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Abstract

Background: Common cancers develop through a multistep
process often including inherited susceptibility. Collaboration
among multiple institutions, and funding frommultiple sources,
has allowed the development of an inexpensive genotyping
microarray, the OncoArray. The array includes a genome-wide
backbone, comprising 230,000 SNPs tagging most common
genetic variants, together with dense mapping of known suscep-
tibility regions, rare variants from sequencing experiments, phar-
macogenetic markers, and cancer-related traits.

Methods: The OncoArray can be genotyped using a novel
technology developed by Illumina to facilitate efficient genotyp-
ing. The consortium developed standard approaches for selecting
SNPs for study, for quality control of markers, and for ancestry
analysis. The array was genotyped at selected sites and with
prespecified replicate samples to permit evaluation of genotyping
accuracy among centers and by ethnic background.

Results: The OncoArray consortium genotyped 447,705 sam-
ples. A total of 494,763 SNPs passed quality control steps with
a sample success rate of 97% of the samples. Participating
sites performed ancestry analysis using a common set of mar-
kers and a scoring algorithm based on principal components
analysis.

Conclusions: Results from these analyses will enable research-
ers to identify new susceptibility loci, perform fine-mapping of
new or known loci associated with either single or multiple
cancers, assess the degree of overlap in cancer causation and
pleiotropic effects of loci that have been identified for disease-
specific risk, and jointly model genetic, environmental, and
lifestyle-related exposures.

Impact: Ongoing analyses will shed light on etiology and risk
assessment formany types of cancer. Cancer Epidemiol Biomarkers Prev;
26(1); 126–35. �2016 AACR.

Introduction
Cancer is one of the leading causes of death worldwide. In

2012, the estimated number of cancer cases around theworldwas
14.1 million, and this number is estimated to swell to 21 million
by 2030 (1). Cancer has a sizable heritable component. A large
twin study estimated that heritable factors may explain between
20% and 40% of the variance in cancer risk (2). High-penetrance
mutations, including those in BRCA1 and BRCA2, APC, and DNA
mismatch repair genes, are estimated to account for less than 5%
of all cases (3, 4). As for other common complex diseases, it is
expected that much of the inherited susceptibility to cancer is
likely to be explained by common alleles having low penetrance
(2–5). Large consortial effortsmay identify effects fromadditional
rarer alleles (6, 7). As pointed out by Ponder (8, 9) and Peto (10),
common genetic variants account for a large proportion of cancer
incidence, even though they do not individually lead to strong
clustering within families. Moreover, the combinations of effects
from genetic and environmental factors may account for substan-
tial differences in cancer susceptibility within and among popula-
tions (8–13).

Over the past decade, genome-wide association studies
(GWAS) of cancer have discovered multiple low-penetrance loci.
Given that the effect sizes are generally weak (relative risks per
allele of 1.3 or less), increasing the sample size has become crucial

in identifying and characterizing true genetic associations.Genetic
signatures of cancer etiology indicated novel influences in cancer
development, thereby providing new insights into etiologic
mechanisms that suggest interventions (14). By identifying many
new loci influencing cancer development, genomic research has
identified pathways that influence cancer development (15). In
addition, Mendelian randomization has emerged as an effective
approach for confirming nongenetic etiologic factors identified
through epidemiologic studies, removing potential concerns
about reverse causality (16).

Once the loci are identified, fine-mapping studies are a critical
next step in finding functional variant(s) and in the discovery of
nearby, independent, secondary signals, which may increase the
heritable fraction explained by each region. More than 90% of
risk-alleles lie in nonprotein-coding DNA and there is now
unequivocal evidence that risk regions are enriched for regulatory
elements, including enhancers, promoters, insulators, and silen-
cers (17). In general, genome-wide estimates in humans indicate
about 500,000 enhancers may alter regulation of expression and
thus alter risk by controlling expression of target susceptibility
genes (17–20). Analyses to date indicate that several regions
harbormultiple distinct susceptibility variants for different cancer
types, suggesting common mechanisms but tissue-specific regu-
lation (21). Thus, fine-mapping of multiple cancer types using a
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common array is likely to be an effective strategy for finding new
alleles influencing common cancers and for unravelling mechan-
isms in their etiology.

