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Abstract In the Exactly 1 cellular automaton (also known as Rule 22), every site of the one-

dimensional lattice is either in state 0 or in state 1, and a synchronous update rule dictates

that a site is in state 1 next time if and only if it sees a single 1 in its three-site neighborhood

at the current time. We analyze this rule started from finite seeds, i.e., those initial config-

urations that have only finitely many 1’s. Three qualitatively different types of evolution

are observed: replication, periodicity, and chaos. We focus on rigorous results, assisted by

algorithmic searches, for the first two behaviors. In particular, we explain why replication

is observed so frequently and present a method for collecting the smallest periodic seeds.

Some empirical observations about chaotic seeds are also presented.

Keywords Additive dynamics · Cellular automaton · Chaos · Entropy · Periodic attractor ·
Replicator

1 Introduction

The one-dimensional Exactly 1 cellular automaton, also known as Rule 22 [27], is a dy-

namical system ξt whose state at each time t is an assignment of 0’s and 1’s to sites of the

integer lattice Z, i.e., ξt ∈ {0,1}Z. The update rule specifies that there is a 1 at site x at time

t + 1 if and only if there is a 1 at exactly one of the sites x − 1, x, x + 1 at time t . This

is not an additive rule like the much more mathematically tractable automata for which the

state next time is obtained by addition modulo 2 over some neighborhood. Among additive
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rules, which are often called linear, the prototype is Rule 90, also known as Pascal’s triangle

modulo 2, and defined in Sect. 2 as ℓt . Another instance is Rule 150, in which the addition

is over the same three-site neighborhood that Exactly 1 uses, and many others have been

studied [8, 24, 25, 27].

The literature on Exactly 1 is almost entirely empirical (e.g., [4, 11, 12, 22, 30]), but a

few rigorous results such as lower and upper bounds for the rule’s spatial entropy may be

found in [28]. Even among numerical and simulation studies, surprisingly little attention has

been devoted to the behavior of Exactly 1 as a growth model starting from seeds, i.e., from

initial configurations with finitely many 1’s. Befitting the growth interpretation [9], we often

refer to 1’s as occupied sites and 0’s as empty sites. To date, the evolution of the occupied

set has been documented by space-time snapshots of the first few hundred updates starting

from various simple initializations, with accompanying informal descriptions (e.g., [29]).

Our goal in this paper is to offer a more substantive mathematical investigation. Section 2

will lay the formal groundwork for our study.

Let us begin by examining the space-time evolution of Exactly 1 from judiciously chosen

small seeds. These are discussed in some detail throughout the paper, and [14] contains

additional information.

Example 1 Figure 1 displays the trajectories, up to time 299 in 1a–d and up to time 499 in

1e–f, from the following seeds, in order: (1a) 1, a maternal replicator; (1b) 1011, a fraternal

replicator; (1c) 10011, a chaotic seed; (1d) 1011011, a chaotic seed with periodic wedges;

and (1e) 11111111, another chaotic seed that develops substantial bands near the left and

right boundaries with a well-defined periodic state. These bands do not continue to spread;

however, there is a periodic seed (1f) of length 85, given below, with the same periodic state.

Seeds such as (1a) and (1b), which produce self-similar structure reminiscent of the ad-

ditive case [24, 25], are known as replicators [2, 5, 6, 10]. The replicating elements are

identical in the former case, but slightly different in the latter (see Section 2 for details). To

distinguish the two types, we use the twin analogy and call them maternal and fraternal,

respectively. Note that our terminology identifies the seed with the attractor, i.e., we call any

finite seed that gives rise to replicating behavior a replicator, whether or not the seed itself

is reproduced by the dynamics. Similarly, in the sequel we call a seed periodic if it is in the

domain of attraction of a periodic state, and the same convention applies to chaotic seeds.

In addition to Example 1a–b, solid blocks of 1’s of length up to 7 and many other small

seeds are replicators; p. 263 in [29] shows three additional examples, all maternal. Despite

the essential nonlinearity of Exactly 1, replicators evidently occur more frequently than one

might expect, especially among small seeds. For instance, we will present data indicating

that proportion 1277/2048 ≈ 0.62 of seeds with length ν ≤ 12 are replicators. Section 4

will illuminate this abundance, and an apparent scarcity among seeds of longer length, by

analyzing various structural characteristics of replicators in some detail.

Figure 1c shows the evolution of a chaotic seed. Periodic patterns arise along the edges

of the occupied region—this property of Exactly 1 edge dynamics will play a key role in our

analysis (see also the proof of Theorem 3 in [10])—but chaotic space-time structure fills out

a central wedge. See p. 951 of [29] for some empirical observations and Sect. 2 for a precise

definition of a chaotic evolution. Experimental evidence suggests a characteristic density of

1’s around 0.351 and other statistical properties in good agreement with the chaos generated

by Exactly 1 starting from a density p product measure, i.e., a random configuration in which

the state at every site is 1 independently with probability p ∈ (0,1). Such infinite starting
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(a)

(b)

(c)

Fig. 1 (a-f) Six types of Exactly 1 evolution. As is customary, the time axis is oriented downward

states were studied in [12, 30]. Despite the prevalence of replicators among seeds of short

length ν, our study suggests that chaos predominates once ν is large.
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(d)

(e)

(f)

Fig. 1 (Continued)

A more complicated evolution arises from seed (1d). Again, there is a central disordered

wedge, but to each side is an additional wedge, spreading linearly in time, within which a

space-time periodic pattern emerges. Both periodic patterns have temporal period τ = 52,

spatial period σ = 104, and density of 1’s ρ = 11/26 ≈ 0.423. It turns out that this 11/26

pattern is very common starting from small seeds. For instance, among all cases with ν ≤ 12,
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the proportion with this feature exhibited (either on one side, or like (1d) on both sides) by

time 10,000 is 512/2048 = 0.25. This and other much less common periodic structures for

Exactly 1 will be another focus of our study.

Another variety of asymptotic growth, quite rare and particularly remarkable, arises by

careful examination of the evolution starting from seed (1e), a solid block of length 8. Fig-

ure 1e shows its first 499 updates. As in Fig. 1d, the central wedge is chaotic, but a periodic

pattern emerges at the lower left and lower right. What is the edge configuration that is not

part of this pattern, but is clearly instrumental in its maintenance? Careful inspection re-

veals that, starting at the left edge of the occupied region at time 220, the following spatial

sequence of length 85 repeats every 16 updates:

(1f) 1110111001000011100111110000100100010011000000000110000111100000000000010000000111001

The last evolution of Fig. 1 starts from this seed (1f). Surprisingly, the same periodic pat-

tern appears, with σ = τ = 32 and ρ = 19/64 ≈ 0.297, but now within the entire occupied

region except for cells a uniformly bounded distance from the boundary. This periodic seed

was discovered by Dean Hickerson [9, 15] using a random search algorithm based on the

label tree we will describe in Sect. 5. He also noted that the seed has a length 83 predecessor:

10001000011101001100100111100001110000101111111010000001001111111111101011111010011

At present, this has the shortest length of any known periodic seed for Exactly 1.

In the context of dynamical systems, Exactly 1 is thus a cellular automaton (CA) with

many features of nonlinear ordinary differential equations: relatively simple linear-type at-

tractors (replicators), periodic attractors, and a chaotic attractor (again, see Sect. 2 for a more

detailed discussion). Significantly, all these are accessible from finite seeds without the need

for infinite precision or another infinite amount of information. Thus entropy estimation is

meaningful in assessing the size of the respective domains of attraction and we will devote

much of the paper to this task (Sects. 4, 6, and 7). Moreover, identification of periodic or-

bits has long been considered fundamental in understanding the evolution of a dynamical

system (cf. [1]), so this is the other focus of our attention (Sect. 5). The largely empirical

Sect. 8 is devoted to chaotic seeds. Throughout, our emphasis is on the (replicating, peri-

odic, or chaotic) behavior of single trajectories rather than on the collective behavior from

an ensemble of initial states (as is done for additive rules in, say, [8]). This we consider the

proper perspective for investigation of growth phenomena. We also note that CA capable

of evolution of all three types do not abound—apparently Exactly 1 is by far the simplest

instance, and the only other natural example we know is described in [10]. See [11] for more

about the special properties of Exactly 1.

