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Abstract

Background: Circular RNAs are a class of endogenous RNAs with various functions in eukaryotic cells. Worthy

of note, circular RNAs play a critical role in cancer. Currently, nothing is known about their role in head and

neck squamous cell carcinoma (HNSCC). The identification of circular RNAs in HNSCC might become useful

for diagnostic and therapeutic strategies in HNSCC.

Results: Using samples from 115 HNSCC patients, we find that circPVT1 is over-expressed in tumors compared to

matched non-tumoral tissues, with particular enrichment in patients with TP53 mutations. circPVT1 up- and

down-regulation determine, respectively, an increase and a reduction of the malignant phenotype in HNSCC cell

lines. We show that circPVT1 expression is transcriptionally enhanced by the mut-p53/YAP/TEAD complex.

circPVT1 acts as an oncogene modulating the expression of miR-497-5p and genes involved in the control of cell

proliferation.

Conclusions: This study shows the oncogenic role of circPVT1 in HNSCC, extending current knowledge about

the role of circular RNAs in cancer.
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Background

Circular RNAs (circRNAs) are a class of endogenous

RNAs that have been known for more than a decade [1].

Original hypotheses on circRNAs ascribed them the role

of plant viroids [2] and Hepatitis delta virus molecules [3]

or considered them the result of transcriptional noise [4].

More recently, circRNAs have emerged for their potential

functions in the regulation of gene expression [5].

CircRNAs are mostly generated from coding or noncod-

ing exons, but they can also derive from intronic, anti-

sense, 5′ or 3′ untranslated, and intergenic genomic

regions [6]. Very high and conserved circRNA expression

is typically found in neural tissues [7], muscle, and some

hematopoietic cells, for hundreds of circRNAs [8, 9].

CircRNAs comprised of exonic sequences are produced

by a poorly characterized mechanism called “back-spli-

cing”, where a downstream 5′ splice site is joined to an

upstream 3′ splice site, involving single or multiple exons

[5, 10–14]. Due to lack of accessible ends, circRNAs are

resistant to exonucleases and, as a result, they are more

stable than linear RNA isoforms. Despite advancements in

the study of circRNAs, their function in eukaryotes is not

clear. According to the recent literature, they may regulate

alternative splicing [10, 14], bind and sequester RNA-

binding proteins and ribonucleoprotein complexes [6, 15],

be translated, bind in trans to other RNA sequences [5],

or regulate miRNA expression [6, 15].

Of particular interest is the recently discovered role of

circRNAs in cancer [16–18]. In the same line, our work
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investigates the role of a human circRNA, circPVT1, in

head and neck squamous cell carcinoma (HNSCC).

CircPVT1 was first identified as circ6 by Memczak et al.

[6] and then named circPVT1 after its host gene PVT1

in subsequent work [19, 20]. The PVT1 gene is fre-

quently up-regulated in many types of cancers, including

HNSCC [21–25]. The circPVT1 locus is embedded in

the long non-coding RNA PVT1 and it originates from

exon 2 of the PVT1 gene (human genome GRch38/

hg38).

HNSCC is the sixth leading cancer by incidence

worldwide and the eighth most common cause of cancer

death [26, 27]. Although in the past two decades new

surgical and medical treatments have improved the qual-

ity of life of patients [28–30], the 5-year survival rate is

achieved by only 40–50% of patients [26].

We started our study investigating the oncogenic role

of circPVT1 in HNSCC using a robust collection of hu-

man tissue samples. circPVT1 was found significantly

up-regulated in tumors compared with matched non-

tumoral tissues. More importantly, we have discovered

that circPVT1 expression was enriched in tumors carry-

ing mutant p53 proteins (mut-p53). Genomic data have

shown that p53 is the most frequent mutated gene in

HNSCC; indeed it is mutated in up to 85% of HNSCC

cases and these involve mainly exons 5–8 [31–34]. We

recently reported that mut-p53 cooperates with the tran-

scriptional co-factor YAP (Yes-Associated Protein) in

breast cancer cell lines [35]. YAP as an oncogene acts as

an effector of the Hippo pathway, playing a critical role

in the initiation and progression of several human can-

cers, including HNSCC [36–39]. YAP and mut-p53 pro-

teins are able to physically interact and share a common

set of transcriptional programs in cancer [35]. In our

study, we found that the circPVT1 was regulated

through the mut-p53/YAP/TEAD complex via its regula-

tory region. Moreover, our data show that circPVT1 was

able to regulate its own expression through binding

YAP. To date, the role of circRNAs in HNSCC is unex-

plored. Collectively, these findings mirror a novel alter-

ation in the circRNA network that might contribute to

the fine deciphering of the tumorigenesis occurring in

mut-p53 HNSSC patients.

Results

circPVT1 is up-regulated in HNSCC patients with TP53

mutations

Previous studies have shown that PVT1 resides in the well-

known cancer risk region 8q24 and is amplified in HNSCC

[21–25]. To analyze in detail the PVT1 amplification, we

used the HNSCC cancer data set provided by The Cancer

Genome Atlas (TCGA) [33].

At first, we considered individually the chromosome in-

tervals representing the PVT1 gene. We initially compared

non-tumoral samples versus tumor samples (Fig. 1a). We

then evaluated non-tumoral samples with either mut-p53

or wt-p53 tumor samples (Fig. 1b). Next, we focused our

analysis on the chromosome interval containing circPVT1.

circPVT1 was shown to be up-regulated in tumor sam-

ples (Fig. 1a, c). Interestingly, circPVT1 was significantly

up-regulated in tumors carrying TP53 mutations but not

in those with intact TP53 (Fig. 1b, d). This might suggest

that the presence of the mut-p53 protein accounts for

circPVT1 up-regulation observed in HNSSC patients. To

further investigate the specificity of the association be-

tween TP53 mutations and circPVT1 amplification we an-

alyzed the PVT1 amplification in relation to the FAT1 and

CDKN2A mutations, the second (22.46%) and the third

(22.07%) most frequent gene mutated in HNSCC patients

according to TCGA. Focusing on the PVT1 chromosome

interval representing circPVT1, we did not observe any

difference between tumor samples with either FAT1 or

CDKN2A mutations and those with an intact FAT1 or

CDKN2A gene, which were both up-regulated in com-

parison to non-tumoral samples (Additional file 1: Figure

S1a, b). This might further support that the circPVT1

amplification observed in HNSCC with TP53 mutations is

strictly connected to the mut-p53 status and is not gener-

ally related to any cancer mutations.

To further validate our bioinformatic approach we se-

lected two other circRNAs deregulated in cancer, SMG7

and RPN2 [18]. Using the HNSCC cancer data, we

found both circRNAs were up-regulated in the tumors

compared to non-tumoral samples (Fig. 1e, g). Unlike

circPVT1, we did not observe any specific up-regulation

of SMG7 and RPN2 when comparing TP53 mutated ver-

sus wild-type p53 tumors (Fig. 1f, h). This indicated that

TP53 mutations did not affect the deregulation of both

SMG7 and RPN2 in HNSCC.

Next, the circPVT1 expression profile was assayed by

real-time PCR (RT-qPCR) with divergent primers in 115

HNSCC samples and their non-tumoral counterparts

[40]. Since the circRNA mechanisms of regulation are

not entirely understood, we decided to normalize

circPVT1 expression to the geometric mean of three dif-

ferent housekeeping genes as indicated in “Methods”.

This approach was taken to avoid biasing our findings.

circPVT1 expression was well detected in all samples

used. Fig. 2a shows a statistically significant up-

regulation of circPVT1 in tumor samples compared to

matched non-tumoral tissues.

In previous work [40], we reported the incidence of

p53 mutations in HNSCC patients used for this study,

determined by direct sequencing of p53 exons 2 through

11. Of the original 121 patients used in [40], we studied

here 114, adding one patient not included in [40], whose

clinical characteristics are shown in Additional file 2:

Table S1. In this work, 67 out of the 115 patient samples
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used (58%) exhibited single or multiple p53 mutations in

the tumor tissue [40].

In order to determine whether the up-regulation of

circPVT1 correlated with the TP53 mutations, we com-

pared the circPVT1 expression of mut-p53 and wild-

type tumoral samples. As shown in Fig. 2b, there was a

statistically significant up-regulation of circPVT1 in

mut-p53 compared to wild-type samples.

Furthermore, we compared circPVT1 expression be-

tween tumoral and non-tumoral samples, considering

Fig. 1 circPVT1, SMG7, and RPN2 expression in the HNSCC cancer data set. a–d Bioinformatic analysis of PVT1 and circPVT1 amplification using

the HNSCC cancer data set provided by The Cancer Genome Atlas. a Chromosomal intervals of the PVT1 gene in tumor and non-tumoral samples.

The peak related to circPVT1 is indicated by an oval (Wilcoxon rank sum test, p < 0.05). b Chromosomal intervals of the PVT1 gene in tumor samples

(divided into mut-p53 and wt-p53) and in non-tumoral samples. The peak related to circPVT1 is indicated by an oval (Wilcoxon rank sum test, p < 0.05).

c Chromosome interval containing circPVT1 in tumor and non-tumoral samples. d Chromosome interval containing circPVT1 in tumor (divided into

mut-p53 and wt-p53) and non-tumoral samples. e Chromosome interval containing SMG7 in tumor and non-tumoral samples. f Chromosome interval

containing SMG7 in tumor (divided into mut-p53 and wt-p53) and non-tumoral samples. g Chromosome interval containing RPN2 in tumor and non-

tumoral samples. h Chromosome interval containing RPN2 in tumor (divided into mut-p53 and wt-p53) and non-tumoral samples. MUT p53 mutation,

N non-tumoral, T tumoral, WT wild type
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separately the mut-p53 and wild-type patients. We found

that circPVT1 was significantly up-regulated only in

patients with TP53 mutations, confirming the correl-

ation between mut-p53 and circPVT1 in HNSCC

(Fig. 2c, d).

