real matrices of 0’s and 1’s according to various
properties, and he found that the numbers of such matrices all of whose eigenvalues were
positive were 1, 3, 25, 543, 29281 for matrices of orders 1, 2, . . . , 5. He observed that these
numbers coincided with the beginning of sequence A003024 (whose definition on the surface
seemed to have nothing to do with eigenvalues), and he conjectured that the sequences should
in fact be identical. He was right, and this led to the following theorem.

Theorem 2. ([14]) The number of acyclic directed graphs with n labeled vertices is equal to
the number of n× n matrices of 0’s and 1’s all of whose eigenvalues are real and positive.

The third example is a result of Deutsch and Sagan [8]. It is well-known that the famous
Catalan numbers

Cn :=
1

n + 1

(
2n

n

)

(A000108) are odd if and only if n = 2k − 1 for some k. Deutsch and Sagan proved (among
other things) an analogous result for the almost equally-famous Motzkin numbers (A001006),

Mn :=
n∑

k=1

(
n

2k

)
Ck .

Theorem 3. ([8]) Mn is even if and only if n ∈ 4S − 2 or 4S − 1, where

S := (1, 3, 4, 5, 7, 9, 11, 12, 13, 15, . . . )

lists the numbers whose binary expansion ends with an even number of 0’s (A003159).

8 Three unusual recurrences.

The Fibonacci recurrence is very nice, but it is 800 years old. In the last section of this talk
I will discuss some modern recurrences that I find very appealing.
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n

a(
n)
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Figure 1: The first 100 terms of the EKG sequence, with successive points joined by lines.

n

a(
n)
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Figure 2: Terms 800 to 1000 of the EKG sequence.

8.1 The EKG sequence.

Jonathan Ayres contributed this to the OEIS in 2001 [1]. The first 18 terms are

1, 2, 4, 6, 3, 9, 12, 8, 10, 5, 15, 18, 14, 7, 21, 24, 16, 20, . . .

(A064413), and the defining recurrence is a(1) = 1, a(2) = 2, and, for n ≥ 3,

a(n) is the smallest natural number not yet in the sequence which has
a common factor > 1 with the previous term.
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Figure 3: Scatter-plot of the first 1000 terms of the EKG sequence. They lie roughly on
three almost-straight lines.

Thus a(3) must have a common factor with 2, i.e. it must be even, and 4 is the smallest
candidate, so a(3) = 4. The next term must also be even, so a(4) = 6. The smallest number
not yet in the sequence which has a common factor with 6 is 3, so a(5) = 3. Similarly,
a(6) = 9, a(7) = 12, a(8) = 8, a(9) = 10, a(11) = 5, a(12) = 15, and so on. Jeffrey Lagarias,
Eric Rains and I studied this sequence in [13]. We called it the EKG sequence, since it looks
like an electrocardiogram when plotted (Figs. 1, 2).

It is not difficult to show that the primes appear in increasing order, and that each odd
prime p is either preceded by 2p and followed by 3p, or is preceded by 3p and followed by 2p
(as we just saw, 3 was preceded by 6 and followed by 9, 5 is preceded by 10 and followed by
15).7

By definition, no number can can be repeated. But does every number appear? The
answer is Yes.

Theorem 4. The EKG sequence is a permutation of the natural numbers.

Sketch of Proof. (i) If infinitely many multiples of some prime p occur in the sequence,
then every multiple of p must occur. (For if not, let kp be the smallest missing multiple
of p. Every number below kp either appears or it doesn’t, but once we get to a multiple
of p beyond all those terms, the next term must be kp, which is a contradiction.) (ii) If
every multiple of a prime p appears, then every number appears. (The proof is similar.) (iii)
Every number appears. (For if there are only finitely many different primes among the prime
factors of all the terms, then some prime must divide infinitely many terms, and the result
follows from (i) and (ii). On the other hand, if infinitely many different primes p appear,

7We conjectured that p was always preceded by 2p rather than 3p. This was later proved by Hofman and
Pilipczuk [11].
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then there are infinitely many terms 2p, as noted above, so 2 appears infinitely often, and
again the result follows from (i) and (ii).)

Although the initial terms of the sequence jump around, when we look at the big picture
we find that the points lie very close to three almost-straight lines (Fig. 3). This is somewhat
similar to the behavior of the prime numbers, which are initially erratic, but lie close to a
smooth curve (since the nth prime is roughly n log n) when we look at the big picture—see
Don Zagier’s lecture on “The first 50 million prime numbers” [18].

In fact, we have a precise conjecture about the three lines on which the points lie. We
believe—but were unable to prove—that almost all a(n) satisfy the asymptotic formula
a(n) ∼ n(1 + 1/(3 log n)) (the central line in Fig. 3), and that the exceptional values
a(n) = p and a(n) = 3p, for p a prime, produce the points on the lower and upper lines.
We were able to show that the sequence has essentially linear growth (there are constants
c1 and c2 such that c1n < a(n) < c2n for all n), but the proof of even this relatively weak
result was quite difficult. It would be nice to have better bounds.