There is a large literature about diffusively coupled maps on the one-dimensional lattice

that addresses analytical theory and wide-ranging applications; here we simply mention the

readable account in [21]. Exactly 1 fits well into this context since it can be represented as

coupled iteration of the map φ : [0,1] → [0,1], chosen to be any characteristic function of

an interval that contains 1/3 and is included in (0,2/3). The variables yn(x), x ∈ Z, are

updated to

yt+1(x) = 1

3
(φ(yt (x − 1)) + φ(yt (x)) + φ(yt (x + 1))).

The map φ is simple to the point of caricature and the uncoupled system reaches the qui-

escent state y ≡ 0 in two steps. By contrast, the diffusively coupled maps are evidently
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capable of creating quite a rich structure from bounded perturbations of the quiescent equi-

librium: transmission and replication of information, periodic synchronization, and chaos.

Whether still more complicated behavior is possible, such as solitons moving on a synchro-

nized background, is perhaps the most intriguing open question about this rule. Additional

open problems are interspersed throughout our study and we conclude the paper with several

more in Sect. 9.

Many of our results for Exactly 1 were first conjectured through computer experimen-

tation, using MCell [26] and Golly [23]. We will maintain a collection of experiments in

a format recognized by those two programs at [14], so that the reader can experience this

fascinating rule in action.

2 Preliminaries

A configuration is a finite, semi-infinite (extending to infinity only rightward), or doubly in-

finite sequence of 0’s and 1’s. In many cases it is immaterial where a configuration is placed

on the lattice Z. However, if important we will call the (finite or a semi-infinite) configura-

tion’s left endpoint its placement. This is particularly significant when a new configuration

is built by a few appropriately placed finite configuration. If unspecified, the placement is at

the origin. Another convention is that the state of a site, when not given, is 0. As is customary

we put a configuration η in a superscript to indicate that it is used as the initial configuration,

e.g., ξ
η
t indicates that ξ0 = η. The term seed will be reserved for finite initial configurations.

We will make extensive use of Rule 90, the additive dynamics ℓt on {0,1}Z given for

t ≥ 1 by

ℓt (x) = (ℓt−1(x − 1) + ℓt−1(x + 1))mod 2.

A replicator rule is a finite set K of finite configurations, called replicating elements, to-

gether with functions left,right : K → K. A finite initial configuration ξ0 is a repli-

cator if, after a proper placement, there exist a replicator rule (K, left,right), and

t0 ≥ 0, n0 ≥ 0, so that the configurations ξt at times t = t0 + 2n0(k − 1), k = 1,2, . . . , satisfy

the following:

• for every k and x such that ℓ
{0}
k (x) = 1 there is a replicating element, that is, a configura-

tion Kk,x ∈ K, placed at 2n0x;

• all other states are 0’s; and

• Kk,x = right(Kk−1,x−1) if ℓ
{0}
k−1(x − 1) = 1 and ℓ

{0}
k−1(x + 1) = 0, and Kk,x =

left(Kk−1,x+1) if ℓ
{0}
k−1(x − 1) = 0 and ℓ

{0}
k−1(x + 1) = 1.

Thus all Kk,x are determined by the initial pair (K1,−1,K1,1) and successive applications

of left and right. Heuristically, t0 is the onset time, when the initial pair of replicating

elements appears; by a suitable translation these two can be placed at ±2n0 . Starting at t0,

Exactly 1 emulates Rule 90 in time steps of length 2n0 : any replicating element branches into

two successors, one or both of which may be annihilated by contact with other successors.

Figure 2 depicts an illustrative example. We remark that K is not unique: all conditions are

satisfied if each replicating element is replaced by its Exactly 1 successor, and t0 and n0

suitably enlarged.

We call ξ0 a maternal replicator if there exists a configuration K so that any replicating

element equals K , possibly with 0’s appended at either end. Any replicator which is not

maternal is fraternal. The distinction is important as fraternal replicators are a non-additive



174 J. Gravner, D. Griffeath

Fig. 2 Evolution of the replicator 10001011 up to time 14. Highlighted in black are 1’s at the onset time

t0 = 2 and thereafter at three multiples of the replication step 2n0 = 4. At all these times, 0’s which are part

of a replicating element are light grey (and at other times 1’s are dark grey). The set of replicating elements is

K = {1,01,10111}; the initial pair is (01,10111), placed at ±2n0 = ±4; and left and right are identity

functions except that left(10111) = 1

phenomenon—additive and quasiadditive rules discussed in Sect. 3 only create maternal

ones.

For instance, a singleton (Example 1a) has K = {1}, and t0 = 2, n0 = 1. The seed 11 is

a maternal replicator with K = {01,1}, both left and right are identity functions, and

t0 = n0 = 1. The simplest fraternal replicator is 10111 and has K = {10111,1}, with left

and right identity functions, except that left(10111) = 1, and with t0 = 4, n0 = 2. (This

example will be used as a building block for exponentially many fraternal replicators later.)

The seed 1011 of Example 1b has three replicating elements:

K1 = 010001000100010001000100000001,

K2 = 100010001000100010001000000010111,

and K ′
1 that equals K1 without the leading 0. The only non-identity assignment of left

and right is left(K2) = K ′
1. The rather long replicating elements necessitate a large

time t0 = 46 and n0 = 5.

As in [10], one could formulate a condition to verify that an initial state is a replicator

after only finitely many replications, but we will not do so here.

Assume that η is a (doubly infinite) configuration with spatial period σ , i.e., η(x + σ) =
η(x) for every x. Assume also that it is periodic with temporal period τ for Exactly 1, i.e.,

ξ
η
t+τ = ξ

η
t for all t ≥ 0. Then we call η a periodic solution; we will assume that both periods

σ and τ are minimal.

Further, we define a space-time wedge W = Wα,β = {(x, t) ∈ Z
2 : αt ≤ x ≤ βt}. Here

−1 ≤ α < β ≤ 1. We call ξ0 a periodic seed , attracted to a periodic solution η within the

wedge Wα,β , if for every ǫ > 0 there exists a large enough time T = T (ǫ) so that whenever

t ≥ T and (α + ǫ)t ≤ x ≤ (β − ǫ)t ,

ξ
ξ0
t (x) = ξ

η
t (x).

We call such a periodic solution η a periodic attractor, and of course consider any spatial

translation of η, or any of its temporal iterations ξ
η
t , to be the same attractor. When the seed

is simply called periodic without specifying the wedge, we presuppose some wedge Wα,β

with α < 0 < β . For all known instances the wedge will in fact be maximal: W−1,1 (cf.

Problem 5 of Sect. 9).

Next, we give the precise meaning of a chaotic seed. We feel a rigorous definition is

called for [7] although we are not able to prove that any seed is chaotic (but see Sect. 8).

Ultimately, this issue boils down to what is meant for a single deterministic configuration
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 ∈ {0,1}Z
2

to be chaotic within a wedge. For a finite set A ⊂ Z
2 and wedge W = Wα,β ,

define

ρn
A = #{w ∈ Z

2 : w + A ⊂ W ∩ {t ≤ n} and  ≡ 1 on w + A}

((2β)−1 − (2α)−1) · n2
.

(Here # denotes cardinality.) Note that the denominator is asymptotically the number of

sites in W ∩ {t ≤ n} and that, if A is a single site, the numerator simply counts the number

of occupied sites  has in W ∩ {t ≤ n}. We call  chaotic within W if

• ρA = limn→∞ ρn
A exists for every A;

• this limit is not 0 or 1 when A is a singleton; and

• correlations decay, i.e., there exists a constant γ > 0 such that, for every pair of finite sets

A and B ,

|ρA∪(z+B) − ρA · ρB | ≤ ‖z‖−γ

for large ‖z‖.

Finally, the initial seed ξ0 is chaotic within Wα,β if the same holds for the induced space-

time configuration given by (x, t) = ξt (x). As in the periodic case, we will simply call

a seed chaotic if this is true for some α < 0 < β , but in contrast with the periodic case it

appears that such a wedge is often not maximal (see Sect. 8). By inclusion-exclusion the

existence of a density and correlation decay can be extended to any configuration of 0’s and

1’s on sets A and B . Another straightforward exercise is to show that neither a replicator

nor a periodic seed is chaotic: the former has ρ{0} = 0 and the latter lacks correlation decay.

An experimental method that looks for a signature property of chaos starting from product

measure is presented in [22].