The identity of circPVT1 was also analyzed by Sanger-

sequencing following RT-qPCR reactions in a subgroup

of patients. We selected 20 tumoral samples, including

10 wild-type and 10 mut-p53 samples. For all patients

selected, we confirmed the identity of circPVT1 as

shown in Additional file 1: Supplementary results 1.

The list of patients ordered on the basis of circPVT1

expression and p53 status is included in Additional

file 2: Table S2.

Starting from the demographic and clinical character-

istics of the patients, we used a univariate linear regres-

sion analysis to test the association of circPVT1 with

prognostically relevant risk factors. Considering tumor

samples, we observed a significant correlation between

circPVT1 and mut-p53 (Additional file 2: Table S3). This

Fig. 2 circPVT1 expression in HNSCC patients and circPVT1’s role in overall survival. a–d circPVT1 expression analysis detected by RT-qPCR.

a circPVT1 expression analysis in tumoral samples matched with their non-tumoral counterparts. b circPVT1 expression analysis in mut-p53

compared to wild-type samples. c circPVT1 expression analysis in mutant samples divided into tumoral samples matched with their non-

tumoral counterparts. d circPVT1 expression analysis in wild-type samples divided into tumoral samples matched with their non-tumoral

counterparts. meanNorm mean normalizers, MUT p53 mutation, N non-tumoral, T tumoral, WT wild type. e Kaplan-Meir analysis representing the correlation

between circPVT1 expression level and overall survival (OS) in our collection of HNSCC samples. f Kaplan-Meir analysis representing the correlation between

circPVT1 expression level and OS in the HNSCC cancer data set. Multivariable analysis is shown at the bottom. HR hazard ratio
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result correlates with the circPVT1 up-regulation seen in

patients with TP53 mutations, as shown above. Among

other factors analyzed, we also found a correlation be-

tween circPVT1 and alcohol use, with a clear tendency to-

wards statistical significance (Additional file 2: Table S3).

We then evaluated the impact of circPVT1 on the out-

comes of patients. Using the HNSCC cancer data set

and our collection of HNSCC samples, we determined

that patients with high circPVT1 levels had a poorer

overall survival in comparison to those exhibiting low

circPVT1 levels (Fig. 2e, f ). Multivariable analysis con-

firmed that high circPVT1 levels were associated with

reduced overall survival and that such association was

dependent on TP53 mutations in both sample popula-

tions (Fig. 2e, f ).

circPVT1 cellular localization in HNSCC cell lines

To assess the cellular localization of circPVT1 we per-

formed a nucleus/cytosol extraction. We found that

circPVT1 was enriched in the cytoplasmic fraction but it

was still present in the nucleus in both cell lines used,

CAL27 and Detroit 562 (Fig. 3a, b). The CAL27 cell line

is mutated for the p53 gene as a consequence of a mis-

sense mutation in codon 193 (mutp53A193T). The De-

troit 562 cell line is mutated for the p53 gene as a

consequence of a missense mutation in codon 175

(mutp53R175H). We estimated the approximate number

of circPVT1 molecules per cell to be 425 in the nucleus

and 2159 in the cytosol in the CAL27 cell line (Fig. 3c),

and 310 in the nucleus and 1696 in the cytosol in the

Detroit 562 cell line (Fig. 3d; details of the analysis are

shown in “Methods”). A typical feature of circRNAs is

their enrichment after treatment with the exonuclease

RNase R, which digests linear but not circular RNA. We

treated CAL27 and Detroit 562 cell lines with RNase R

and measured the circPVT1 expression level in compari-

son to the untreated samples. For both cell lines,

circPVT1 was highly enriched after the RNase R treat-

ment (Fig. 3e, f ). Collectively, these findings indicate that

the circPVT1 present in HNSCC cell lines fulfils essen-

tial features of circRNAs.

Modulation of mut-p53 expression affects circPVT1 but

not PVT1 expression

To investigate at a molecular level the relationship be-

tween circPVT1 and mut-p53 protein, we used four

HNSCC cell lines as an in vitro model, CAL27, Detroit

562, FaDu, and A253. We reduced the expression level

of mut-p53 by a specific siRNA (siRNAp53) in the

CAL27 cell line and observed the subsequent circPVT1

expression. To assess the specificity of the siRNA against

p53, we used a siRNA control (siRNAct) and analyzed

the p53 expression at different time points by RT-qPCR.

siRNAp53 decreased the p53 expression by about 90% at

24 and 48 h (Fig. 4a). Next, we analyzed the circPVT1 ex-

pression after down-regulation of p53. As shown in Fig. 4b,

we obtained a statistically significant down-regulation of

circPVT1 expression by about 60% at 24 h and 40% at

48 h. Finally, to confirm that circPVT1 functioned inde-

pendently of its host gene PVT1, we evaluated the PVT1

expression level after p53 down-regulation. We did not

observe any down-regulation of PVT1 (Fig. 4c), showing

that circPVT1 and mut-p53 are interconnected with each

other without PVT1 involvement. Moreover, we used two

additional siRNAs against p53, siRNAp53 3′ UTR and

siRNAp53 smart pool, to verify that the p53 down-

regulation affected the circPVT1 expression (Additional

file 1: Figure S2a). We obtained a statistically significant

down-regulation of circPVT1 expression at 24 and 48 h

with both siRNAs (Additional file 1: Figure S2b). Once

again, we did not observe any down-regulation of PVT1

expression (Additional file 1: Figure S2c).

We also investigated the existence of an inverse rela-

tionship between circPVT1 and mut-p53, i.e., whether

modified circPVT1 levels influence p53 expression. The

p53 protein level was not affected by circPVT1 down-

regulation, therefore excluding the inverse regulation

(Additional file 1: Figure S2d).

We also showed that the reduction of p53 affected

circPVT1 level in Detroit 562 cells. Again, siRNAp53,

siRNAp53 3′ UTR, and siRNAp53 smart pool signifi-

cantly reduced circPVT1 expression with no effect on

PVT1 expression (Additional file 1: Figure S2e–g). As

seen before, also in the Detroit 562 cell line, modified

circPVT1 levels had no influence on p53 expression

(data not shown).

A specific DNA binding consensus for mut-p53

protein has not been characterized so far. For this

reason, we focused first on possible post-

transcriptional regulation of mut-p53 on circPVT1,

investigating if mut-p53 was able to bind the mature

form of circPVT1. Using RNA immunoprecipitation

(RIP), we evaluated the circPVT1 level in CAL27 cells

after p53 immunoprecipitation using input and IgG as

controls. No circPVT1 signal was detected by RT-

qPCR after p53 immunoprecipitation, showing that

p53 did not influence circPVT1 expression through

direct binding (Additional file 1: Figure S2h).

Finally, to confirm the absence of p53 binding to

circPVT1, we co-expressed mut-p53 and circPVT1 in

H1299 cells, a p53-devoid human non-small cell lung

carcinoma cell line (p53 null). The two vectors express-

ing circPVT1 were generated according to the methods

described in [15, 41] (Additional file 1: Figure S2i).

After the co-expression of mut-p53 and circPVT1 in

H1299 cells (Additional file 1: Figure S2j-l) we

performed p53 immunoprecipitation (Additional file 1:

Figure S2m) and evaluated the circPVT1 level by
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RT-qPCR. The circPVT1 signal obtained was similar

to that of the housekeeping gene GAPDH, showing

the absence of direct binding of p53 to circPVT1

(Additional file 1: Figure S2n, o). Moreover, we mea-

sured the expression of four different intronic re-

gions upstream of circPVT1, retained in the RNA

population, putatively involved in its circularization

and indicated as circPVT1_UP1, circPVT1_UP2, cir-

cPVT1_UP3, and circPVT1_UP4. We did not observe

any significant signal, showing that p53 did not bind

these regions (Additional file 1: Figure S2p-s).

circPVT1 expression is regulated through the mut-p53/

YAP/TEAD complex on its own promoter

YAP and its paralogue TAZ (Tafazzin) are the major

downstream effectors of the Hippo pathway, and TEAD

family proteins (TEA Domain Family Member 1) mainly

mediate their biological functions [42–44]. In previous

work, we showed that YAP physically interacts with

mut-p53 proteins, enhancing their pro-proliferative tran-

scriptional activity [35]. In this role, YAP was shown to

have distinct functions from its paralog TAZ in relation

to the oncogenic pathway involved. In fact, YAP

Fig. 3 Characterization of circPVT1. a circPVT1 level was detected by RT-qPCR after nucleus/cytosol extraction in the CAL27 cell line. b circPVT1

level was detected by RT-qPCR after nucleus/cytosol extraction in the Detroit 562 cell line. c Number of circPVT1 molecules per cell in the CAL27

cell line. d Number of circPVT1 molecules per cell in the Detroit 562 cell line. e circPVT1 level was detected by RT-qPCR after treatment with the

exonuclease RNase R in the CAL27 cell line. f circPVT1 level was detected by RT-qPCR after treatment with the exonuclease RNase R in the Detroit