The overall goal of the OncoArray Consortium is to gain new
insights into the genetic architecture andmechanisms underlying
common cancers by deploying a new genotyping array, the
OncoArray, and using it to genotype a large number of cases with
cancers of thebreast, colon, lung, ovary, prostate, or endometrium
as well as genetically susceptible individuals such as BRCA1 and
BRCA2mutation carriers along with a large number of cancer-free
controls. The collaboration arose, in part, through the efforts of
the Genetic Associations and Mechanisms in Oncology (GAME-
ON) consortium, which was a multi-year project to characterize
SNP associations for common cancers and to understand their
mechanistic and functional consequences in disease develop-
ment. The OncoArray project provides an unprecedented oppor-
tunity both to discover new cancer susceptibility variants, com-
mon and rare, and to identify the likely causal variants at known
loci through fine-mapping and the integration of disease-
associated variants with tissue-specific regulatory information.
In addition, joint genotyping across cancer sites permits sharing
of controls and a more comprehensive assessment of genetic
risk among many cohort studies that participated in this study.
Moreover, given the evidence that some of the loci influencing
cancer risk are shared among cancer sites, the genotyping of a
common array across multiple cancer sites provides an excel-
lent opportunity to study the pleiotropic effect of susceptibility
loci. However, while there is tremendous value in organizing a
genotyping consortium on this scale, there are also substantial
challenges in how best to integrate data across this diverse
spectrum of cancer sites and genotyping locations. To facilitate
the analysis, the consortium developed shared procedures for
genotype calling and quality control. This report describes the
development of the consortium, the array that was designed,
and quality control approaches that have been implemented
across the consortium.

Materials and Methods
Principles in sample and SNP selection

The OncoArray Consortium is focused on the discovery of
variants influencing common cancers, in particular cancers of
the breast, colon, lung, ovary, and prostate. These cancers were

chosen for analysis based upon prior observation of some
common causal pathways (15) as well as the opportunity
provided by common funding through the GAME-ON, a con-
sortium of U19 grants studying genetic etiology of breast,
ovarian, prostate, colon, and lung cancers. The existence of an
effective, multi-consortium collaboration provided an oppor-
tunity primarily because of economies of scale. The potential to
utilize common control sets across the consortia gave added
value. A description of the sample sets is provided in Supple-
mentary Tables S1A–S1G. Endometrial cancer cases were
included because endometrial cancer shares several risk factors
with breast cancer and ovarian cancer, such as the genetic locus
(HNF1B), which has shared variants with prostate (22, 23) and
ovarian cancer (24). Finally, there are similarities in tumor
phenotype and/or shared tissue of origin between endometrial
cancer, the benign gynaecologic condition endometriosis, the
endometrioid and clear cell histologies of ovarian cancer, and
basal-like breast cancer (25–27). Thus, pooling ovarian and
endometrial (23, 28, 29) cases could uncover novel loci.

The array was designed from a final list of approximately
600,000 markers, of which approximately 533,000 were success-
fully manufactured. Of these, nearly 50% of the markers were
selected as a GWAS backbone (Illumina HumanCore). These
markers were selected to tag the largemajority of known common
variants, via imputation. The remaining markers were selected
from seven lists: five from the disease consortia representing the
main cancer sites, one from the Consortium of Investigators of
Modifiers of BRCA1/2 (CIMBA) including potential modifiers of
cancer risk in BRCA1 or BRCA2 carriers, and a seventh "common"
list that included variants of common interest (see below). SNPs
were allocated to these disease sites, and to CIMBA, according to
the number of samples that each consortium would be contrib-
uting. In addition, the array that was configured by Illumina
allows flexibility for cancers not originally participating in the
design of the array by allowing additional custom content to be
added to the array. The general principles for SNP allocation were
set by consensus by members of the OncoArray Consortium as
presented in Table 1. More detailed descriptions of the SNP
selection process for disease sites participating in the OncoArray
are also provided in the Supplementary Methods and governance
described in Supplementary Information about the Oncoarray
Consortium. Below, we present the general approaches that were
taken for nominating SNPs for the Array.