Call two chaotic configurations equivalent if their respective densities ρA agree for all

finite sets A. It is an open question whether all chaotic configurations for Exactly 1 are

equivalent (in which case Exactly 1 could be said to have a unique chaotic attractor); we see

no evidence to the contrary in our empirical data.

The power γ measures the degree to which a configuration is chaotic. Empirical results

[12] strongly suggest that γ can be chosen to be arbitrarily large, i.e., that correlations decay

faster than algebraically. It is conjectured in [12] that this decay is slower than exponen-

tial, but due to problems approximating correlations for large ‖z‖ we consider the evidence

inconclusive (see also [4]).

Conceptually, a very convenient tool for our analysis of Exactly 1 is the (left) edge dy-

namics. This amounts to a shift in perspective, whereby one views the evolving configuration

from its left edge, which is thus fixed at the origin. More precisely, the edge dynamics is the

Exactly 1 CA with the neighborhood of x changed to {x − 2, x − 1, x} and the additional

convention that the origin is initially the leftmost occupied site. Clearly the edge dynamics

preserves the latter property for all time. Furthermore, for any k ≥ 1, the edge dynamics

on its leftmost k sites is closed, i.e., unaffected by other sites, and is therefore eventually

periodic. We made modest use of these periodic orbits in [10], and will devote much more

attention to them in Sect. 5.

3 Quasiadditive Initial States and Replication

In this section we prove that, for a class of initial states, Exactly 1 emulates Rule 146 of

E. Jen [18, 19]. It follows that such states, and all seeds in their basin of attraction, are
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maternal replicators. Most of the arguments here are very similar to those in [17], [18] and

in Sect. 2 of [10], but we give some details to adapt the relevant notions to the present

context, and to correct and clarify a few minor misstatements in [18].

Rule 146 is a one dimensional CA with the same neighborhood of x as Exactly 1, and

evolution bt such that bt (x) = 1 iff either

• bt−1(x − 1) = bt−1(x) = bt−1(x + 1) = 1, or

• bt−1(x) = 0 and exactly one of bt−1(x − 1), bt−1(x + 1) is 1.

We begin by dividing a one-dimensional configuration in {0,1}Z into maximal contigu-

ous 1-blocks and 0-blocks of single type, 1 and 0 respectively. Odd and even blocks consist

of odd and even numbers of sites, respectively, and we also call any infinite 0-block odd.

An initial state ξ0 is quasiadditive if each 1 is isolated (i.e., each 1-block has length 1)

and each 0-block is odd. For such a state we will, without loss of generality, assume that the

isolated 1’s are at even sites of Z and define its reduction to have 1 at x iff ξ0 has a 1 at 2x.

Lemma 3.1 Assume that the initial state ξ0 for Exactly 1 is quasiadditive and let the initial

state b0 for Rule 146 be its reduction. Then ξt is quasiadditive at all even times and

ξ2t (2x) = bt (x).

Proof A direct verification, by checking all cases at time 2, and then by induction. �

The next four lemmas establish helpful properties of Jen’s Rule 146. Note that no reduc-

tion is used in any of them.

Lemma 3.2 If b0 = ℓ0 is quasiadditive, then bt = ℓt , and is quasiadditive, for all t .

Proof Direct verification. �

Following [18], we call any 0-block of even length and any 1-block of length at least 2

irregular.

Lemma 3.3 If the number of irregular blocks is finite, then it is nonincreasing in time.

Proof The irregular blocks can be tracked through time so that each has a well-defined

successor unless it disappears on its own or gets annihilated by another irregular block. The

rule of succession is as follows. (See also Sect. 4 of [18].)

An irregular block of either type of size at least 3 shrinks by 1 from each of its ends and

the result is its successor. A 0-block of size 2 turns into a 1-block of size 2, its successor.

A 1-block of size 2 changes to a pair of 0’s, part of some block of 0’s which, if irregular, is

its successor. To find the right edge of the block of 0’s, move rightward and find the first 1

with either two 0’s or two 1’s on its right. The position of this 1 is the right edge, and the

left edge is defined analogously. It is easy to check that the resulting 0-block is even iff the

number of 11 blocks it succeeds is odd—in this sense, the 11 blocks annihilate in pairs and

constitute the only mechanism by which the number of even irregular blocks decreases. An

odd 1-block of length 3 or more dies by shrinking to a singleton. �

Jen’s conjugacy map J (�) on a configuration � ∈ {0,1}Z inserts a 0 into any even 0-

block, and replaces any 1-block of size k ≥ 2 with a configuration of length k + 1 consisting

of a 0-block of size k − 1 flanked by two 1’s.
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Lemma 3.4 Assume that the number of irregular blocks is finite and constant on some time

interval [t1, t2]. Let � = bt1 and restart the dynamics at t1 (i.e., translate time so that t1 = 0).

Then

J (b�
t ) = b

J (�)
t = ℓ

J (�)
t , t ∈ [t1, t2].

Proof See Theorem 1 in [18]. �

Lemma 3.5 Assume that � is a finite seed for bt . Then there exists a finite set �0 = �0(�)

comprised of only regular blocks, and a t0 = t0(�) ≥ 0 and n0 = n0(�) ≥ 0, so that, after a

proper placement of �, the following holds.

At time t0, the configuration b�
t0

consists of two disjoint copies of �0 placed at sites at a

distance D0. The number D0 is either 2n0 or 2n0 − 1, depending on whether the number of

even blocks in � is, respectively, even or odd.

When D0 = 2n0 , the configuration bt , at times t = t0 + 2n0(k − 1), k = 1,2, . . . , consists

of disjoint copies of �0 placed at each 2n0x such that ℓ
{0}
k (x) = 1. When D0 = 2n0 − 1,

the only change is that for x > 0 the copies are shifted one unit to the left, i.e., placed at

2n0x − 1.

Proof From some time t1 on, the number of irregular blocks must be constant—in particular,

there is no 1-block of length 3 or more. Without loss of generality, we may assume that this

is already true initially: we use the seed �1, given by b�
t1

, as the new initial seed. Thus, �0,

t0 and n0 will depend on �1. Also, � is placed so that the leftmost 1 of �1 is at the origin.

Fix a 11 block with its placement and time given by a pair (x0, t0), and track the place-

ment of its successor 11 blocks, say (x1, t1), (x2, t2), . . . . It is not hard to check (cf. the proof

of Lemma 2.4 in [10]) that for k ≥ 0,

−(tk+1 − tk) < xk+1 − xk < tk+1 − tk. (3.1)

Now, replication properties of ℓt guarantee that at sufficiently large times of the form t =
2n, ℓ

�1
t creates two copies of �1, separated by a long interval of 0. At these times, by

Lemma 3.4, b
�1
t consists of two finite sets, each at most twice the length of �1, which are

separated by a long interval of 0’s. Moreover, the rightmost 1 in b
�1
t moves at the speed of

light, i.e., one step to the right at each time unit, and so by (3.1) any 11 block must have the

described long middle interval as its successor. Therefore, this interval is the sole remaining

irregular block in the event that any remains.

As the number of irregular blocks was assumed constant, it can only be 0 or 1 initially

(that is, at the original time t1). Therefore, by the previous paragraph and Lemma 3.4, there

exists an n0 so that at times t = 2n, n ≥ n0, b
�1
t consists of two identical configurations, sep-

arated by an interval of 0’s. These configurations are placed at these times either at distance

2n or at distance 2n − 1, and are either copies of �1 or copies of J (�1). Accordingly, �0 is

defined to be either �1 or J (�1), and t0 = t1 + 2n0 . Note, for use in the next paragraph, that

from time 2n0 to time 2 · 2n0 , the two copies of �0 reproduce at the two ends, but annihilate

in the middle, creating a longer interval of 0’s.

If �1 has no irregular blocks, then the dynamics is ℓt thereafter and additivity easily

finishes the proof. Otherwise, we look at the dynamics b
�1
t between times 2n and 2n+1,

n ≥ n0. At time 2n, we have two copies of �0, which evolve independently (by the speed of

light) and additively (as bt , started from �0, acts as ℓt ) up until time 2n+1 − 2n0 . From that

time to time 2n+1, only the two copies of �0 closest to the middle (and placed at distance

2n0 − 1) interact, and annihilate each other. The remaining copies of �0 interact additively
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in this time interval, therefore the configuration at time 2n+1 again consists of two copies

of �0. �

More precise results on the dynamics of irregular blocks remain elusive, although [20]

proves that a single irregular block embedded in a suitably chosen initial product measure

performs an unbiased random walk. The main result of this section now follows immedi-

ately.