562 cell line. Data are shown as the mean of three replicates ± standard deviation (Student’s test; *p < 0.05; **p < 0.01; ***p < 0.001)
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Fig. 4 The down-regulation of mut-p53, YAP, TAZ, and TEAD affects circPVT1 but not PVT1 expression. a–g CAL27 cell line. a p53 mRNA level

was detected by RT-qPCR 24 and 48 h after transfection with siRNAp53 or siRNAct. b circPVT1 level was detected by RT-qPCR 24 and 48 h after

transfection with siRNAp53 or siRNAct. c PVT1 level was detected by RT-qPCR 24 and 48 h after transfection with siRNAp53 or siRNAct. d YAP

mRNA level was detected by RT-qPCR 48 h after transfection with siRNA-YAP or siRNAct. e TAZ mRNA level was detected by RT-qPCR 48 h after

transfection with siRNA-TAZ or siRNAct. f TEAD1 mRNA level was detected by RT-qPCR 48 h after transfection with siRNA-TEAD1-4 or in siRNAct. g circPVT1

and PVT1 levels were detected by RT-qPCR 48 h after transfection with siRNA-YAP, siRNA-TAZ, or siRNA-TEAD1-4. h–k A253 cell line. h p53 mRNA level was

detected by RT-qPCR 48 h after transfection. i YAP mRNA level was detected by RT-qPCR 48 h after transfection. j circPVT1 level was detected by RT-qPCR

48 h after transfection. k PVT1 level was detected by RT-qPCR 48 h after transfection. The transfections were performed using the siRNAs and the vectors

indicated in the graphs. Data are shown as mean of three replicates ± standard deviation (Student’s test; *p< 0.05; **p< 0.01; ***p< 0.001)
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depletion reduced the expression of cell cycle genes regu-

lated by mut-p53 [35], while TAZ depletion did not. Since

YAP has been shown to be an important co-factor of mut-

p53 in cancer, we investigated the impact of the down-

regulation of YAP and its partners, TAZ and the TEAD

family proteins, on the expression level of circPVT1 and

PVT1 (Fig. 4d–f; Additional file 1: Figure S3a–c).

YAP affected circPVT1 expression but not that of

PVT1, while TAZ and the TEAD family proteins affected

the expression of both circPVT1 and PVT1, in the CAL27

cell line (Fig. 4g). These data indicate that mut-p53 and

YAP specifically regulated circPVT1 while TAZ and

TEAD regulated both circPVT1 and its host gene PVT1.

To further verify the impact of YAP down-regulation

on circPVT1 expression, we used another siRNA against

YAP, siRNA-YAP2 (Additional file 1: Figure S3d). We

obtained a statistically significant down-regulation of

circPVT1 expression at 24 and 48 h, whereas no PVT1

down-regulation was observed (Additional file 1:

Figure S3e, f ).

Reduction of YAP using both siRNA-YAP and

siRNA-YAP2 (Additional file 1: Figure S3g) affected

circPVT1 expression also in the Detroit 562 head and

neck cell line with no effect on the PVT1 expression

level (Additional file 1: Figure S3h, i).

To assess whether mut-p53 and YAP finely regulate

the circPVT1 expression level, we performed a rescue

experiment in the A253 cell line, a human submandibu-

lar gland cell line (p53 null). After mut-p53 overexpres-

sion (mutp53R175H) in A253 cells, we observed an

increase in the circPVT1 level (Fig. 4h, j). On the con-

trary, circPVT1 expression was reduced as a conse-

quence of YAP down-regulation (Fig. 4i, j). As expected,

circPVT1 expression was restored to control levels when

YAP down-regulation was performed concomitantly

with mut-p53 over-expression (Fig. 4j). These data show

that mut-p53 and YAP worked together to regulate

circPVT1 expression levels. No modulation of the PVT1

expression level was observed under these experimental

conditions (Fig. 4k).

In order to understand if its own promoter or the

PVT1 promoter regulated circPVT1 expression, we

studied the intronic region upstream of the circPVT1

start site. In particular, we studied the region upstream

of exon 2, looking for TEAD consensus sequences, the

cognate DNA-binding partner of YAP. We found a

TEAD1 consensus binding sequence at −807 bp

(ggcatcccaggg; positive strand) and a TATA box binding

site at −1125 bp (gctttaaa; negative strand) from the

circPVT1 start site, indicating the presence of a putative

promoter region. We performed chromatin immunopre-

cipitation (ChIP) experiments on mut-p53 and TEAD1

in CAL27 cells to investigate whether they were able to

regulate circPVT1 expression. We used a region without

any TEAD1 consensus binding sequence upstream of

the putative circPVT1 promoter as negative control.

Mut-p53 and TEAD1 were recruited at the circPVT1

promoter containing the TEAD1 binding consensus

sequence (Fig. 5a, b). Next, we investigated how YAP is

involved in circPVT1 regulation at the transcriptional

level by performing a ChIP assay of YAP in CAL27 cells

and studying the same site of the circPVT1 promoter

where mut-p53 and TEAD1 showed enrichment. We

also carried out ChIP of RNA polymerase II (Pol II) to

confirm that active transcription was occurring in the

selected region. We found that YAP bound the

circPVT1 promoter at a site containing the TEAD bind-

ing sequence, concurrently with the recruitment of Pol

II (Fig. 4c, d). Additional proof that the circPVT1

promoter region is transcriptionally active was the en-

richment of Pol II phosphorylated on Ser-5 of the

carboxy-terminal-domain (CTD; p-Pol II). This modifi-

cation is necessary to release Pol II from the initiation

complex and allow it to start elongation. In this experi-

ment, we used three negative controls, indicated as

negative controls 1, 2, and 3. All the negative controls

were regions without any TEAD1 consensus binding se-

quence and were localized upstream of the putative

circPVT1 promoter. p-Pol II was strongly recruited at

the circPVT1 promoter and its enrichment was higher

than that of the non-phosphorylated Pol II (Fig. 5e–h).

These data suggested that the mut-p53/YAP/TEAD

complex regulated circPVT1 expression at the transcrip-

tional level by residing on the circRNA promoter. We

identified the PVT1 promoter region containing a TATA

box binding site at −821 bp from the PVT1 start site

(tgcataaacc; negative strand) and three TEAD1 consen-

sus binding sequences at −377 bp (agctttccacgg; negative

strand),−445 bp (cactttcctgc, negative strand), and

−456 bp (cgccttcctcag; positive strand) from the PVT1

start site, upstream of exon 1. We performed a ChIP ex-

periment in order to analyze the role played by TEAD1,

mut-p53, and YAP on the PVT1 promoter. We used as

negative control a region without any TEAD1 consensus

binding sequence, upstream of the putative PVT1 pro-

moter. All the members of the mut-p53/YAP/TEAD

complex, TEAD1 (Fig. 5i, j), p53 (Fig. 5i, j), YAP (Fig. 5 k,

l ), as well as Pol II (Fig. 5 k, l ), were recruited at the

PVT1 promoter region containing the TEAD1 binding

consensus sequence.

In order to thoroughly determine how circPVT1 is

transcriptionally regulated, we used the metabolic tag-

ging of newly transcribed RNAs by 4-thiouridine

(4sU) after 5,6-dichlorobenzimidazole 1-β-D-ribofura-

noside (DRB) treatment to monitor the nascent cir-

cRNA following the depletion of mut-p53, YAP, and

TEAD1 proteins (Fig. 5m). We found that reduced

expression of YAP, mut-p53, and TEAD1 decreased
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nascent circPVT1 expression when compared to con-

trol cells (Fig. 5n). The concomitant analysis of PVT1

expression confirmed that TEAD1 impacted on ex-

pression of both circPVT1 and its host gene PVT1,

while a slight effect was observed on PVT1 transcrip-

tion upon depletion of YAP and mut-p53 protein

expression (Fig. 5o).

In aggregate, these data show that the newly identified

circPVT1 promoter is a transcriptionally active region,

distinct from the promoter of its host gene PVT1, and

regulated by the mut-p53/YAP/TEAD complex. The

PVT1 promoter also exhibited transcriptional control of

circPVT1 expression.

circPVT1 autoregulates its own expression via YAP

binding

To understand if YAP regulates circPVT1 at the post-

transcriptional level, we performed a RIP assay to verify

the direct binding of the YAP protein to circPVT1. To

this end, ectopic expression of YAP and circPVT1 was

performed in CAL27 cells. We also tested the binding of

YAP to the four different intronic regions localized

upstream of the circPVT1 transcription start site, indi-

cated as circPVT1_UP1, circPVT1_UP2, circPVT1_UP3,

and circPVT1_UP4. Firstly, we confirmed the overex-

pression of YAP and circPVT1 (Additional file 1: Figure

S4a, b) as well as the absence of modulation for PVT1

Fig. 5 The mut-p53/YAP/TEAD complex regulates circPVT1 expression. a–h Analysis of the circPVT1 promoter. a, b ChIP analysis of p53 and TEAD1 in the

CAL27 cell line. c, d ChIP analysis of YAP and Pol II in the CAL27 cell line. e–h ChIP analysis of Pol II and p-Pol II in the CAL27 cell line. i–l Analysis of the PVT1

promoter. i, j ChIP analysis of p53 and TEAD1 in the CAL27 cell line. k, l ChIP analysis of YAP and Pol II in the CAL27 cell line.m–o DRB-4sU assay.m p53,

YAP, and TEAD1 proteins were detected by western blot after transfection of the indicated siRNA. GAPDH was used as internal loading control. n Nascent

circPVT1 expression level was detected by RT-qPCR. o Nascent PVT1 expression level was detected by RT-qPCR. Data are shown as mean of three replicates

± standard deviation (Student’s test; *p< 0.05; **p< 0.01; ***p< 0.001)
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(Additional file 1: Figure S4c). The immunoprecipitation

of YAP after ectopic expression of YAP and circPVT1

was confirmed as shown in Additional file 1: Figure S4d.