8.2 Gijswijt’s sequence and the Curling Number Conjecture.

1 1 2
1 1 2 2 2 3
1 1 2
1 1 2 2 2 3 2
1 1 2
1 1 2 2 2 3
1 1 2
1 1 2 2 2 3 2 2 2 3 2 2 2 3 3 2
1 1 2
1 1 2 2 2 3
1 1 2
1 1 2 2 2 3 2
1 1 2
1 1 2 2 2 3
1 1 2
1 1 2 2 2 3 2 2 2 3 2 2 2 3 3 2 2 2 3 2

Table 1: The first 98 terms of Gijswijt’s sequence (A090822).

We start by defining the curling number of a sequence. Let S be a finite nonempty
sequence of integers. By grouping consecutive terms, it is always possible to write it as
S = X Y Y · · · Y = X Y k, where X and Y are sequences of integers and Y is nonempty.
There may be several ways to do this: choose the one that maximizes the value of k: this k
is the curling number of S.

For example, if S = 0 1 2 2 1 2 2 1 2 2, we could write it as X Y 2, where X = 0 1 2 2 1 2 2 1
and Y = 2, or as X Y 3, where X = 0 and Y = 1 2 2. The latter representation is to be
preferred, since it has k = 3, and as k = 4 is impossible, the curling number of this S is 3.
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In 2004, Dion Gijswijt, then a graduate student at the University of Amsterdam and also
the puzzle editor for the Dutch magazine Pythagoras, contributed the following sequence to
the OEIS. Start with a(1) = 1, and, for n ≥ 2, use the recurrence

a(n) = curling number of a(1), . . . , a(n− 1).

The beginning of the sequence is shown in Table 1 (it has been broken up into sections
to show where the curling number drops back to 1):

This sequence was analyzed by Gijswijt, Fokko van de Bult, John Linderman, Allan Wilks
and myself [6]. The first time a 4 appears is at a(220). We computed several million terms
without finding a 5, and for a while we wondered if perhaps no term greater than 4 was ever
going to appear. However, we were able to show that a 5 does eventually appear, although
the universe would grow cold before a direct search would find it. The first 5 appears at
about term

101023
.

We also showed that the sequence is actually unbounded, and we conjecture that the first
time that a number m (= 5, 6, 7, . . .) appears is at about term number

223
4·
··m−1

,

a tower of height m− 1.
Our arguments could be considerably simplified if the Curling Number Conjecture were

known to be true. This states that:

If one starts with any initial sequence of integers, and extends it by
repeatedly calculating the curling number and appending it to the
sequence, the sequence will eventually reach 1.

The conjecture is still open. One way to tackle it is to consider starting sequences S0

that contain only 2’s and 3’s, and to see how far such a sequence will extend (by repeatedly
appending the curling number) before reaching a 1.

Let µ(n) denote the maximal length that can be achieved before a 1 appears, for any
starting sequence S0 consisting of n 2’s and 3’s. For n = 4, for example, S0 = 2 3 2 3 produces
the sequence

2 3 2 3 2 2 2 3 1 . . . ,

and no other starting string does better, so µ(4) = 8. The Curling Number Conjecture would
imply that µ(n) < ∞ for all n. Reference [6] gave µ(n) for 1 ≤ n ≤ 30, and Benjamin Chaffin
and I have determined µ(n) for all n ≤ 47 [7]. By making certain plausible assumptions about
S0, we have also computed lower bounds on µ(n) (which we conjecture to be the true values)
for all n ≤ 80. The results are shown in Table 2 and Figure 4. The values of µ(n) also form
sequence A094004 in [15].

As can be seen from Fig. 4, up to n = 80, it appears that µ(n) increases in a piecewise lin-
ear manner. At the values n = 1, 2, 4, 6, 8, 9, 10, 11, 14, 19, 22, 48, 68, 76, 77 (A160766),
assuming that the values in Table 2 are correct, there is a jump, but at the other values of n,
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n 1 2 3 4 5 6 7 8 9 10 11 12
µ(n) 1 4 5 8 9 14 15 66 68 70 123 124

n 13 14 15 16 17 18 19 20 21 22 23 24
µ(n) 125 132 133 134 135 136 138 139 140 142 143 144

n 25 26 27 28 29 30 31 32 33 34 35 36
µ(n) 145 146 147 148 149 150 151 152 153 154 155 156

n 37 38 39 40 41 42 43 44 45 46 47 48
µ(n) 157 158 159 160 161 162 163 164 165 166 167 179

n 49 50 51 52 53 54 55 56 57 58 59 60
µ(n) 180 181 182 183 184 185 186 187 188 189 190 191

n 61 62 63 64 65 66 67 68 69 70 71 72
µ(n) 192 193 194 195 196 197 198 200 201 202 203 204

n 73 74 75 76 77 78 79 80 81 82 83 84
µ(n) 205 206 207 209 250 251 252 253 ? ? ? ?

Table 2: Lower bounds on µ(n), the record for a starting sequence of n 2’s and 3’s. Entries
for n ≤ 47 are known to be exact (and we conjecture the other entries are exact).