Theorem 1 Every quasiadditive seed is a maternal replicator, with at most two replicating

elements.

We will denote the set of all quasiadditive seeds by Sq . The additive set Sa ⊂ Sq consists

of all seeds with isolated 1’s and 0-blocks of length 3 mod 4. By Lemmas 3.1 and 3.2, Exactly

1 started from a seed in Sa has its state in Sa at all even times and, restricted to these times,

evolves equivalently to the additive dynamics ℓt . We also define S7 ⊂ Sa to be the set of

configurations satisfying the additional restriction that 0-blocks have length 7 mod 8. This

last set will be used in Sects. 6 and 7.

4 Entropy of Replicators

Let rm(n) and rf (n) be the number of configurations on the interval [0,1, . . . , n + 1] that

begin and end with 1 (i.e., with length ν = n+ 2), and are maternal and fraternal replicators,

respectively. For completeness, we also introduce the total replicator counts r(n) = rm(n) +
rf (n).

A principal objective in this section is to obtain lower bounds on various entropies that

indicate the rate of decrease in the proportion of replicators among all seeds of a given

length. As we shall see, parity plays a significant role, so we introduce maternal entropies

ho
m = lim inf

odd n
n−1 log2 rm(n),

he
m = lim inf

even n
n−1 log2 rm(n),

and define corresponding fraternal entropies ho
f , he

f , and total entropies ho, he analogously.

Spatio-temporal entropies were central to early CA research (e.g., [27]), but here the term

has a more straightforward meaning, as the measure of the amount of choice, per bit, one

has in constructing a long initial set with a desired property. To get a feeling for the above

replication entropies, we have collected data, by both exhaustive search and simulation,

on seeds with n ≤ 41. Up to n = 13, we tally all seeds that exhibit the “mass extinction”

signature of replication by a time cutoff: the evolution runs to time t = 500n, and once

t > 100n we check whether the density between the extreme 1’s changes by at least a factor

of 10, from above 0.6 to below 0.06. (In all replicators we have seen, configurations that

precede two replicating elements separated by 0’s are close to . . .011101110111 . . . , thus

with density about 0.75; so 0.6 is chosen somewhat smaller.) This provides a lower bound

on the total number of replicators, but we cannot rule out a first replication later on. Counts

for n ≥ 14 use Monte Carlo: replicators are searched at random until 200 (n ≤ 23 or n = 29)

or 5 (remaining n ≤ 41) are found. The results are shown in Table 1.

While replicators are well represented in seeds with small length n, their proportion de-

creases rapidly after n = 30. Finding even one replicator at random past n = 50 would seem
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Table 1 Replicator counts for small seeds

n r(n) rm(n) rf (n)

1 2 2 0

2 4 1 3

3 6 4 2

4 8 3 5

5 18 12 6

6 17 6 11

7 47 31 16

8 39 20 19

9 150 87 63

10 118 51 67

11 517 252 265

12 349 179 170

13 1484 733 751

n no. trials no. repl. no. mat. no. frat.

14 2846 200 76 124

15 1713 200 99 101

16 4198 200 94 106

17 2151 200 85 115

18 5311 200 72 128

19 2395 200 101 99

20 6773 200 84 116

21 3405 200 82 118

22 7851 200 69 131

23 4295 200 83 117

24 223 5 3 2

25 223 5 4 1

26 333 5 0 5

27 100 5 2 3

28 440 5 3 2

29 9195 200 81 119

30 435 5 1 4

31 291 5 2 3

32 777 5 0 5

33 160 5 3 2

34 1137 5 2 3

35 440 5 3 2

36 1183 5 2 3

37 280 5 2 3

38 1753 5 1 4

39 540 5 2 3

40 1443 5 2 3

41 1641 5 2 3

to require a great many tries. From admittedly very small values of n, all the h-values seem

fairly close to 0.8. Both the data and our rigorous lower bounds suggest asymptotically lower

entropies for even n. By contrast, it appears possible that maternal and fraternal entropies

are equal, that is, that ho
m = ho

f and he
m = he

f . Rigorous methods to investigate such questions

remain elusive.

Let us now turn to some rigorous results. In light of Theorem 1, configurations in Sq ,

which can be counted easily, give ho
m ≥ 1

2
. By identifying the immediate predecessors

of such states, this bound is improved to log2 φ, where φ denotes the golden ratio, so

ho
m ≥ 0.694. Recursive estimation of the frequency of seeds that lead to Sq after j steps,

up to j = 8, yields the following improved lower bound on the entropy for odd maternal

replicators. A judicious modification at one edge of the seeds attracted to Sq then yields the

same result for odd fraternal replicators. Trivially, the common value also bounds the total

replicator entropy for seeds of odd length.

Theorem 2 The entropies ho
m, ho

f , and ho are all bounded below by 0.7555.
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Proof (The odd maternal case) We count predecessors of quasiadditive configurations, i.e.,

configurations that lead to Sq after one update, and in general those that accomplish this in

j steps. For this purpose we use j -triples, which are introduced next.

The j -triples are defined recursively: a (j + 1)-triple is a scheme
a b

c
, where a, b ∈ {0,1}

and c is a j -triple. Here b is the type of the triple. Additionally, a triple cannot have a = b = 1

and c of type 1. For j = 0, the triples are misnomers—there are three of them, ordered as

given here: two 0-types, which we denote by 0o and 0e , and a 1-type, which we denote

simply as 1.

The 0-triples are states needed to count quasiadditive configurations. Namely, we need to

count the number of paths from 1 to 1 in a directed graph with oriented connections 1 → 0o,

0o → 0e , 0o → 1, 0e → 0o. (Here, 0o and 0e represents 0 sites which are at odd and even

positions within a 0-block, respectively.)

Since we wish to represent the j -step predecessors as paths through j -triples, we are

forced to recursively list transitions for (j + 1)-configurations as follows:

0 0

0
→ 0 0

c

0 0

1
→ 0 1

c

1 0

0
→ 0 1

c

1 0

1
→ 0 0

c

0 1

0
→ 1 1

0

0 1

1
→ 1 0

c

1 1

0
→ 1 1

0

1 1

0
→ 1 0

c

The underlined sites represent any j -triple of the corresponding type, possibly different

on the left and right side of the transition, and c is an arbitrary j -triple. All transitions

are given by the possible j -triple transitions (satisfying the restriction on type). We order

(j + 1)-triples as in the above transition list, assuming that j -triples are already ordered.

The above rules induces a recursive construction of the transition matrix. Let n0 and n1

be the number of j -triples of the types 0 and 1, and n′
0, n′

1 the two numbers for (j + 1)-

triples. Then n′
0 = 2n0 + 2n1 and n′

1 = 2n0 + n1, with n0 = 2, n1 = 1 for j = 0. Assume the

j -triples transition matrix is given by blocks, with submatrix dimensions in the superscript,

and subscripts reflecting the types,

M =
[

M
n0×n0

00 M
n0×n1

01

M
n1×n0

10 M
n1×n1
11

]
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Table 2 Entropy estimates for

Sq based on j -triples j n0 + n1 λmax log2 λmax

0 3
√

2 0.5

1 11 (1 +
√

5)/2 0.6942

2 39 1.6226 0.6983

3 139 1.6295 0.7044

4 495 1.6598 0.7309

5 1763 1.6562 0.7278

6 6279 1.6746 0.7438

7 22363 1.6717 0.7413

8 79647 1.6883 0.7555

Then the (j + 1)-tuples matrix M ′ is given by the same scheme and the submatrices

M ′
00 =

⎡

⎢

⎢

⎣

M
n0×n0

00 M
n0×n1

01 0n0×n0 0n0×n1

0n1×n0 0n1×n1 0n1×n0 0n1×n1

0n0×n0 0n0×n1 0n0×n0 0n0×n1

M
n1×n0

10 M
n1×n1
11 0n1×n0 0n1×n1

⎤

⎥

⎥

⎦

M ′
01 =

⎡

⎢

⎢

⎣

0n0×n0 0n0×n1 0n0×n0

M
n1×n0

10 M
n1×n1
11 0n1×n0

M
n0×n0

00 M
n0×n1

01 0n0×n0

0n1×n0 0n1×n1 0n1×n0

⎤

⎥

⎥

⎦

M ′
10 =

⎡

⎣

0n0×n0 0n0×n1 0n0×n0 0n0×n1

0n1×n0 0n1×n1 M
n1×n0

10 M
n1×n1
11

0n0×n0 0n0×n1 M
n0×n0

00 M
n0×n1

01

⎤

⎦ M ′
11 =

⎡

⎣

0n0×n0 0n0×n1 M
n0×n0

00

0n1×n0 0n1×n1 0n1×n0

0n0×n0 0n0×n1 M
n0×n0

00

⎤

⎦

For j = 0,

M00 =
[

0 1

1 0

]

M01 =
[

1

0

]

M10 =
[

1 0
]

M11 =
[

0
]

This algorithm results in the estimates in Table 2, computed by MATLAB’s sparse matrix

routines, with λmax the maximum eigenvalue of M and the last column rounded down. The

final number is featured in the statement of the theorem.