For controls we used CAL27 cells transfected with

pcDNA3 vector. Our data show that YAP, either at the

endogenous level or ectopically expressed together with

circPVT1, was able to bind to circPVT1 (Fig. 6a, b) and

to two of the four regions up-stream of circPVT1, in

particular the two regions closest to the circPVT1 tran-

scription start site, circPVT1_UP1 and circPVT1_UP2

(Fig. 6c, d). YAP did not bind to the other two regions

(circPVT1_UP3 and circPVT1_UP4) included in the

analysis (Fig. 6e, f ).

To dissect further the role of YAP in the regulation of

circPVT1 at the post-transcriptional level, and the role

of mut-p53 in this regulation, we performed a RIP assay

after the transfection of siRNA-YAP and siRNAp53 sep-

arately, in CAL27 cells. The down-regulation of YAP

and mut-p53 expression was confirmed as shown in

Additional file 1: Figure S4e–g. The immunoprecipita-

tion of YAP after the down-regulation of YAP and mut-

p53 was confirmed as shown in Additional file 1: Figure

S4h. Upon YAP down-regulation the binding to

circPVT1 was lost (Fig. 6g, h). Moreover, YAP did not

bind circPVT1 also as a consequence of mut-p53 down-

regulation (Fig. 6g, h). These results highlight the role of

mut-p53 protein in the stabilization of the YAP/

circPVT1 complex. We also tested the binding of YAP

to the four intronic regions, circPVT1_UP1, cir-

cPVT1_UP2, circPVT1_UP3, and circPVT1_UP4. We

found that the two closest regions to the circPVT1 tran-

scription start site, circPVT1_UP1 and circPVT1_UP2,

were involved in YAP binding and were affected by YAP

down-regulation (Fig. 6i, j). Although to a lesser extent

than that of circPVT1, these regions were also affected

by p53 down-regulation (Fig. 6i, j). The other two

regions included in the analysis, circPVT1_UP3 and cir-

cPVT1_UP4, were not affected by YAP or p53 down-

regulation (Fig. 6k, l).

RIP assays also revealed that the nuclear co-factor

YAP bound to the mature circPVT1 and that mut-p53

had a role in the stabilization of the YAP/circPVT1 com-

plex. These data show the presence of an operating

circPVT1 in the nucleus, suggesting the capability to

regulate its own expression.

To test this hypothesis, we first performed ChIP assay

experiments for YAP and Pol II in CAL 27 cells after

circPVT1 over-expression using the pcDNA3-circPVT1-

a vector. We found that both YAP and Pol II were re-

cruited to the endogenous genomic site containing the

TEAD binding sequence described above, and this

recruitment was higher in the circPVT1 over-expressing

condition compared to the control (Fig. 7a, b). Next, we

performed the DRB-4sU assay in circPVT1 over-

expression conditions. As a consequence of circPVT1

overexpression (Fig. 7c), we observed an increase in nas-

cent circPVT1 production (Fig. 7d). Interestingly, we ob-

served in the same experiment a reduction of the

nascent PVT1 (Fig. 7e). This effect showed that, in

circPVT1 over-expression conditions, the transcriptional

machinery was preferentially enrolled in circPVT1 pro-

duction rather than in PVT1 production. These data,

added to the results of the ChIP assay after circPVT1

over-expression, confirm that circPVT1 might act within

a positive self-regulatory loop, controlling and enhancing

its own expression in the nucleus (Fig. 7f ).

circPVT1 modulation affects the oncogenic phenotype of

HNSCC cell lines

To understand if circPVT1 down-regulation impacts the

cancer cell phenotype we used two different siRNAs against

circPVT1, siRNAcircPVT1 and siRNAb-circPVT1. Both

siRNAs included a part of the junctional sequence of the

circular RNA, and both were able to reduce significantly

circPVT1 expression in CAL27 cells (Fig. 8a), with no influ-

ence on PVT1 expression (Additional file 1: Figure S5a). To

assess the specificity of the siRNAs against circPVT1, we

used a control siRNA (siRNAct), which did not have hom-

ology to any human gene. Compared to the control, siR-

NAcircPVT1 and siRNAb-circPVT1 decreased circPVT1

expression by about 80 and 50%, respectively (Fig. 8a).

We further demonstrated the specificity of the siRNAs

against circPVT1 using four mismatched control siR-

NAs, generated according to the methods described in

[45]. Two mismatched control siRNAs were designed

from the sequence of siRNAcircPVT1, designated siR-

NAct1 and siRNAct2; the other two mismatched control

siRNAs were designed from the sequence of siRNAb-

circPVT1, designated siRNAb-ct1 and siRNAb-ct2. We

tested these siRNAs in CAL27 and Detroit 562 cells. siR-

NAct1 and siRNAct2 had no effect on the circPVT1

expression level in comparison to siRNAcircPVT1,

which had an effect in both CAL27 and Detroit 562

cells (Additional file 1: Figure S5b, c). Similar results

were obtained for siRNAb-ct1 and siRNAb-ct2 when

these siRNAs were compared to siRNAb-circPVT1

(Additional file 1: Figure S5d, e). We conclude that

the mismatched control siRNAs behaved similarly to

siRNAct in CAL27 and Detroit 562 cell lines.

Down-regulation of circPVT1 significantly reduced the

proliferation rate of CAL27 cells, determined by cell

counting at different time points (Fig. 8b; Additional file

1: Figure S6a). To better understand the regulation of

CAL27 cell proliferation by circPVT1, we examined the

cell cycle profile. As shown in Fig. 8c and in Additional

file 1: Figure S6b, down-regulation of circPVT1 expres-

sion led to a significant decrease in the cell population

in S phase and a significant increase in the cell
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population in G2 phase. An inhibitory effect on prolifera-

tion after circPVT1 down-regulation was also observed in

colony-forming assay (Fig. 8d; Additional file 1: Figure S6c).

Interestingly, circPVT1 down-regulation did not affect the

migration of CAL27 cells (Fig. 8e; Additional file 1:

Figure S6d). To better investigate the specific effect

Fig. 6 YAP binds circPVT1. a–f RIP analysis after the transfection of YAP + pcDNA-circPVT1a in the CAL27 cell line. g–l RIP analysis after the

transfection of siRNAp53 or siRNA-YAP in the CAL27 cell line. GAPDH, circPVT1, circPVT1_UP1, circPVT1_UP2, circPVT1_UP3, and circPVT1_UP4

levels were analyzed by RT-qPCR. Normalization was performed to the amount of input RNA. Data are shown as mean of three replicates ±

standard deviation (Student’s test; *p < 0.05; **p < 0.01; ***p < 0.001)
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of circPVT1 in determining the phenotype of CAL27

cells, we reduced the level of its host gene PVT1

using a siRNA specific for the long noncoding RNA.

siRNA-PVT1 decreased PVT1 expression by about

65% (Additional file 1: Figure S6e) at 48 h after trans-

fection, but it did not affect the circPVT1 expression

level (Additional file 1: Figure S6f ). The siRNA-PVT1

effect was compared to the siRNAct control used

above. Down-regulation of PVT1 did not impact on

the proliferation rate of CAL27 cells, determined by

cell counting and cell cycle analysis (Additional file 1:

Figure S6g, h). Moreover, we did not obtain any sta-

tistically significant difference between siRNA-PVT1

and siRNAct with regard to the ability of CAL27 cells

to form colonies (Additional file 1: Figure S6i). Finally,

we evaluated the CAL27 cell line behavior in a migra-

tion assay upon down-regulation of PVT1. No specific

role of PVT1 was observed in the migration of

CAL27 cells (Additional file 1: Figure S6j).

The reduction of circPVT1 expression using both

siRNA-circPVT1 and siRNAb-circPVT1 was also per-

formed in Detroit 562 cells (Fig. 8a). The two siRNAs

decreased circPVT1 expression by about 70 and 90%,

respectively (Fig. 8a), compared to siRNAct. As seen

in CAL27, the down-regulation of circPVT1 in De-

troit 562 cells caused a significant reduction in their

Fig. 7 circPVT1 regulates its own expression binding the mut-p53/YAP/TEAD complex. a, b ChIP analysis of YAP and Pol II in the CAL27 cell line

after the transfection of pcDNA3-circPVT1-a and pcDNA3. c–e DRB-4sU assay. c circPVT1 level was detected by RT-qPCR in pcDNA3-circPVT1-a

and pcDNA3 transfected cells. d Nascent circPVT1 expression level was detected by RT-qPCR. e Nascent PVT1 expression level was detected by

RT-qPCR. f The transcriptional mut-p53/YAP-circPVT1/TEAD complex bound to the circPVT1 promoter. Data are shown as mean of three replicates

± standard deviation (Student’s test; *p < 0.05; **p < 0.01; ***p < 0.001)
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ability to form colonies compared to the control

(Fig. 8f ).