Table 1. Organization of SNP requests within consortia

Consortium
Selection of SNP TRICL BCAC/DRIVE/CIMBA FOCI/OCAC ELLIPSE/PRACTICAL CORECT

Fine-mapping 0.437 0.259 0.700 0.359 0.346
Significant SNPs from existing GWAS 0.032 0.465 0 0.379 0.598
Sequencing/rare variants 0.001 0.075 0 0.025 0.012
Other GWAS studies/ethnicities 0.072 0.044 0 0.128 0.005
Candidate SNP and pathways 0.156 0.012 0.105 0.056 0.027
Correlated phenotypes 0.083 0.015 0 0.051 0
GxG or GxE interactions 0.004 0.063 0.115 0 0.012
SNPs from tumor genes 0.053 0 0 0 0
Functional and eQTL 0.161 0.005 0.002 0 0
Survival 0 0.062 0.079 0 0
SNPs within consortium 32,464 88,475 42,921 67,757 37,397

Abbreviations: BCAC, Breast Cancer Association Consortium; CORECT, Colorectal Transdisciplinary Study; DRIVE, Discovery, Biology, and Risk of Inherited
Variants in Breast Cancer; Ellipse, Elucidating Loci Involved in Prostate cancer Susceptibility; FOCI, Follow-up of Ovarian Cancer Genetic Association and
Interaction Studies; OCAC, Ovarian Cancer Association Study; PRACTICAL, Prostate Cancer Association Group to Investigate Cancer Associated Alterations in
the Genome; TRICL, Transdisciplinary Research in Cancer of the Lung.

Amos et al.

Cancer Epidemiol Biomarkers Prev; 26(1) January 2017 Cancer Epidemiology, Biomarkers & Prevention128

D
ow

nloaded from
 http://aacrjournals.org/cebp/article-pdf/26/1/126/1942245/126.pdf by guest on 26 August 2022



Selection of SNPs for inclusion within disease site
SNPs to be included in the array were nominated by partici-

pating consortia organized into each of the major disease site
groups that participated in the primary array development. Each
cancer site used its ownprioritization scheme.Generally, selection
of SNPs were based on (i) candidate SNPs from loci enriched
showing some evidence of association (e.g., P < 10�5) from
previous GWAS of common cancers (breast, ovarian, prostate,
colon, and lung; refs. 30–37); (ii) fine-mapping of risk loci based
on 1000 Genomes Project data and resequencing studies (38);
(iii) candidate rare variants fromwhole genomeandwhole exome
studies, and exome arrays (39); (iv) findings from previously
published studies of other cancers provided by the NHGRI SNP
catalog (40) and other online resources; and (v) other "wild-card"
variants, for example, variants of potential functional significance
(18, 41, 42). The majority of SNP selection was based on regions
previously identified from GWAS in European populations, but
disease sites also allocated tagging SNPs to capture variability for
Asian and African descent populations. In addition to site-specific
variants, someofwhichwere nominated bymore than one group,
candidates were nominated from in silico functional analyses that
suggested putative mechanistic targets for risk variants based
either on their predicted effects on the coding sequence of can-
didate genes, or their intersection with noncoding, putative reg-
ulatory targets (see below). Finally, variants associated with
phenotypes that correlate with cancers (such as smoking or BMI)
were also selected.

Selection of SNPs for fine-mapping
Similar procedures were followed for each site. We first

defined a 1 Mb interval surrounding the known lead signal
for each genome-wide signal. Where such regions overlapped,
the intervals were amalgamated into a single interval so as to
include 500 kb either side of each hit. Common regions were
defined as regions including hits within 1 Mb for more than one
cancer type, amalgamated as described. We then identified and
obtained design scores for all variants in the interval from the
1000 Genomes Project (phase I version 3, March 2012 release).
From among designable SNPs, we then selected three sets of
variants: (i) all variants correlated with the known hits at
r2 > 0.6, (ii) all variants from lists of potentially functional
variants, defined through RegulomeDB, and (iii) a set of SNPs
designed to tag all remaining variants at r2 > 0.9.

Selection of "Common" SNPs
Previous analyses (30, 32, 43, 44) have demonstrated that

association signals for different cancers tend to cluster together,
perhaps reflecting common mechanisms. For this reason, we
selected a dense set of SNPs within 1 Mb (see above) across all
regions in which this occurred for more than one cancer type.
Variants were nominated for inclusion if they (i) occurred within
genes that have been found to associate with pharmacogenetic
traits relevant to cancer, (ii) had previously been associated at
genome-wide levels of significance for any other cancer type (not
among the five primary cancers sites participating in the OncoAr-
ray Consortium) as defined by the GWAS Catalog (45), and (iii)
had been found to be relevant to cancer-associated traits (46)
including BMI, height, and waist-to-hip ratio [in collaboration
with the GIANT consortium (47)], smoking, age at menopause or
menarche [in collaboration with the REPROGEN consortium
(48)], and telomere length in lymphocytes (31).We also included

additional SNPs that showed evidence of association with other
cancer types including endometrial, testis, bladder, andpancreatic
cancer, Wilms' tumor, and glioma, and SNPs tagging known
common eQTLs (i.e., associated with expression across a range
of tissues).