The matrices M are periodic with period 2, so they have eigenvalues ±λmax. Thus it is

crucial to note that the path between extreme 1’s takes an even number of steps.

Another important remark concerns nonmonotonicity of the estimates in Table 1. This

is the result of non-surjectivity of Exactly 1. For instance, it is easy to check that any con-

figuration containing the string 10101001 cannot have a predecessor, so it is known as an

orphan (or garden of Eden) in the CA literature. Therefore the proportion of non-orphan

configurations converges to 0 exponentially fast. Evidently, among the j = 4 and j = 6 pre-

decessors there are many orphans, balancing the branching effect due to increased j . For

some experimental results on the prevalence on orphans, and more on general methods for

computing the set of predecessors of a configuration, see [3]. On the other hand, Exactly 1

preserves Sq after two time steps, so the table entries must increase in steps of size 2. Finally,

we remark that our j -triple method is a sort of reverse counterpart to the technique in [27]

for computing spatial entropy. �

Proof (The odd fraternal case) We claim that any seed of the form

11101[7 0’s]1[19 0’s]M,
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Fig. 3 The edge dynamics

started from 1 (left) and 11101

(right) on, respectively, the 7 and

11 leftmost sites. Both have

settled into a periodic cycle by

time t = 7, and states of the

rightmost 3 sites are identical up

to this time, hence for all time

where M is any maternal replicator that leads to Sq after 8 updates, is a fraternal replicator.

Consult Fig. 4a for a representative example of the construction.

We begin with the following observation, which will also be applied later in constructing

exponential families of periodic and chaotic seeds.

Lemma 4.1 Let R be a finite configuration, with its leftmost 1 placed at 0. Append a con-

figuration A on its left to get AR. Suppose the Exactly 1 evolutions from R and AR are

identical at all space-time sites (x, t) with x + t ≥ d . Now let R′ be any configuration that

agrees with R at sites x such that x ≤ d + 1. Then the evolution of AR′ agrees with that of

AR for x + t ≤ d + 1, and is identical to that of R′ for x + t ≥ d .

Proof Since R = R′ for x ≤ d + 1, by the speed of light both equalities ξAR
t (x) = ξAR′

t (x)

and ξR
t (x) = ξR′

t (x) hold for x + t ≤ d + 1. As we also assume that ξAR
t (x) = ξR

t (x) for

x + t ≥ d , it follows that ξAR′
t (x) = ξR′

t (x) when x + t ∈ {d, d + 1}. To finish the proof,

we show by induction that this last equation in fact holds whenever x + t ≥ d . But for

any site (x, t) with x + t ≥ d + 2, ξt (x) is decided by the states of sites (x, t − 1) with

x ≥ d + 2 − t − 1, or equivalently, x + t − 1 ≥ d . And for these, ξAR′
t−1 (x) = ξR′

t−1(x) by the

inductive hypothesis. �

Apply the lemma with R a singleton and A a block of 3 1’s followed by a single 0. Thus,

AR is the seed 11101 with rightmost 1 at the origin. We claim the hypothesis is satisfied

with d = 4. This is evident from Fig. 3, which shows the edge dynamics for R and AR.

Note that the two are identical in the three rightmost columns shown and hence at all greater

distances from the edge. This translates to equality for x + t ≥ 4 for the Exactly 1.

Now consider R′ of the form

1[7 0’s]1[19 0’s]M,

with M as in the claim. By inspection, R′ agrees with R for x ≤ 5. The configuration after

8 updates has the form

1[7 0’s]1[7 0’s]1[7 0’s]1[3 0’s]M ′,

where M ′ ∈ Sq . Note that this entire configuration belongs to Sq , so it is a maternal repli-

cator. By Lemma 4.1, the evolution of seed AR′ of the claim agrees with that of R′ at all

sites 6 or more cells from the left edge, whereas sites at most 5 cells from the edge evolve

as in Fig. 3. It follows that the left replicating configuration of AR′ is obtained from the left

maternal pattern of R′ by attaching 1110, and is therefore a fraternal replicator. For large

n there are, for some constant c > 0, at least c · 20.7555n distinct choices of M with length

n + 2 − 30 which thus make AR′ of length n + 2. Therefore ho
f ≥ 0.7555. �

For small values of n there are decidedly fewer even replicators in Table 1 than there are

odd ones with one cell less. This reflects the key role of Sa and Sq , both consisting entirely
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Fig. 4 Examples of the construction of exponentially many, from top to bottom, (a) odd fraternal, (b) even

maternal, and (c) even fraternal replicators

of odd seeds. One source of even replicators is symmetry: any symmetric seed with 1001

in the middle and quasiadditive structure elsewhere (isolated 1’s and odd intervals of 0’s) is

also a maternal replicator. We omit the proof, as this approach cannot give us a better lower

bound for he
m than ho/2 ≤ 0.5. Instead, we now describe another class of even replicators

with substantially better entropy bounds.

Theorem 3 The entropies he
m, he

f , and he are all bounded below by 0.6730.

Proof (The even maternal case) The key observation is the following simple conjugacy

property. �

Lemma 4.2 Assume that the initial state ξ0 = A is additive, i.e., A ∈ Sa . Replace a 1 in

A with 1001. The so obtained seed is an even maternal replicator. In fact, its evolution is

conjugate to the one obtained by replacing the same 1 with 10001, with insertion of an extra

0 being the conjugacy map.

Proof Let A′ and A′′ be the described perturbations, by substitution 1 → 1001 and 1 →
10001, respectively. We know from Sect. 3 that at even times ξA′′

t emulates additive dynam-

ics at even times, and we assume t is even for the remainder of the proof. For ξA′
t , track the

successor 0-block of the 00 pair, as in the proof of Lemma 3.3: at time 2 it is a 0-block, of

length 2 mod 4 and at least 6. This block proceeds to shrink by 4 at each successive even time

until it reaches size 2 again, and the procedure repeats. By similarly tracking successors of

the 000 block in ξA′′
t it is clear that the two agree except for an extra 0. �

We remark that the lemma does not generalize to other even perturbations such as a

100001 substitution or three 1001 substitutions.

Now consider any seed of the form

Me = M[19 0’s]100010001001,

where M is a maternal replicator that leads to M ′ ∈ Sa after 8 updates. See Fig. 4b for an

example. Then after the same 8 updates Me leads to

M ′0001000100010001001000100010001.
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Table 3 Entropy estimates for

Sa based of j -triples j n0 + n1 λmax log2 λmax

0 5 21/4 0.25

1 19 1.5127 0.5971

2 67 1.5361 0.6193

3 239 1.5341 0.6174

4 851 1.5640 0.6452

5 3031 1.5560 0.6378

6 3031 1.5560 0.6587

7 38447 1.5757 0.6560

8 136931 1.5944 0.6730

An easy application of Lemma 4.2 shows that this is an even maternal replicator, so Me

is also. As in the odd maternal case, it therefore suffices to compute the entropy of the

specified configurations M . Applying the recursive j -triple technique to Sa , we obtain the

bounds shown in Table 3, and the desired result for j = 8.

Proof (The even fraternal case) This construction combines those for the odd fraternal and

even maternal cases. Given an even maternal replicator Me of the form just described, ap-

pend the same configuration on the left as in the proof of Theorem 2 to get

11101[7 0’s]1[19 0’s]Me.