The phenotype following the down-regulation of

circPVT1 was also observed in a human pharynx squa-

mous cell carcinoma cell line (FaDu). The FaDu cell line

has one missense mutation in codon 248 of exon 7

(mutp53R248L) and an additional heterozygous splicing

site mutation of intron 6 with a frameshift and a prema-

ture stop codon, resulting in a truncated variant of p53.

siRNA-circPVT1 and siRNAb-circPVT1 decreased

circPVT1 expression in FaDu cells by about 70 and

90%, respectively, compared to siRNAct (Additional

file 1: Figure S6k). After the down-regulation of

circPVT1 in FaDu cells, their ability to form colonies

Fig. 8 CAL27 and Detroit 562 phenotypes after down-regulation of circPVT1. a circPVT1 level was detected by RT-qPCR in siRNAcircPVT1, siRNAb-

circPVT1, and siRNAct transfected cells. b–e CAL27 cell line. b Cell proliferation was determined by cell counting 24, 48, and 72 h after transfection

in siRNAcircPVT1 and siRNAct transfected cells. c Propidium iodide flow cytometric assay to analyze the cell cycle in siRNAcircPVT1 and siRNAct

transfected cells. d Colony formation assay in siRNAcircPVT1 and siRNAct transfected cells. Top: representative colony-forming assay.

Bottom: quantification of three independent experiments by colony counting. e Migration assay in siRNAcircPVT1 and siRNAct transfected

cells. f–i Detroit 562 cell line. f Colony formation assay in siRNAcircPVT1, siRNAb-circPVT1, and siRNAct transfected cells. Top: representative

colony-forming assay. Bottom: quantification of three independent experiments by colony counting. g Viability of siRNAcircPVT1 and siR-

NAct transfected cells. h Viability after cisplatin (CDDP) treatment in siRNAcircPVT1 and siRNAct transfected cells. i The EC50 and the LD50

were determined using the Compusyn Software [58]. CDDP cisplatin, EC50 half maximum effective concentration; LC50 half lethal concentration. Data

are shown as mean of three replicates ± standard deviation (Student’s test; *p < 0.05; **p < 0.01; ***p < 0.001)
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was significantly reduced in comparison to the con-

trol (Additional file 1: Figure S6l).

Since cisplatin (CDDP) is one of the standard treat-

ments for HNSCC patients, we assessed the potential

positive effect of the down-regulation of circPVT1

expression on cisplatin-induced killing effects, using De-

troit 562 cells. We found that circPVT1 down-regulation

rendered Detroit 562 cells more prone to CDDP-

induced killing effects (Fig. 8g, h). Both the half max-

imum effective concentration (EC50) and the half lethal

concentration (LC50) were significantly reduced (Fig. 8i).

Finally, we studied the effect of circPVT1 over-

expression on the CAL27 cell phenotype using the two

vectors pcDNA3-circPVT1-a and pcDNA3-circPVT1-b

(Additional file 1: Figure S7). circPVT1 over-expression

with both vectors enhanced the proliferation rate of the

CAL27 cells, determined by cell counting at different

time points (Additional file 1: Figure S7a). Particularly,

the vector pcDNA3-circPVT1-a had a stronger effect on

CAL27 proliferation as confirmed by cell cycle analysis

(Additional file 1: Figure S7a, b). It is also worth men-

tioning that circPVT1 over-expression by both vectors

enhanced the capacity of CAL27 cells to form colonies

(Additional file 1: Figure S7c).

mut-p53 down-regulation reduces the proliferation of

HNSCC cell lines

To investigate in more detail the relationship between

mut-p53 and circPVT1, we evaluated whether the CAL27

phenotype after mut-p53 down-regulation followed the

phenotype observed after circPVT1 down-regulation.

Down-regulation of p53 significantly decreased the prolif-

eration rate of CAL27 cells, determined by cell counting

at different time points (Additional file 1: Figure S8a). To

elucidate the details of the cell proliferation reduction, we

performed cell cycle analysis, observing a significant

increase in the cell population in G1 phase and a decrease

in the cell population in S and G2 phases (Additional

file 1: Figure S8b). These results indicate that mut-p53

down-regulation suppresses cell growth, promoting

the block in G1 phase of the cell cycle. As for

circPVT1, we observed a reduction in the colony

number in a colony-forming assay (Additional file 1:

Figure S8c). In contrast to circPVT1, mut-p53 protein

was also involved in migration. In Additional file 1:

Figure S8d we show a reduction of cell migration

after p53 down-regulation of about 30% compared to

the control. Finally, we performed an experiment to

test the possible additive effect on CAL27 phenotype

after concomitant down-regulation of p53 and circPVT1.

We observed an additive effect on the proliferation rate as

determined by cell counting (Additional file 1: Figure S8e).

No other additive effect was evidenced from the cell cycle

analysis or colony assay compared to the single down-

regulation of p53 and circPVT1 (Additional file 1:

Figure S8f, g).

circPVT1 up-regulation pairs with the down-regulation of

mut-p53-associated miR-497-5p

Among other putative circRNA functions, the current

literature demonstrates that circRNAs have the potential

to regulate miRNA expression [6, 15, 19]. Since

circPVT1 expression was up-regulated in HNSCC, we

focused our attention on the miRNAs down-regulated in

our previous work [40].

In that study, we carried out miRNA expression profil-

ing on 121 HNSCC samples and 66 non-tumoral coun-

terparts, obtaining 49 miRNAs significantly associated

with p53 status [40]. In particular, we found 44 miRNAs

up-regulated and five miRNAs down-regulated. First of

all, we evaluated the expression levels of the five miR-

NAs that were down-regulated, miR-497-5p, miR-99-5p,

miR-370, miR-139-3p, and miR-1224-5p, in our patients

bearing mut-p53, comparing tumor against non-tumoral

tissues. We found a significant down-regulation of miR-

497-5p (Fig. 9a), miR-99-5p, miR-370, miR-139-3p, and

miR-1224-5p (Additional file 1: Figure S9a–d).

Secondly, we measured the correlation between

circPVT1 and these miRNAs by Spearman and Pearson’s

correlation (Additional file 2: Table S4) using the data on

circPVT1 expression obtained from RT-qPCR as shown

above, and the data on the five down-regulated miRNAs

obtained from the miRNA expression profiling [40]. In

detail, we analyzed 68 tumor samples with p53 muta-

tions against 37 non-tumoral matched counterparts. We

observed a significant negative relationship between

circPVT1 and two of the miRNA selected: miR-99-5p

and miR-497-5p (Additional file 2: Table S4). We mea-

sured the miRNA level in CAL27 cells after circPVT1

down-regulation using siRNAcircPVT1. In our in vitro

model miR-99-5p was down-regulated after circPVT1

down-regulation (data not shown); in contrast, miR-139-

3p, miR-370, and miR-1224-5p were undetectable by

RT-qPCR due to their low expression levels. miR-497-5p

was detectable by RT-qPCR and it was up-regulated

after circPVT1 down-regulation, as expected from the

data from patient analysis (Fig. 9b).

circPVT1 binds to and regulates miR-497-5p expression

To investigate the effect of circPVT1 activity on miR-497-

5p expression, we used the two vectors expressing

circPVT1, pcDNA3-circPVT1-a and pcDNA3-circPVT1-

b. Upon circPVT1 overexpression we evaluated the miR-

497-5p level by RT-qPCR. miR-497-5p expression

decreased by about 70% after the transfection of pcDNA3-

circPVT1-a, and by about 50% after the transfection of

pcDNA3-circPVT1-b (Fig. 9c). To verify if the activity of

circPVT1 on miRNA-497-5p was specific, we evaluated
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the expression of the other two molecules possibly in-

volved in the circPVT1 mechanism of action, i.e., mut-p53

and PVT1. After pcDNA3-circPVT1-a or -b transfection,

we did not observe any modification in mut-p53 or PVT1

expression levels (Fig. 9d, e). To confirm that the

circPVT1 was a direct regulator of miR-497-5p, we

searched for the miR-497-5p binding site on the circPVT1

sequence (Fig. 9f). Then, we deleted the miR-497-5p bind-

ing site in the pcDNA3-circPVT1-a vector, generating the

vector pcDNA3-circPVT1-a-del. The pcDNA3-circPVT1-

Fig. 9 miR-497-5p expression in HNSCC patients and its regulation by circPVT1. a miRNA expression analysis as in [40] was used to evaluate

miRNA-497-5p expression in tumoral (T) and non-tumoral (N) samples. b miRNA-497-5p level was detected by RT-qPCR in siRNAcircPVT1 and siRNAct

transfected cells. c miRNA-497-5p level was detected by RT-qPCR in pcDNA3-circPVT1-a, pcDNA3-circPVT1-b, and pcDNA3 transfected cells. d p53

mRNA level was detected by RT-qPCR in pcDNA3-circPVT1-a, pcDNA3-circPVT1-b, and pcDNA3 transfected cells. e PVT1 level was detected by RT-qPCR

in pcDNA3-circPVT1-a, pcDNA3-circPVT1-b, and pcDNA3 transfected cells. f circPVT1 binding site on miR-497-5p. g circPVT1 level was detected by

RT-qPCR after the transfection of the indicated vectors and mimics. h miR-497-5p level was detected by RT-qPCR after the transfection of the indicated

vectors and mimics. Data are shown as mean of three replicates ± standard deviation (Student’s test; *p < 0.05; **p < 0.01; ***p < 0.001; ns not significant)
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a-del and pcDNA3-circPVT1-a vectors induced circPVT1

expression to similar levels (Fig. 9g), and after the co-

transfection with miR-497-5p, the circPVT1 expression

was still comparable between the two vectors (Fig. 9g).

miR-497-5p expression was reduced after the transfection

of pcDNA3-circPVT1-a alone or in combination with

miR-497-5p (Fig. 9h). We did not observe any change in

miR-497-5p expression after the transfection of pcDNA3-

circPVT1-a-del with or without miR-497-5p (Fig. 9h).