Pharmacogenetic variants were nominated by several colla-
borators based on (i) functional variants in 19 genes nominated
by the pharmacogenetics network, (ii) functional variants or
tagging SNPs in CYP2A6 and CYP2B6, and (iii) SNPs nominated
by PharmGKB and variants nominated from study of cell lines to
affect expression of pharmacogenetically relevant genes (49).
SNPs from the region of chromosome 15q25.1 that associate
with lung cancer and smoking behavior were placed in the
common region given the ubiquitous effects of smoking on cancer
risks. Of note, BRCA1 and BRCA2 were finally released from
patent controls two days before the final selection of SNPs so
that common functional variants of these loci could be included
in the array. We included additional (nonpolymorphic) probes
for each exonofBRCA1, BRCA2,MLH1 andMSH2 to capture large
deletions in these genes. Finally, we included a panel of Y
chromosome and mitochondrial markers to provide data on
population ancestry.

The Division of Cancer Epidemiology and Genetics of the
National Cancer Institute accumulated GWAS scan data for other
cancer sites including bladder, NHL (non-Hodgkin lymphoma),
esophageal, gastric, glioma, kidney, osteosarcoma, pancreas, tes-
tis, or scan data for non-Caucasian studies including Asian non-
smoking female lung cancer and African American lung cancer.
The top 200–400 most significant loci from each scan were
selected after ranking by association test P value and LD pruning
(r2 > 0.6).

Functional characterization and selection. Risk variants at known
susceptibility loci for breast, colorectal, lung, ovarian, and
prostate cancer were integrated with epigenomic datasets from
ENCODE and other published sources, to identify intersections
between risk SNPs and tissue-specific regulatory features that
define the most likely causal variants and their functional
targets. We interrogated associations between SNPs and DNAse
Hypersensitivity (DHS) sites generated in the pan-cancer cell
line panel from ENCODE, as well the LNCaP cell line (for
prostate cancer–specific marks), the HMEC line (for breast), the
SAEC line (for lung cancer), the HCT116 line (for colorectal
cancer), and the CaOV3 line (for ovarian cancer). The most
likely causal SNPs from these analyses were prioritized in
the selection of fine-mapping variants described above. In
addition, we identified candidate causal SNPs at loci associated
with risk of two or more cancers, to identify the putative
functional targets that are common across cancer types as well
as those that are tissue/cancer specific at these loci. A summary
of these analyses are illustrated in Fig. 1. This approach eval-
uates regions around the significant SNPs common to cancers
to identify regional variants that impact chromatin structure,
expression levels or transcription factor binding sites to enrich
for SNPs directly related to cancer development.

Pruning and merging procedures
As a starting point, we "forced-in" all SNPs in the GWAS back-

bone (260,660) and the common fine-mapping list (32,548). All
other lists include SNPs that passed design at Illumina and were
rank ordered with the most important SNPs first, and were pruned
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to exclude redundant SNPs in LD (r2 > 0.9) with other SNPs in
the same list or the "force-in" set described above.

The proportions allocated to each disease site are listed in the
Supplementary Table S2.

Thefinalmerging took the lists of SNPs generated by the disease
sites and for common mapping and generated a single list in the
following order:

(i) Include the GWAS backbone
(ii) Include the Common fine-mapping list
(iii) Choose the remaining SNPs iteratively from the five ranked

lists. At each stage, choose thenext SNP from the listwith the
smallest value of n/p, where n is the number of SNPs already
chosen from that list and p is the proportional allocation of
that list, as given in the above table. This ensured that the
correct proportions were kept.

(iv) Include the SNP unless the exact SNP has already been
chosen. In either case, augment the count n for that list by 1.

(v) Increase the number of beadtypes for chosen SNPs, where
necessary because variation could not be captured by a
single beadtype.

On the basis of themerged list of 715,637unique SNPs (76,290
from lung; 224,074 from familial and sporadic breast and ovar-
ian; 81,009 from prostate; 50,110 from colorectal; 17,547 from
common list), we further performed LD pruning (r2 > 0.95). This

process resulted in a total of 651,216 SNPs. A set of obligatory
SNPs provided by each contributing lists was not allowed to be
"pruned."