See Fig. 4c. Applying Lemma 4.1 as before, this is an even fraternal replicator. So we obtain

the same lower bound for he
f as for he

m. �

5 Periodic Attractors

Let L be a finite configuration of length σ . Take another finite configuration H , and assume

it has length h, with a 1 at the left end. Form the configuration HL∞ by placing infinitely

many copies of L to the right of H , next to each other. Starting from HL∞, run the edge

dynamics until time π . Assume that the starting configuration lies on a (semi-infinite) orbit,

i.e., that there exist configurations H0,H1, . . .Hπ−1 of length h, and L0,L1, . . .Lπ−1 of

length σ , so that H0 = H , L0 = L and at time t the configuration generated by the edge

dynamics is Ht modπL∞
t modπ . Then we call H a handle, L a link, and the handle-link pair,

denoted by H + L, has temporal period π and spatial period σ .

One could define a handle-link pair so that it merely repeats after π time steps. With suit-

able enlargement of the handle, and the same link, the condition from the previous paragraph

is then satisfied.

We will fix the temporal period π in most of the discussion. Assume H + L is such a

handle-link pair, and start from HL∞. For k = 0,1, . . . , and m = 0, . . . , π − 1, let λk[m] ∈
{0,1,2,3} be the number whose binary representation is the state at sites k − 1, k at time m.

The label at generation k is the vector λk = (λk[m];m = 0, . . . , π − 1). Note that here, and

in the sequel, square brackets will be used to denote coordinates of labels. Also observe that

the state at site k at time m is given by λk[m]mod 2.

Clearly, λk and the state at k + 1 at time 0, or any other time, together determine λk+1.

Moreover, if the label contains at least one 3 (i.e., 11), say at position m, then the state at
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k + 1 at time m + 1 is 0. Therefore, for such λk , λk+1 is uniquely determined. Moreover we

may, and will, assume that λh = λh+σ . Indeed, if necessary we can make the handle longer

by 2 sites and accordingly redefine L, without changing HL∞ or σ . We again emphasize

that spatial and temporal periods are assumed minimal, i.e., the link L cannot be divided

into two or more identical pieces and HL∞ does not repeat at some time which is a proper

divisor of π .

The handle-link pair is robust if each label λk ; k = h, . . . , h + σ − 1, contains at least

one 3. The reason for this terminology is our first result, which states that the handle part of a

robust handle-link pair is attracted to the corresponding semi-infinite periodic configuration

regardless of the states at sites to its right. For the edge dynamics, a robust handle-link pair

is a kind of stable periodic attractor.

Proposition 5.1 Assume that H + L is a robust handle-link pair, and let A0 be any seed

that agrees with H on (−∞, h − 1]. Then the configuration of the edge dynamics from A0

at time t agrees with that started from HL∞ on (−∞, h − 1 + ⌊t/π⌋]. Consequently, A0 is

periodic for Exactly 1 within the wedge W−1,1/π−1.

Proof Assume the two states agree up to position k at time t . Then the two states agree at

position k + 1 by time t + π at the latest — the exact time of agreement depends on the

distribution of 3’s in λk . �

Note that while the spatial period σ is the same for both Exactly 1 and its edge dynamics,

the temporal periods are different. For instance, the periodic attractor in Example 1d has

π = 8 and τ = 52.

We call two handle-link pairs matching if their links are mirror images. The next propo-

sition explains how a matching handle-link pair generates a periodic seed for Exactly 1. The

two handles are unrelated and often very different. For any configuration A, we denote its

mirror image by Ā.

Proposition 5.2 (a) For a matching handle-link pair, the spatial period σ divides 2π .

(b) Assume that σ = 2π . Let H + L and H ′ + L̄ be matching handle-link pairs, and

start Exactly 1 from HLH̄ ′. At times nπ , the resulting configuration is HLnH̄ ′ translated

by −nπ , so this seed is periodic.

We should emphasize that (a)–(b) are the only results in this section dealing with the

Exactly 1 rule directly; all the others are essentially about its edge dynamics. It follows

from (b) that for the periodic seeds we will present, all with σ = 2π , the corresponding

temporal period τ under Exactly 1 is 2π . These and several other examples will be discussed

from both the original and edge perspectives, as convenient.

Proof To prove (a), note that the state of the link L at (x + π)modσ must equal that at

(x − π)modσ . So the state at x and agrees with those at (x + 2π)modσ , and consequently

also with those at x + gcd(σ,2π)modσ .

For (b), let the handle lengths of H and H ′ be h and h′, respectively. In time π , Ex-

actly 1 started from configuration HLn translates this configuration by −π onto [−π,−π +
h + nπ]. Also in time π , H ′L̄n is translated by −π onto [−π,−π + h′ + nπ]. Therefore,

starting from HLnH̄ ′ and using (a), at time π Exactly 1 creates the configuration HLn+1H̄ ′

translated by −π . The proof is completed by induction. �
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The rest of this section is devoted to search strategies for robust and matching handle-link

pairs. Our key tool is the following label dynamics. We begin by listing a few facts that are

easy to check. As we already know, any label λ ∈ {0,1,2,3}π in generation k determines

the label in the next generation if one of its coordinates is 3. If none of its coordinates is 3,

and the combined number of 1’s and 2’s is even, then there are two possibilities for the

next-generation label: λ0 and λ1. The former, called the 0-successor, is generated by state 0

at position 0, and the latter, called the 1-successor, by state 1 at the same position. Finally,

if there is no 3 and the combined number of 1’s and 2’s is odd, then there is no next label

possible with temporal period π . However, if we embed period π labels in period 2π ones in

the natural way, then we do get two successor labels. In particular, the following proposition

holds. The proof repeats observations from this paragraph, but we feel it is worth doing so

since they form the basis of our arguments in the sequel. Moreover, the simple proof uses no

specific property of Exactly 1, so the conclusion holds for any edge dynamics with 2 states.

Proposition 5.3 Temporal periods of handle-link pairs are powers of 2.

Proof Assume that the boundary dynamics repeats a configuration A after π steps, but not

earlier. Append a 0 to the right end of this configuration. Write 0 → 0 if this 0 returns to

0 after π steps, and similarly for the other three possibilities. If 0 → 1 and 1 → 1, then

the only appended state that yields a periodic configuration is 1, and the period remains π .

Similarly if 1 → 0 and 0 → 0, except that the sole appended state is now 0. If 1 → 1 and

0 → 0, we can append both states and the period remains π . The final possibility is 1 → 0

and 0 → 1, when either appended state repeats after 2π time steps, but not earlier. �

A natural object is thus the label tree associated with a given period π , which we will

assume from now on is a power of 2. In this tree, every node has a label. The root label is the

vector 1π with all coordinates 1, and a node with label λ has a 0, 1, or 2 of successors, with

their labels given by the rules in the paragraph before Proposition 5.3. Clearly, if the label

tree is finite, then no handle-link pair exists for that π . Such is the case for π = 1 (the root

has no successor), π = 2 (with a total of 7 nodes and 3 generations), and π = 4 (51 nodes, 11

generations). If a label at a node equals, up to rotation, a label at a node in its ancestral line,

then the tree is infinite. This indeed happens for π = 8, and consequently for all larger π .

Here, the label λ′ is a rotation by k ∈ {0, . . . , π − 1} of a label λ if λ′[i] = λ[(i − k)modπ]
for all i ∈ {0, . . . , π − 1}.

Instead of dealing with the complete label tree, an infinite object for π ≥ 8, we construct

the Stage I tree as follows. Order nodes first so that previous generations are ahead of later

generations, and within the same generation so that 0-successors (resp. their progeny) are

ahead of 1-successors (resp. their progeny). A node is without successors, i.e., a leaf, if it

either

• dies by period doubling: its label has no 3 and an odd combined number of 1’s and 2’s; or

• dies by repetition: its label equals up to rotation the label of a node ahead of it in the

ordering.

Clearly, a Stage I tree is always finite, but may be very large. For π = 8, this tree has 90

nodes in 49 generations; for π = 16 it has 1050 nodes in 147 generations; and for π = 32

it has 534834 nodes in 4910 generations. For π = 64 the number of nodes is in at least

the tens of millions and computer memory limitations have prevented us from completing

the Stage I construction. By contrast, time is a much less significant constraint provided

one uses binary search trees for labels that are already present in the tree. When Stage I is
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complete, the labels present constitute all possible handle ends, i.e., all possible labels given

by the last pair of sites in the orbit of the handle part of a handle-link pair.