These data show that circPVT1 affected miR-497-5p

expression through the selected binding site, which was

specific and required for the miR-497-5p regulation.

Finally, the regulation of miR-497-5p by circPVT1

might explain the presence of circPVT1 in the cyto-

plasm as well as the nucleus.

miR-497-5p up-regulation in CAL27 cells mimics the

phenotype induced by circPVT1 down-regulation

In order to confirm the relationship between circPVT1

and miR-497-5p, we evaluated if the CAL27 phenotype

after miRNA up-regulation is the same as that observed

after circPVT1 down-regulation. Up-regulation of miR-

497-5p by a specific miRNA mimic at 48 h after

transfection (Fig. 10a) significantly decreased the prolif-

eration rate of CAL27 cells, determined by cell counting

at different time points (Fig. 10b). By cell cycle analysis,

we observed a significant decrease in the cell population

in S phase and a significant increase in cell population in

G2 phase (Fig. 10c). As observed for circPVT1, colony

numbers were reduced in the colony-forming assay after

miR-497-5p up-regulation (Fig. 10d) but with no effect on

migration (Fig. 10e). Similar to the approach adopted to

test possible additive effects of circPVT1 and p53 on the

CAL27 phenotype, we performed simultaneous circPVT1

down-regulation and miR-497-5p up-regulation. No addi-

tive effect was observed on the CAL27 phenotype as

shown in Additional file 1: Figure S10a–c. However,

CAL27 proliferation and colony forming capacity were

still affected by the simultaneous modulation of circPVT1

and miR-497-5p compared to the control.

Aurka, mki67, and bub1 are genes involved in circPVT1

downstream oncogenic effects

To investigate the molecular pathways involved in the

CAL27 change of phenotype after miRNA-497-5p or

circPVT1 modulation, we selected putative targets of

Fig. 10 CAL27 phenotype after miRNA-497-5p over-expression. a miRNA-497-5p level was detected by RT-qPCR in miR-497-5p and in mimic-ct

transfected cells. b Cell proliferation was determined by cell counting 24, 48, and 72 h after transfection with miR-497-5p and mimic-ct. c Propidium iodide

flow cytometric assay was performed to analyze the cell cycle in miR-497-5p and mimic-ct transfected cells. d Colony formation assay was performed in

miR-497-5p and mimic-ct transfected cells. Top: representative colony-forming assay. Bottom: quantification of three independent experiments by colony

counting. e Migration assay was performed in miR-497-5p and mimic-ct transfected cells. Data are shown as mean of three replicates ± standard deviation

(Student’s test; *p< 0.05; **p< 0.01; ***p< 0.001)

Verduci et al. Genome Biology  (2017) 18:237 Page 16 of 24



miRNA-497-5p. Firstly, we selected genes based on

negative correlation between miRNA-497-5p expression

[40] and mRNA expression (data not shown), for a sub-

group of HNSCC samples. Then, we focused on genes

predicted as miRNA-497-5p targets and involved in cell

proliferation. In particular, we selected aurka, mki67,

bub1, mcm7, sart1, cdc20, and foxm1 and measured

their expression at the transcriptional level after miR-

497-5p over-expression (Fig. 11a–g). All genes selected

were down-regulated after transfection with mimic-497-

5p (Fig. 11a–g). Next, we measured the expression level

of the selected genes after circPVT1 over-expression

(Additional file 1: Figure S11). We obtained a significant

overexpression of three genes: aurka, mki67, and bub1

(Additional file 1: Figure S11a-c), but not of the other

genes (Additional file 1: Figure S11d-g). Since the ex-

pression of aurka, mki67, and bub1 was altered by both

miR-497-5p and circPVT1 modulation, we propose that

these genes were involved in the oncogenic role of

circPVT1 in HNSCC. In line with this, a colony-forming

assay upon down-regulation of bub1 expression, using

three different siRNAs in CAL27 cells, revealed a

Fig. 11 Expression analysis of selected genes after miRNA-497-5p over-expression and proposed model. a aurka, bmki67, c bub1, dmcm7, e sart1, f cdc20,

and g foxm1 mRNA levels were detected by RT-qPCR in miR-497-5p and mimic-ct transfected cells. h Model of the oncogenic role of circPVT1 in tumor cells.

Data are shown as mean of three replicates ± standard deviation (Student’s test; *p< 0.05;**p< 0.01; ***p< 0.001)
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reduced number of colonies compared to cells trans-

fected with control siRNAs (Additional file 1: Figure

S12a, b). This suggests that bub1 is among the down-

stream effectors of circPVT1 oncogenic activity in

HNSCC.

Discussion
CircRNAs have recently re-emerged as a class of endogen-

ous RNAs with different roles in eukaryotic cells [5]. Of

particular interest is the emerging oncogenic function of

circRNAs, which might make them candidates for new

biomarkers and therapeutic targets in cancer. Here, we in-

vestigated the role of circPVT1, a member of the circRNA

family, in the pathogenesis of HNSCC.

We first investigated circPVT1 expression using the

HNSCC cancer data set provided by TCGA. circPVT1 was

found to be up-regulated in tumors hosting mut-p53 in

comparison to unmatched non-tumoral samples. Similar

findings were also found using a well-characterized collec-

tion of 115 HNSCC samples in which each tumor sample

was compared to its matched non-tumoral tissue, minimiz-

ing inter-individual variation [40]. Indeed, circPVT1

expression determined by RT-qPCR was significantly up-

regulated in tumor samples and in particular in those

carrying TP53 mutations. This was not evidenced when

circPVT1 expression was associated with FAT1 and

CDKNA2 gene mutations in HNSCC, thereby mirroring

circPVT1 as a non-coding mediator of mutant p53 onco-

genic activities. Indeed, linear regression analysis showed a

significant correlation between circPVT1 and mut-p53 in

tumoral samples.

It is known that TP53 is the most frequent mutated

gene in human cancers [46]. Moreover, p53 missense

mutations not only determine the loss of its tumor-

suppressive functions, but can also generate new pro-

teins with oncogenic activities [47–50]. TP53 mutations

are associated with decreased survival rate and increased

risk of locoregional recurrence in HNSCC [40]. Using

both the HNSCC cancer data set and our collection of

HNSCC samples, we showed that circPVT1 also impacts

on the survival of these patients. In particular, high

circPVT1 levels are associated with a poorer overall sur-

vival in association with TP53 mutations. Moreover,

circPVT1 plays a role in the resistance to cisplatin of

HNSCC cell lines, but only in those carrying mutant p53

proteins. This further supports the role of circPVT1 in

mut-p53-dependent pathways.

Our results show that circPVT1 is regulated by mut-

p53 independent of its host gene PVT1. This mechanism

appears to be unidirectional; in fact the down-regulation

of circPVT1 did not influence mut-p53 protein expres-

sion. The analysis of the phenotype of HNSCC cell lines

after down-regulation of either mut-p53 or circPVT1 ex-

pression revealed similar effects. We obtained in both

cases a reduction of the malignant phenotype, showing

that the two molecules work within the same molecular

pathway. The role of circPVT1 as an oncogene was

assessed also by circPVT1 overexpression. Cells over-

expressing circPVT1 showed an increased capacity to

proliferate and form colonies, further supporting the im-

portance of circPVT1 in determining the oncogenic

phenotype.

In an attempt to explain the link between mut-p53

and circPVT1 in tumors, we have established that YAP

is a main regulator of circPVT1 expression at the tran-

scriptional and post-transcriptional levels. Our data

show that mut-p53 and TEAD are recruited at the same

site where YAP binds the circPVT1 promoter, confirm-

ing the capacity of YAP and mut-p53 to interact with

each other at promoter sites, and the important role of

TEAD family transcription factors in mediating YAP-

dependent gene expression [35, 43]. In fact, performing

a DRB-4sU assay, we observed a decrease of nascent

circPVT1 as a consequence of mut-p53, YAP, and

TEAD1 down-regulation. YAP regulates circPVT1 also

at the post-transcriptional level by binding the mature

form of circular RNA, and mut-p53 acts as the stabilizer

of the YAP/circPVT1 complex. In support of this model,

we observed that when the mut-p53 protein was de-

pleted, circPVT1 expression levels were reduced and the

YAP/circPVT1 complex was lost.

Of note, we showed that circPVT1 uses its own pro-

moter and not the promoter of its host gene. By ChIP

assay experiments for p-Pol II, we showed that the newly

identified circPVT1 promoter is a region that is tran-

scriptionally active. Even if we did not exclude that the

mut-p53/YAP/TEAD complex is also recruited at the

PVT1 promoter level, our data support a mechanism ac-

cording to which the mut-p53/YAP/TEAD complex

works preferentially at the circPVT1 promoter level in

the HNSCC context and in strict relation with mut-p53.

It is reasonable to conclude that this status is achieved

through the capacity of circPVT1 to regulate its own ex-

pression and to recruit preferentially the mut-p53/YAP/

TEAD complex at its promoter region. In fact, we

showed that the presence of circPVT1 in the nucleus is

characterized by circPVT1 binding to the nuclear co-

factor YAP. Moreover, by DRB-4sU and ChIP assay in

circPVT1 over-expression conditions, we found, respect-

ively, an increase in nascent circPVT1 production and

an enrichment of Pol II and YAP recruitment at the

circPVT1 promoter level.

We found that circPVT1 acts as an oncogene repres-

sing the function of miRNA-497-5p, a miRNA associated

with mut-p53 and that has been reported to have a

tumor suppressor role in several cancers [51–54]. Here,

we showed that miR-497-5p up-regulation significantly

decreased the proliferation rate of CAL27 cells, which is
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consistent with its reported tumor suppressor function.