After this process, we submitted 568,712 SNPs (reaching the
total number of �600,000 beadtypes) from the priority lists to
Illumina for manufacturing. Of these, a total of 533,631 (93.8%)
passed quality control procedures and were included as valid
markers on the array.

Genotyping
To minimize variability that might result from genotyping

among sites and to improve efficiency, the large majority of
genotyping was performed at just 8 sites CIDR (n ¼ 211,638),
Cambridge (n ¼ 98,770), Genome Quebec/McGill Innovation
Center (n ¼ 55,121), the National Cancer Institute (26,803), the
MayoClinic (n¼22,023),Denmark (n¼ 5,961), and Shanghai (n
¼ 3,840). To ensure comparability among centers, selected Hap-
Map samples were analyzed by all groups.

Quality control steps
A detailed quality control plan was developed and is included

as Supplementary Material, but the salient features are presented
here. Participating sites genotyped a common set of HapMap
samples so that strand alignment and integrity of imputation
could be compared among analytic sites. All sites used a com-
mon genotype clustering file that can be downloaded from

Figure 1.

Twenty risk regions analyzed aspart of theGAME-ONOncoArray, including 17 pleiotropic regions conferring risks to twoormore commoncancers (breast, colorectal,
lung, ovarian, or prostate cancers).A,Circos plot illustrating the 24 different regions ordered by chromosome and cytoband. The index SNP(s) at each locus are color
coded by cancer type. B, Integration of correlated risk SNPs at each locus with regional catalogs of regulatory marks for related tissue types for common cancers to
identify SNPs intersecting tissue-specific regulatory targets. Publicly available genome-wide regulatory profiling data were available for the HMECs (human
mammary epithelial cells; specific to breast cancer), LNCap cancer cells (for prostate cancer), CaOV3 cancers (for ovarian cancer), SAEC cells (for lung cancer). The
first column indicates a risk-associated SNP that intersects a regulatory mark, color coded by cancer type. For other columns, colored squares represent an
intersection between a risk associated SNP and a regulatory mark, and in which tissue type, indicating which marks are common across tissues and which are tissue
specific.White squares indicate themost strongly associated SNPs (index SNP) in a region and a dotwithin the square indicates an intersection between a regulatory
mark and an index. The position of each regulatory mark is indicated relative to hg19 coordinates. In B, only SNPs with regulatory marks are shown, thus
excluding 24 of the regional associations shown in A.
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http://consortia.ccge.medschl.cam.ac.uk/oncoarray/onco_v2c.zip
and removed 765 duplicated probes (onco_duplicate_variants_
excluded.csv).

Clustering process
A selectionof 56,284 sampleswithhigh call rates fromacross the

genotyping centers were combined into a single Illumina Genome
Studio project and automatic clustering performed using the Gen-
Train 2 clustering algorithm. This included 3,687AfricanAmerican,
5,590 Asian, and 2,608 Hispanic samples. A large number of
samples was used to increase the chances of including heterozy-
gotes for themany rare variants on the array (23,249variants have a
MAF below 0.0005). Variants showing poor clustering (57,673)
weremanually evaluated and revised,which reduced thenumber to
16,526 variants excluded from the analysis.

Ancestry analysis
Ancestry analysis was performed using a standardized

approach in which 2,318 ancestry informative markers (AIM)
with minor allele frequencies of 0.05 or higher were used on
66,105 samples genotyped at CIDR, Cambridge, and Genome
Quebec/McGill Innovation Center (the primary contributing
centers) and 505HapMap 2 samples. We noted that among those
individuals not clearly aligning into one of the major continental
ancestry groups there are clines connecting ancestral groups along
axes connecting the centroids of the ancestral populations. We
mapped ancestry to regions of a triangle connecting the three
regions, to estimate the contribution of European, Asian, and
African ancestry to each individual. The method is further
described in the software package FastPopc (50) distributed to
consortium members. Individuals were thus classified into 4
groups for downstream analyses: European (defined as >80%
European ancestry), Asian (>40% Asian ancestry), African (>20%
African ancestry), and other (not fulfilling any of the above
criteria; ref. 50; see Supplementary Methods).