Once the Stage I tree has been generated for a given π , we run the following algorithm

to find all possible links in a robust handle-link pair. Clearly, the link is the more important

part of a pair because it determines the periodic attractor to which the finite seed converges,

whereas the different possible handles for a given link relate to the size of its attractor basin.

5.1 The R-algorithm

A leaf in the Stage I tree with a label that includes a 3 will be called a 3-leaf; note that such

nodes die by repetition. For each 3-leaf, carry out the following procedure:

(R1) Generate the successors of the leaf, adding them to the Stage I tree, until one of them

is an R-repetition or has a label with no 3.

The criterion for node x to be an R-repetition is as follows. Trace back along the chain

of proper (i.e., different from x) ancestors of x with labels that include at least one 3. Call

the resulting set of labels (all of which include at least one 3) the R-set of x. Then x is an

R-repetition if its label is a rotation of a label in its R-set.

Every 3-leaf x for which (R1) ends in an R-repetition gives a robust handle-link pair, by

the following formulas. These may look confusing, but we merely read off the handle and

link configurations from the relevant labels. Waiting for an exact label replica rather than

allowing for a rotation simplifies the formulas (since r = 0 in that case) but increases the

computation time.

(R2) Denote the label of node x by λ(x). Consider the lineage starting from the root x0, and

continuing as x1, . . . , xi0 , . . . , xg = x, where λ(xi0) is in the R-set of xg , and λ(xg)

is the rotation by r of λ(xi0). Let n2 = π/gcd(π, r), with the convention that n2 = 1

if r = 0. Then h = i0 + 1, σ = (g − i0) · n2, Hi = xi mod 2, i = 0, . . . , i0, and L the

vector with σ entries

λ(xi0+1)[(jr)modπ ]mod 2, . . . , λ(xg)[(jr)modπ]mod 2; j = 0, . . . n2 − 1,

specify a robust handle-link pair.

We should add that the spatial and temporal periods in (R2) may not be minimal and

so may need to be shortened. In any case, the initial condition consisting of handle alone

generates the periodic links, as guaranteed by Proposition 5.1.

After the procedures in (R1) and (R2) are concluded, additions to the stage I tree are

erased and the algorithm proceeds to the next 3-leaf.

Proposition 5.4 Up to rotation, all possible links from robust handle-link pairs are obtained

by the R-algorithm.

Proof To the Stage I tree, whose oriented edges we call forward, add backward edges from

every node that dies by repetition to the node which is not a leaf in the tree that it equals up

to rotation. Thus at most one backward edge can originate at a node, but many can end at it.

See Fig. 5 for two examples of such augmented trees.

Any link of a robust handle-link pair has a representation in the Stage I tree as follows:

y0 ↓ y1 ↑ y2 ↓ y3 . . . yk ↑ y0, where ↓ signifies a connection through a sequence of forward

edges to a leaf and ↑ a single backward arrow from a leaf. Moreover, all λ(yi) contain a 3.

Now clearly y1 is a 3-leaf detected by the R-algorithm. �
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Fig. 5 The Stage I tree for π = 4 with labels, and for π = 8 without labels. Backward (gray) edges that

connect a label with its rotation are also included. The bottommost backward edge in the π = 8 tree points

from a leaf to a node 13 generations back, whose label it rotates by 3. This backward edge is responsible for

the robust pair with σ = 13 · 8/gcd(8,3) = 104

We ran the R-algorithm for π = 8,16, and 32. Remarkably, there is a robust handle-link

pair for π = 8 with σ = 104 and shortest handle of 35 sites, as featured in Example 1d and

most likely known by CA experts. There are no new examples for π = 16. The π = 32 case,

however, yields new examples having 26 different links: four with σ = 62, four with σ = 64,

eight with σ = 960, eight with σ = 992, and one each with σ = 2944 and σ = 11440.

Example 2 The following seed generates a robust handle-link pair with π = 64:

1[37 0’s]1[28 0’s]1[12 0’s]1[13 0’s]1

However, the link on its own is the same as in Example 1d. With π = 8, the Stage I tree

is unable to find this robust pair despite the fact that the periodic attractor has temporal

period 8, since extra-dimensional branching is needed to connect the root label to the link.

Thus, even though our method gives a systematic way to search for all robust handle-link

pairs of a given period (assuming sufficient computing power), it will not necessarily find

all possible links of that period.

Example 3 Particularly simple seeds generate several of the 26 robust links for π = 32. We

provide three samples; for the complete collection, see [14].

(3a) 1[25 0’s]101[6 0’s]1

This link has σ = 62 and ρ = 123/496 ≈ 0.248. The periodic density is much lower than

the chaotic density ≈ 0.351 due to a preponderance of dramatically larger triangles of 0’s in

the periodic state than are common in the chaotic state.

(3b) 1[27 0’s]1[28 0’s]1

Here σ = 992, ρ = 267/992 ≈ 0.269. Again, large triangles of 0’s predominate, though

not quite as much as in the previous case.

(3c) 1[23 0’s]1[8 0’s]1
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In this case σ = 11440, ρ = 8191/22880 ≈ 0.358. This handle-link pair is unusual in that

it gives the impression of emerging entirely by chance from chaotic dynamics. The periodic

state it generates is statistically similar to the chaotic state, so its density is quite close to the

chaotic density.

Since we are unable to complete the Stage I tree for π = 64, a reduced search strategy is

required in order to find additional examples of periodicity. One approach is to simply follow

random paths through the label tree until a repeat is encountered or a cutoff is reached. In this

way Hickerson [16] recently discovered nine robust pairs with π = 64: seven with σ = 3968,

and two with σ = 12032. We now describe an alternate method, motivated especially by the

search for periodic seeds, which works surprisingly well.

5.2 The S-algorithm

A special label is by definition nonzero and has only intervals of 0’s and 1’s of even size,

starting with an interval of 0’s. By Lemma 5.1 below, any such label can be connected back

to 1π , so assume such a connection and start with a special label. Now generate a single path

by taking the first successor to be the 1-successor, followed by 0-successors thereafter, for

5000 steps, or until a label repeats up to rotation on this path. In the latter case, generate a

handle-link pair as in (R2), with reduction of space and time periods if necessary, and check

whether it is robust.

Lemma 5.1 Any special label is in the (complete) label tree.

The reader may want to quickly check that the only special label for π = 4 appears in the

Stage I tree of Fig. 5.

Proof All special labels can be reached from Sa . In the edge dynamics for such seeds, 100

at even times is followed immediately below by 111. Also, provided the origin is initially

occupied, all odd sites (and more) are automatically 0 at even times. So we only need to

consider even times, even locations, and an appropriate version of the additive dynamics.

Let us introduce the variant ℓ′
t given by

ℓ′
t (x) = (ℓ′

t−1(x − 1) + ℓ′
t−1(x))mod 2,

and consider the label dynamics for ℓ′
t on vectors of size π ′ = π/2. Clearly, as the rule has

only one neighbor to the left, such labels are in the set {0,1}π ′
. To complete the proof, we

need to show that all such labels with a nonzero number of 1’s are in the resulting label tree

dynamics.

The crucial observation is that any label λ has a unique predecessor λ′. This predecessor

is again given by an additive rule, specifically

λ′[i] = (λ[i] + λ[i + 1])mod 2,

where the coordinate indices in square brackets are taken modulo π ′. Iterates of this λ → λ′

rule, which we call the reverse label dynamics, reach all 0’s in π ′ steps or earlier. The reason

is simple: since π ′ is a power of 2, the additive dynamics from a label with a single 1 creates

a vector of all 1’s after π ′ − 1 time steps (as it does not feel the periodic boundary up to

this time) and is 0 after that. By additivity, then, any label also creates all 0’s at those times.

Now a vector of 0’s is created by only two vectors in the reverse label dynamics: all 0’s, or
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all 1’s. Since we start with a nonzero vector, the first step with all 0’s must be preceded by

all 1’s. �

There are too many (231) special labels for π = 64 to check them all, so we further restrict

our search to manageable subsets. The set of
(

31

7

)

special labels with 4 intervals of each type

is by far the most successful of those we have tried, yielding robust pairs with spatial periods

σ = 126, 128, 3904, 3968, 4000, 4032, and 12032.

Example 4 Here we present two of the robust handle-link pairs discovered by the S-

algorithm with π = 64; for the complete collection, see [14].