Moreover, we originally demonstrated that circPVT1 is a

direct regulator of miR-497-5p, impairing its tumor sup-

pressor activity.

The circPVT1 downstream oncogenic effect included

the up-regulation of aurka, mki67, and bub1, which are

all putative targets of miRNA-497-5p and are involved

in cell proliferation (Fig. 11h). We do not exclude that

circPVT1 is also able to regulate other miRNAs. Indeed,

we observed a significant negative relationship between

circPVT1 and miR-99-5p (Additional file 2: Table S4),

even if this relationship was not confirmed in our in

vitro model. The study of other miRNAs regulated by

circPVT1 will be the subject of future work.

Collectively, these findings depict a network in which

gain of function mutant p53 proteins trigger the activa-

tion of a downstream non-coding effector, demonstrated

here by the binding of circPVT1 and miR-497-5p, which

leads to unrestrained proliferation through the aberrant

enhancement of the expression of cell cycle regulated

genes. The involvement of YAP and TEAD as critical

components of the Hippo tumor suppressor pathway in

the context of mutant p53 activity might represent an

additional proof of the aberrant crosstalk between two

distinct tumor suppressor pathways. Indeed, TP53 muta-

tions lead to the production of mutant p53 proteins that

engage physically with YAP and TEAD and might sub-

vert the tumor suppressor into oncogenic activities.

Conclusions

We found that circPVT1 behaves as an oncogene in

HNSCC and that the mut-p53/YAP/TEAD complex

transcriptionally regulates its expression. Although fur-

ther studies are necessary to thoroughly elucidate the

molecular pathway in which circPVT1 is involved, these

findings significantly advance our understanding of the

circRNAs’ mechanism of action. Further to providing

new insights into the biological function of circRNAs in

cancer, our data might contribute to identify new candi-

date non-coding biomarkers such as circRNAs specific-

ally associated with TP53 mutations in HNSCC. This

might be useful for diagnostic and therapeutic strategies

in HNSCC.

Methods

Study population and clinical samples

The study population and clinical samples are described

in [40]. Briefly, the study population includes 115 pro-

spectively enrolled patients with histologically confirmed

primary HNSCC undergoing curative treatment at the

Otolaryngology Head and Neck Surgery Department.

Only patients who did not receive any anticancer ther-

apy before surgery were included in the study. Only

HNSCC patients who developed local recurrence

1 month after surgery and with a follow-up ≥ 12 months

were considered for the prognostic study. Two biopsies,

from tumor and histologically normal tissue, were col-

lected at surgery and preserved in RNA later (Ambion,

Austin, TX, USA) from each patient. The histologically

normal tissue was taken in correspondence with surgical

resection margins and are described in the text as non-

tumoral tissue.

P53 mutational analysis

The p53 mutational analysis is described in [40].

Cells

CAL27, FaDu, A253, and H1299 cell lines were main-

tained in RPMI-1640 medium (Invitrogen); the Detroit

562 cell line was maintained in DMEM (Invitrogen).

The medium was supplemented with 10% fetal bovine

serum (FBS; Invitrogen), penicillin (100 U/ml; GIBCO),

and streptomycin (200 mg/ml; GIBCO) at 37 °C in a 5%

CO2 atmosphere.

Quantification of circPVT1 molecules per cell

We used the standard curve method to obtain the nano-

grams (ng) of circPVT1. First, we found the concentra-

tion for each sample on the standard curve; then we

multiplied the concentration by the dilution factor for

each sample. We obtained the nanogram amount of

circPVT1 in the two fractions: 0.82 ng in the nucleus

and 4.48 ng in the cytosol for Detroit cells; 0.83 ng in

the nucleus and 4.22 ng in the cytosol for CAL27 cells.

Next, we applied the following formula to get the num-

ber of copies (molecules) of our PCR product:

circPVT1 ng � 6:022x1023molecules=moleð Þ

circPVT1 length 410 bpð Þ � 1x109ng=g � 660 g=moleð Þ
:

Finally, we divided the above result by the number of

cells (5.88 × 106 for Detroit cells and 4.35 × 106 for

CAL27 cells).

RNAse R treatment

The RNAse treatment was performed using Ribonucle-

ase R (RNase R) according to the manufacturer’s recom-

mendations (Epicentre). In particular, 2 μg of RNA were

treated with 10 U of RNase R at 37 °C for 30 minutes in

10× Reaction Buffer. The untreated samples were incu-

bated at the same conditions in 10× Reaction Buffer

without the RNase R.

Cell transfection

The transfections of siRNAs and mimicRNAs were per-

formed using Lipofectamine RNAiMax (Life Technolo-

gies). The transfections of vectors were performed using

Lipofectamine 2000 (Life Technologies). All experiments
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were conducted according to the manufacturer’s recom-

mendations. For mature miR-497-5p expression, we used

the mirVana miR-495-5p mimic (Ambion) at a final con-

centration of 5 nM and as control we used the mirVana

miRNA mimic, Negative Control #1 (Ambion), at the

same concentration. The transfection of vectors and

mimicRNAs in the same experiment were performed

using Lipofectamine RNAiMax (Life Technologies) for

mimicRNAs and, 24 h after the first transfection, a sec-

ond transfection for the vectors was performed using

Lipofectamine 2000 (Life Technologies). The mut-p53

overexpression in A253 cells was performed using 5 μg

pcDNA3-p53-R175H [55], and the same amount of

pcDNA3 was used as control. For the H1299 RIP assay

we used 5 μg pcDNA3-p53-R175H + 8 μg pcDNA3-

circPVT1-a and 13 μg pcDNA3 vector as control. For

the CAL27 RIP assay of overexpression, we used 5 μg

YAP-Flag [56] + 8 μg pcDNA3-circPVT1-a and 13 μg

pcDNA3 vector as control. For the CAL27 RIP assay in

silencing conditions we used 320 pmol siRNAct, 320

pmol siRNA-YAP, and 320 pmol siRNAp53. The

circPVT1 overexpression in CAL27 cells was performed

using 4 μg pcDNA3-circPVT1-a or -b and 4 μg pcDNA3

vector as control. siRNAp53 smart pool was used at 80

pmol final concentration. Custom siRNAs were used at

the following final concentrations: siRNAct, 150 pmol;

siRNAct1, 150 pmol; siRNAct2, 150 pmol; siRNAbct1,

150 pmol; siRNAbct2, 150 pmol; siRNAcircPVT1, 150

pmol (siRNA overlaps the splice junction); siRNAb-

circPVT1, 150 pmol (siRNA overlaps the splice junc-

tion); siRNA-PVT1, 300 pmol; siRNAp53, 150 pmol;

siRNAp53 3′ UTR, 80 pmol; siRNA-YAP, 160 pmol;

siRNA-YAP2, 80 pmol; siRNA-TAZ, 80 pmol siRNA-

TAZ-1 + 80 pmol siRNA-TAZ-2; siRNA-TEAD, 40

pmol siTEAD1/3/4 + 40 pmol siTEAD2 + 40 pmol

siTEAD1 ex 5 + 40 pmol siTEAD1 ex 8; siRNA-

BUB1_1, 160 pmol; siRNA-BUB1_2, 160 pmol; siRNA-

BUB1_3, 160 pmol.

Construction of circPVT1 expression vectors

pcDNA3-circPVT1-a was constructed by PCR amplifica-

tion of the circPVT1 locus, including 954 bp upstream

and 53 bp downstream of the nonlinear splice sites. We

used the primers F1 and R1 designed to incorporate Hin-

dIII and NotI restriction sites and 6 bp of extra random

sequence to aid in restriction digestion. The amplified re-

gion was cloned into the HindIII/NotI sites of pcDNA3

(Invitrogen). For construction of pcDNA3-circPVT1-b, an

895 bp DNA stretch upstream of the splice acceptor was

amplified and inserted downstream in the reverse orienta-

tion in an XhoI/ApaI digested pcDNA3-circPVT1-a, using

the primers F2 and R2 designed to incorporate ApaI and

XhoI restriction sites and 6 bp of extra random sequence

to aid in restriction digestion.

The pcDNA3-circPVT1-a-del was generated utilizing

the pcDNA3-circPVT1-a plasmid as template. We de-

leted the miR-497-5p binding site using the QuikChange

II XL site-directed mutagenesis kit (Agilent Technolo-

gies). Primer sequences are listed in Additional file 3:

Table S5 and designated circPVT1_delmiR-497-5p F and

circPVT1_delmiR-497-5p R. The miR-497-5p binding

site was identified by RNAhybrid [57].

Cell proliferation assay

Cell proliferation was determined by viable cell counting.

We seeded 1.5 × 105 cells in six-well plates in duplicate

and grown for 72 h. Cell counting was performed after

24, 48, and 72 h mixing an aliquot of cells 1:1 with Try-

pan Blue dye (Invitrogen).

Cell cycle analysis

We fixed 106 cells in cold ethanol and these were then

washed, resuspended in phosphate-buffered saline con-

taining 50 μg/ml propidium iodide (PI; Sigma-Aldrich)

and 50 μg/ml RNAase A, and analyzed by flow cytome-

try on a Millipore Guava® easyCyte 8HT.

Colony-forming assay

We plated 103 cells in 60 mm dishes and incubated

them at 37 °C in a 5% CO2 atmosphere for colony for-

mation. After 10 days, colonies were stained with crystal

violet (Sigma-Aldrich) for 30 min and counted.