Results
Genotyping quality

Samples passed genotyping quality control steps if more
than 95% of SNPs had valid calls. After manual review of

cluster plots for SNPs failing to achieve 95% call rates a total
of 494,763 SNPs were retained for analysis. The call rate
varied according to tissue source and DNA processing steps
(Fig. 2). Overall, 97% of samples had call rates of 95% or
higher. However, the efficiency in genotyping varied markedly
among sources of DNA. In particular, genotyping of samples
derived from peripheral blood provided excellent perfor-
mance with a 98% success rate, while amplified DNA derived
from nonblood samples show poor performance (18% overall
failure rate for amplified buccal or saliva). The success rate
for genotyping HapMap-derived samples was 100% and the
overall genotyping success rate for lymphoblastoid lines was
99.5%.

Analysis of concordance of sample genotypes
To evaluate the reliability of genotyping across samples

including postimputation processing, we evaluated concor-
dance of imputed SNP genotype probabilities among the
centers. Figure 3 depicts average squared correlations among
19,367,932 variants imputed from v3 of the 1000 Genomes
Project for HapMap samples genotyped and imputed in Cam-
bridge versus the same samples genotyped by CIDR and imput-
ed at Dartmouth using the same imputation protocol (Supple-
mentary Methods). The integral values along the x-axis depict
results for the same individual, with multiple replicate samples
having been genotyped for individuals 1, 4, 5, 6 and 8. Samples
1–8 derive from European descent individuals, samples 9–10
are Chinese, sample 11 is Japanese, and samples 12–14 are
Yoruban. Correlations in genotypes performed at different
centers were high but were slightly higher for European descent
samples (average R2 ¼ 0.985) versus Chinese (average R2 ¼
0.958), Japanese (average R2 ¼ 0.961) or Yorubans (average
R2 ¼ 0.975). Supplementary Figure S1 compares the imputa-
tion accuracy of the OncoArray to several other arrays.

Discussion
Comparison with other large-scale genotyping efforts

The OncoArray is a scientific community-derived effort from
many worldwide investigators to understand common causes
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Figure 2.

Failure rates (<95% of SNPs called) for
211,594 samples genotyped by CIDR across
multiple tissue types. The overall failure
rate was 2.97%. All tumor samples were
prepared from formalin-fixed paraffin
embedded ovarian cancers.
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of cancer susceptibility and progression. The array that was
configured balanced several needs. First, each of the contrib-
uting groups had specific interest in fine-mapping and valida-
tion of previously suggested loci. This element of the OncoAr-
ray is similar to prior large-scale consortia such as the Meta-
bochip (51) and the Immunochip (52), which are highly
targeted arrays. Balanced against the fine-mapping element,
we also allocated about 50% of the array to permit further
discovery of novel variants. The array balances the needs for
new discovery with validation and fine-mapping; it is unlike
prior arrays such as the Metabochip or Immunochip which did
not include a GWAS array backbone. More generic platforms
such as the Biobank array can be applied for a broad range of
diseases but did not include content specific for known cancer
loci. The OncoArray, thus, has broad value for studying cancer
or related conditions. In addition, the platform allows addi-
tional content to be added so that other scientists or consortia
such as Gliogene or Pancan could add content specific to their
cancer types with minimal additional cost.

Impact of findings on prevention and treatment
We expect the discovery of novel genetic risk factors for cancer

to provide insight into the genetic architecture of cancer and help
elucidate its underlying biology. Providing amore comprehensive
list of loci strongly associated with cancer susceptibility will
greatly increase our knowledge of the pathophysiology of early
stages in cancer development.

The clinical value of genetic testing for SNPs was questioned
by some commentators because individual variants have lim-
ited power to discriminate cancer risk (53, 54). However,
modeling studies show analysis with multiple variants provides
discrimination in risk stratification sufficient to improve the
efficiency of screening (55), as borne out by recent studies. For
example, Pashayan and colleagues (56) showed that if prostate
cancer screening were offered to men with a 10-year absolute
risk of greater than 2% then risk stratification based on age and
a 31-SNP polygenic risk score would result in 16% fewer men

being eligible for screening than risk stratification based on age
alone, but only 3% fewer cases would be detected (56). So and
colleagues (57) showed that a polygenic risk model allows
more precise enrollment of women according to age reducing
the cost and burden of mammography. Given the expense and
potential harms associated with prevention and early diagnosis
(e.g., overdiagnosis and false positive findings) identifying
those at highest risk might have important public health
implications. These examples demonstrate the potential of
genetic findings (58, 59) to impact public health and clinical
care through the next several decades (60).