Figure 4: Scatter-plot of lower bounds on µ(n), the record for a starting sequence of n 2’s
and 3’s. Entries for n ≤ 47 are known to be exact (and we conjecture the other entries are
exact).

µ(n) is simply µ(n− 1) + 1. Table 3 gives the starting sequences where µ(n) > µ(n− 1) + 1
for n ≤ 48.
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n Starting sequence
1 2
2 2 2
4 2 3 2 3
6 2 2 2 3 2 2
8 2 3 2 2 2 3 2 3
9 2 2 3 2 2 2 3 2 3
10 2 3 2 3 2 2 2 3 2 2
11 2 2 3 2 3 2 2 2 3 2 2
14 2 2 3 2 3 2 2 2 3 2 2 3 2 3
19 2 2 3 2 2 3 2 3 2 2 2 3 2 2 3 2 2 3 2
22 2 3 2 2 3 2 2 3 2 3 2 2 2 3 2 3 2 2 3 2 2 3
48 2 2 3 2 2 3 2 3 2 2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 3 2 3 2 2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 3 2 3

Table 3: Starting sequences of n 2’s and 3’s for which µ(n) > µ(n− 1) + 1. This is complete
for n ≤ 47 and is believed to be complete for n ≤ 67.

For example, Table 2 shows that

µ(n) = n + 120 for 22 ≤ n ≤ 47 . (9)

In this range one cannot do any better than taking the starting sequence for n = 22 and
prefixing it by an irrelevant sequence of 47 − n 2’s and 3’s. However, at n = 48 a new
record-holder appears, and it seems that

µ(n) = n + 131 for 48 ≤ n ≤ 67 . (10)

We have not succeeded in finding any algebraic constructions for good starting sequences.
For more about the Curling Number Conjecture see [7].

8.3 Van Eck’s sequence.

In 2010, Jan Ritsema van Eck [9] contributed a sequence to the OEIS that is defined by yet
another unusual recurrence. Again we start with a(1) = 0, and then for n ≥ 2,

a(n) is the number of steps backwards before the previous appearance
of a(n− 1), or a(n) = 0 if a(n− 1) has never appeared before.

Since a(1) = 0 has never appeared before, a(2) = 0. Now 0 has appeared one step before,
at a(1), so a(3) = 1. We have not seen a 1 before, so a(4) = 0. We had an earlier 0 at a(2),
so a(5) = 4 − 2 = 2. This is the first 2 we have seen, so a(6) = 0. And so on. The first 36
terms are shown in Table 4.

Figure 5 shows a scatter-plot of the first 800 terms. The plot suggests that after n terms,
there are occasionally terms around n, or in other words that lim sup a(n)/n ≈ 1. This
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0, 0, 1, 0, 2, 0, 2, 2, 1, 6, 0, 5,
0, 2, 6, 5, 4, 0, 5, 3, 0, 3, 2, 9,
0, 4, 9, 3, 6, 14, 0, 6, 3, 5, 15, 0,
5, 3, 5, 2, 17, 0, 6, 11, 0, 3, 8, 0, . . .

Table 4: The first 48 terms of Van Eck’s sequence (A181391).

Figure 5: Scatter-plot of the first 800 terms of Van Eck’s sequence A181391.

is confirmed by looking at the first million terms, and the data also strongly suggests that
every number appears in the sequence. However, at present these are merely conjectures.

Van Eck was able to show that there are infinitely many 0’s in the sequence, or, equiva-
lently, that the sequence is unbounded.

Theorem 5. (Van Eck, personal communication) The sequence contains infinitely many 0’s.

Proof. Suppose, seeking a contradiction, that there are only finite number of 0’s in the
sequence. Then after a certain point no new terms can appear, so the sequence is bounded.
Let M be the largest term. This means that any block of M successive terms determines
the sequence. But there are only MM different possible blocks. So a block must repeat and
the sequence is eventually periodic. Furthermore, the period cannot contain a 0.

Suppose the period has length p, and starts at term r, with a(r) = x, . . . , a(r + p− 1) =
z, a(r + p) = x, . . . . There is another z after q ≤ p steps, which is immediately followed by q.
But this q implies that a(r− 1) = z. Therefore the periodic part really began at step r− 1.

Repeating this argument shows that the periodic part starts at a(1). But a(1) = 0, and
the periodic part cannot contain a 0. Contradiction.

13



It would be nice to know more about this fascinating sequence!

9 Conclusion.

I will end with a few general remarks.

• The OEIS needs more editors. If you are interested in helping, please write to me or
one of the other Editors-in-Chief. There are no formal duties, everything is done on a
volunteer basis, and you will get to see a lot of interesting new problems.

• Everyone should register with the OEIS – see Sect. 3.

• If you write a paper that mentions a sequence in the OEIS, please do two things. Add
it to the list of papers that cite the OEIS – see Sec. 2, and add a reference pointing to
your paper to any entries in the OEIS that it mentions.

• The same thing if you come across a sequence in your work, in the library, or on a web
site: send it in to the OEIS if it is missing (it need not be your own sequence – just
mention the source) or add a reference to the source if it is already in the OEIS. It is
these cross-connections that make the database so valuable.
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