Viability assays

Cell viability was assessed using an ATPlite assay (Perkin

Elmer, Massachusetts, USA) accordingly to the manufac-

turer’s instructions. We seeded 800 cells in 96-well

plates in 200 μl of media. Silencing was performed in re-

verse transfection and, after 24 h, cells were treated as

indicated with cisplatin (CDDP) for a further 72 h. Each

plate was evaluated immediately on a microplate reader

(Expire Technology, Perkin Elmer). Each sample was

assayed in triplicate.

Transwell migration assays

Transfected cells were detached and counted. A migra-

tion assay was performed using a 24-well plate. We

seeded 6 × 104 cells, in a volume of 500 μl RPMI-1640

without FBS, in the upper chamber with an 8-mm pore

size filter (BD Falcon, Franklin Lakes, NJ, USA) while

the bottom chamber of the transwell was filled with

700 μl of RPMI-1640 with 10% FBS. Cells were allowed

to migrate for 36 h in a humidified incubator at 37 °C

and 5% CO2. Migrated cells, which had attached to the

outside of the filter, were visualized by staining with

DAPI (Sigma-Aldrich) and counted under a Zeiss LSM

510 laser scanning fluorescence confocal microscope.
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Western blot analysis

Cells were homogenized on ice for 30 min in a lysis

buffer composed by 50 mM, Hepes pH 7.5, 5 mM

EDTA pH 8.0, 10 mM MgCl2, 150 mM NaCl, 50 mM

NaF, 20 mM β-glicerophosphate, 0.5% NP40, 0.1 mM

sodium orthovanadate, 1 mM PMSF, 1 mM dithiothrei-

tol (DTT), and protease inhibitor cocktail (Roche).

Lysates were clarified by centrifugation for 10 min, max

speed, at 4 °C. Proteins (30 μg/lane) were separated on

10% SDS-polyacrylamide gels and transferred to nitro-

cellulose membranes. Immunoblots were probed with

the following primary antibodies: mouse monoclonal anti-

p53 (DO1; Oncogene Science Uniondale, NY, USA), rabbit

polyclonal anti-YAP (Santa Cruz Biotechnology), and

mouse monoclonal anti-GAPDH (Calbiochem). Immuno-

stained bands were detected by a chemiluminescent

method.

RNA extraction, reverse transcription, and RT-qPCR

The total RNA was extracted with TRizol (Thermo Fisher

Scientific) following the manufacturer’s instructions and

quantified using a Nanodrop (Thermo Scientific). The

concentration, purity, and quality of total RNA were

assessed using a Nanodrop TM 1000 spectrophotometer

(Nanodrop Technologies). Reverse Transcription of miR-

NAs and RT-qPCR quantification of miRNA expression

were performed by TaqMan MicroRNA RTassay and Taq-

Man MiRNA® Assay (Thermo Fisher Scientific), respect-

ively, according to the manufacturer’s protocol. RNU44

and RNU48 were used as endogenous controls to

standardize miRNA expression. For circPVT1, PVT1, and

gene expression analysis, reverse transcription and RT-

qPCR were performed using MMLV RT (Invitrogen) and

SYBR Green® Assays (Applied Biosystems), respectively,

according to the manufacturers’ instructions. For the de-

tection of the circPVT1 expression level we used diver-

gent primers that produce a PCR product only when the

template is circular. circPVT1 expression in patients was

normalized to the geometric mean of H3, GAPDH, and

RPL19. In the other RT-qPCRs the expression of the genes

was normalized to the GAPDH level.

ChIP experiments

We performed 1% formaldehyde cross-linking and ChIP as

described in [35]. The chromatin solution was immunopre-

cipitated with sheep polyclonal anti-p53 Ab7 antibody

(Merck Millipore), rabbit polyclonal anti-YAP (H-125;

Santa Cruz), rabbit polyclonal anti-Pol II (N-20; Santa

Cruz), mouse monoclonal anti-TEF-1 (anti-TEAD-1, BD

Transduction Laboratories), and ChIP-grade mouse mono-

clonal [4H8] anti-RNA polymerase II CTD repeat

YSPTSPS (phospho S5; Abcam). The immunoprecipita-

tions were performed using Pierce ChIP-grade Protein A/

G magnetic beads (Thermo Fisher Scientific). The immu-

noprecipitated and purified chromatin was subjected

to RT-qPCR. The promoter occupancy was analyzed

by RT-qPCR using the SYBR Green assay (Applied

Biosystems). Normalization was performed to the

amount of input chromatin.

RNA immunoprecipitation

Untreated CAL27 cells were detached and resuspended

in freshly prepared nuclear isolation buffer, kept on ice

for 5 min (with frequent mixing) and stored at −80 °C.

The cell lysate was twice frozen and thawed before use.

Lysate was passed through a 27.5 gauge needle four

times to promote nuclear lysis and centrifuged at

14,000 × g for 10 min at 4 °C. An aliquot of lysate (10 μl)

was used as input for western blot analysis. For immu-

noprecipitation, the lysates were incubated with 50 μl of

Dynabeads protein G (Thermo Fisher Scientific) and

7 μl of anti-p53 Ab7 antibody (Merck Millipore), rabbit

polyclonal anti-YAP (H-125; Santa Cruz Biotechnology)

or sheep serum, used as control, under constant shaking

at room temperature for 1 h. Dynabeads protein G were

prepared according to the manufacturer’s instructions.

Following the immunoprecipitation, 10% of the beads

were used for weatern blot analysis and the other part

was used to isolate co-precipitated RNAs by resuspen-

ding beads in TRIzol (Thermo Fisher Scientific) accor-

ding to the manufacturer’s instructions.

DRB-4sU assay

Transfection of CAL27 cells was performed as indicated

above. Cells were incubated with 100 μM of 5,6-dichlor-

obenzimidazole 1-β-D-ribofuranoside (DRB; Sigma,

D1916) for 3 h to block Pol II transcription. Transcrip-

tion was recovered after DRB release and newly tran-

scribed RNA was labeled with 350 μM of 4-thiouridine

(4sU; Sigma, T4509) for 2 h. Cells were trypsinized

and pelleted. TRIzol (Invitrogen) was added to stop

transcription and total RNA was extracted. Total

RNA (15 μg) was used for biotinylation and purifica-

tion of 4sU-labeled nascent RNA, for each point.

4sU-labeled RNA was incubated in biotinylation buf-

fer (10 mM HEPES pH 7.5, 1 mM EDTA) with 5 μg

of MTSEA Biotin-XX (90066/9006-1 Biotium) for

1.5 h with rotation. MTSEA Biotin-XX was dissolved

in dimethylformamide (DMF; Sigma, D4551) at a con-

centration of 10 mg/ml. Next, unbound Biotin-XX

was removed by an equal volume of phenol:chlorofor-

m:isoamyl alcohol (15593-031, Invitrogen) and RNA

was precipitated at 13,000 rpm for 20 min at 4 °C

with 1:10 volume of 5 M NaCl and an equal volume

of isopropanol. The RNA pellet was washed with 75%

ethanol and resuspended in 50 μl nuclease-free H2O.
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4sU-labeled and unlabeled RNA was separated by

using 200 μl Dynabeads MyOne Streptavidin C1

(65001, Invitrogen) at room temperature for 20 min

according to the manufacturer’s instructions. Beads

were washed five times with 0.8 ml of washing buffer

(100 mM Tris pH 7.4, 10 mM EDTA, 1 M NaCl,

0.1% Tween 20). Nascent RNA was eluted with

100 μl 0.1 M DTT twice and was precipitated with

40 μl of 4 M LiCl, 2 μl glycogen, and 600 μl ice-cold

ethanol. The RNA pellet was resuspended in 20 μl

nuclease free H2O and incubated at 65 °C for 10 min

at 400 rpm. Reverse transcription and RT-qPCR

quantification were performed as described above.

circPVT1 and clinical features

A logistic regression model was fitted to evaluate associ-

ation with clinical variables. Statistical significance was

set at 5%.

Kaplan-Meier analysis was used for overall survival

and the log-rank test was used to assess differences

between curves with high and low circPVT1 intensity.

We defined the group of patients with low circPVT1 ex-

pression as samples with expression lower than med-

ian(X)-σ/2, where X is the circPVT1 expression

distribution and σ the standard deviation.

The EC50 and the LD50 were determined using the

Compusyn Software [58].

Analysis of TCGA HNSCC exon expression data

Normalized TCGA HNSCC exon expression analysis

was performed using 31 non-tumoral and 263 tumor

samples (we obtained information for 129 mut-p53 and

57 wt-p53 samples). The chromosomal intervals are re-

lated to the human genome GRch37/hg19. Deregulation

of specific exons in different subgroups of samples was

assessed by a two-sided Wilcoxon rank sum test.

Analysis of PVT1 and circPVT1 promoters

We used the Promoter 2.0 prediction and the Lasagna

2.0 web-tool to analyze the PVT1 and circPVT1 pro-

moters. The promoter sequences are related to the hu-

man genome GRch38/hg38.

In silico prediction targets

In silico prediction of miRNA-497-5p targets was per-

formed using miRwalk2 [59]. We selected targets

predicted from three different software and chose ac-

cording to the negative correlation between miRNA-

497-5p expression [40] and mRNA expression analysis

of 14 patients with TP53 mutations and nine normal

matched patients.

Quantification and statistical analysis

GraphPad Prism was used to determine the statistical sig-

nificance of the in vitro experiments. MATLAB was used

to determine the statistical significance of the data involving

patient samples. For each figure, relevant information for

assessing the accuracy and precision of the analysis is in-

cluded in the accompanying legend.
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