Gene–environment interactions
Several environmental and lifestyle risk factors, many of

which are modifiable, such as obesity, physical activity, non-
steroidal anti-inflammatory drug (NSAID) use, hormone use,
diet, smoking, and alcohol have been associated with various
cancers. To fully understand the impact on the etiology of
cancer, it is important to examine whether the genetic factors
modify the effect of environmental factors. Recently, there has
been extensive methodologic and applied work that provides a
strong rationale for examining gene–environment interactions
(GxE) interactions (8, 10–13, 61–65). The development of
statistical methods for genome-wide GxE with increased power
(66, 67) has led to detection of genetic variants whose effects
are modified by environmental factors; and identification of
variants that would have been missed through searches of
marginal effects alone. As genetic profiles are fixed, modifying
environmental exposures to alter deleterious effects of alleles
remains the most viable preventive strategy. Importantly, even
in the absence of GxE on the multiplicative scale, the absolute
reduction in risk due to a change to a lower risk lifestyle is
greater in those at higher genetic risk, making the development
of tools to predict genetic risk a critical component of advice on
lifestyle risks. In addition, the application of large-scale genetic
testing of the same platform on a very large number of indi-
viduals permits an unprecedented opportunity for studying the
impact that epistasis, interaction among loci, has upon risk for
cancer development.

Functional characterization of risk loci
Perhaps the greatest challenge facing large collaborative geno-

typing projects such as the OncoArray is to understand of the
functional mechanisms underlying disease development at each
susceptibility locus. The pace of discovery of genetic risk associa-
tions for cancer and other traits and diseases continues to accel-
erate, creating an increasing bottleneck between discovery and
functional validation. The basic tenets of functional characteri-
zation (68), proving causality for risk variants and the genes they
regulate, have been described for a tiny fraction of risk associa-
tions identified by GWAS (20, 69). This is partly due to our
rudimentary knowledge of the noncoding genome and the effects
of genetic variation on gene regulation. Integration of GWAS SNP
data with methylome data has identified methylation-quantitative
trait loci (meQTL) showing that inherited genetic variation may
affect carcinogenesis by regulating the human methylome (70,
71). The ENCODE (encyclopedia of DNA elements) consortium
has cataloged genome-wide regulatory elements for many, but
by no means all human tissues (72). Enhancers are often cell
type–specific and drive the spatial and temporal diversity of gene
expression in and across different cell types (73). One of themain
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Figure 3.

Correlation between replicate HapMap samples genotyped at Cambridge versus
the Center for Inherited Disease Research. Samples 1–8 are of European
origin while samples 9–14 are Asian or African. There are multiple replicates of
samples 1, 4, 5, 6, and 8. Samples 1–8 are European, 9–10 are Chinese,
sample 11 is Japanese, and samples 12–14 are Yoruban.
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challenges will therefore be to define the regulatory landscape for
the relevant cell type for each trait-associated locus, followed by
integration with genetic fine-mapping data to identify the most
likely regulatory targets.

The ability to test the function of specific risk alleles has been
enhanced by recent developments in genome editing, a powerful
and highly efficient methodology for introducing DNA sequence
alterations in human cells. Engineered nucleases (e.g., the
CRISPR-Cas9 system)with customizable cleavage specificities can
be used to introduce induce precise DNA base substitutions at the
site of risk SNPs. The molecular and phenotypic effects of the
different alleles of each risk SNP can then be evaluated in vitroor in
vivo. The success of genome editing has been recently demon-
strated for GWAS risk variants associated with fetal hemoglobin
and prostate cancer (69, 74).

Complementary to genome editing for proving causality of risk
SNPs is expression quantitative trait locus (eQTL) analysis to
identify the likely target susceptibility gene (75, 76). eQTL anal-
yses can interrogate both near and distant regulatory associations
between risk genotypes and gene expression on the same chromos
"ome (cis-) or across chromosomes (trans-). The role of these
genes in neoplastic development can then be evaluated in exper-
imental models of disease (77). Many groups have applied this
concept to identify transcript expression correlated with trait-
associated SNPs (78–80). For example, GAME-ON investigators
have successfully used eQTL analysis to identify susceptibility
genes at several breast, prostate, and ovarian cancer loci, and
confirmed the significance of these genes through their functional
analysis in disease models (42, 81, 82).
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