(4a) 1[3 0’s]1[11 0’s]1[19 0’s]1[3 0’s]1[11 0’s]1[7 0’s]1[56 0’s]1

This seed generates a robust pair with σ = 126 and ρ = 451/2016 ≈ 0.224. The periodic

state has an unusually large empty triangle with a row of 63 0’s at its top, and hence an

especially low density of 1’s.

(4b) 1[3 0’s]1[11 0’s]1[11 0’s]1[3 0’s]1[23 0’s]1[3 0’s]1[35 0’s]1[3 0’s]1[19 0’s]11

In this case σ = 4000 and ρ = 69/250 = 0.276. The periodic state is most notable for its

remarkably slow advance against the chaotic state and dramatic fluctuations at the interface,

as mentioned at the end of Sect. 8.

Let us now turn to our quest for periodic seeds via matching handle-link pairs. We have

no algorithm that looks for them directly; instead, we rely on Proposition 5.2(a), as explained

below.

5.3 The M-algorithm

For every leaf x ′
0 in the Stage I tree that dies by repetition, perform the following procedure,

in which subsequent nodes are denoted with a prime:

(M1) Generate the label tree rooted at x ′
0, and add it to the Stage I tree, until all nodes at

generation 2π of the second stage are computed.

A second stage generation is simply the generation counted from x ′
0 (so that x ′

0 has

second stage generation 0). Recall that in a label tree there is no killing by repetition. We

also make the obvious remark that (M1) needs to be performed only once for each set of

labels that are all equal up to rotations.

Within the tree obtained in (M1), look for labels at second stage generation 2π that are

exact repetitions of the label λ(x ′
0).

(M2) Consider the lineage starting from the root x0, and continuing with x1, . . . , xi0 = x ′
0,

x ′
1, . . . , x

′
σ , where λ(x ′

0) = λ(x ′
σ ) and σ = 2π . Then h = i0 + 1, Hi = xi mod 2; i =

0, . . . , i0, and L the vector with σ entries

λ(x ′
1)[0]mod 2, . . . , λ(x ′

σ )[0]mod 2,

determine a handle-link pair.

After (M1) and (M2) are concluded, additions to the stage I tree are erased and the algo-

rithm proceeds to the next leaf that dies by repetition.

In the end, we obtain a list of all possible links with σ = 2π , by Proposition 5.5 below.

Then the final step of the M-algorithm is to look for matching pairs among them.

Proposition 5.5 Up to rotation, all links from a handle-link pairs with σ = 2π are obtained

by the M-algorithm.
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Proof Consider the augmented Stage I tree as in the proof of Proposition 5.4. Take a label

λ0 not on a leaf that dies by repetition. This label then has a unique representative, up to

rotation, somewhere in the Stage I tree. The only way λ0 can be within a link of size 2π

(by which we mean the 2π labels generated by a link together with its iterates) is if there

is a sequence of nodes y0, . . . , yk so that λ0 = λ(y0) and y0 ↓ y1 ↑ y2 . . . ↑ yk ↓ y0. (Here,

the meaning of arrows is the same as in the proof of Proposition 5.4.) This means that

λ(y1) generates a link (with a different handle) with the same spatial period as λ0, with λ0

contained, up to rotation, within the iterates of the link. Thus λ(y1) gives another solution,

equivalent to that given by λ0, and y1 is a leaf that dies by repetition. �

Our computer implementation of the M-algorithm concluded that there are no matching

handle-link pairs for π = 8, and that Hickerson’s Example 1e is the only matching pair

with π = 16. For π = 32, the search yielded six more matching pairs. Curiously, all four

robust pairs with π = 32 and σ = 64 have a match; we are unable to explain this remarkable

circumstance. One of the π = 32 matching pairs (a robust one) was previously discovered

by Hickerson [15]; the others are new.

Example 5 Seeds with four to eight 1’s generate the robust links that may be used to con-

struct π = 32 periodic seeds. In each case, the periodic seed is obtained by extracting a

suitable initial segment from the limit configuration, in the same manner as for Fig. 1e–f of

the Introduction.

(5a) 1[3 0’s]1[11 0’s]1[32 0’s]1

This yields a periodic seed of 478 sites with the same link as Hickerson’s π = 32 discov-

ery; his original example had length 2150.

The three new π = 32 robust examples arise from these initializations:

(5b) 1[39 0’s]1[7 0’s]1[3 0’s]1[8 0’s]1

(5c) 1[15 0’s]1[7 0’s]1[3 0’s]1[11 0’s]1[7 0’s]1[3 0’s]1[8 0’s]1

(5d) 1[11 0’s]1[7 0’s]1[15 0’s]1[16 0’s]1 In each case, an initial segment in Sa leads to a

special label followed by a single 1-successor. Possible lengths of periodic seeds are 541,

242, and 849, respectively.

The common structure of the periodic seed generators in Example 5 was the original

motivation behind our S-algorithm. For π = 64, that approach has found 4 additional ini-

tializations with the same structure that generate robust handle-link pairs H + L. Each such

H + L is part of a matching pair, and produces a periodic seed after judicious surgery at the

right edge. In each case, a matching handle, much simpler than H , then self-organizes. One

of these discoveries is the following.

Example 6

1[11 0’s]1[3 0’s]1[7 0’s]1[3 0’s]1[7 0’s]1[47 0’s]1[7 0’s]1[7 0’s]1[24 0’s]1

The periodic cycle of the resulting edge dynamics is shown in Fig. 6; its leftmost 1476

cells in the 21st row comprise a π = 64 periodic seed. (Similarly, the S-algorithm yielded

periodic seeds of length 987, 3345, and 3781 with different links.)

In total, we now know periodic seeds for Exactly 1 with 11 distinct periodic attractors, as

summarized in Table 4. We provide the edge period, density, minimal known left and right

handle lengths, and also indicate if one of the two handle-link pairs is robust. The first two

are Hickerson’s [15], the next 3 were found with the R-algorithms, the 2 after that with the

M-algorithm, and the final 4 with the S-algorithm.
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Fig. 6 The π = 64 cycle of the edge dynamics in Example 6

Table 4 Summary of known periodic seeds with distinct periodic attractors. In all cases, σ = τ = 2π

Name π ρ l. handle size r. handle size Robust edge Example no.

H1 16 19/64 93 8 none 1f

H2 32 61/256 481 8 left 5a

R1 32 29/128 544 32 left 5b

R2 32 65/256 247 32 left 5c

R3 32 61/256 860 8 left 5d

M1 32 57/256 151 4 none —

M2 32 57/256 262 4 none —

S1 64 109/512 1035 16 left —

S2 64 67/256 1501 8 left 6

S3 64 217/1024 3346 32 left —

S4 64 197/1024 3816 12 left —

Fig. 7 (a, b) Construction of a fraternal replicator with nearly chaotic edge dynamics starting from the seed

of Example 7

The design behind matching pairs remains a mystery, so we do not hazard a conjecture

about whether their number (by which we mean the number of different periodic attractors)

is finite or infinite. By contrast, robust examples are much easier to come by and our exper-

iments suggest that there may well be infinitely many of them, although we do not have a

proof.

Let us conclude this section with an experiment showing how a nearly chaotic region

may be a feature of a fraternal replicator.
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Fig. 8 An example of the construction in the proof of Theorem 4

Example 7

1[24 0’s]1[8 0’s]101[3 0’s]1

Starting from this low-density seed, the periodic cycle of its edge dynamics, for the first

1000 cells, is shown in Fig. 7a. Note that 930 cells from the left edge, at the far right of the

figure, the system briefly enters an additive regime, as if this were a space-time slice of the

additive evolution from a seed in Sa , before doubling from period 32 to 64. If we truncate

at that column, and start Exactly 1 from one of the length 931 edge configurations in the

π = 32 cycle, then further evolution is additive and we obtain a fraternal replicator, the first

231 updates of which are shown in Fig. 7b.

6 Entropy of Periodic Seeds

Let p(n) be the number of periodic configurations on the interval [0,1, . . . , n+1] that begin

and end with 1, and define

hp = lim inf
n

n−1 log2 p(n).

Theorem 4 The periodic entropy satisfies hp ≥ 0.5850.

Proof Let A be any configuration that leads to A′ ∈ S7, as defined at the end of Sect. 3,

after 4 updates. Suppose we also have a periodic seed P that after 5 updates leads to a

configuration P ′ with a 1 at the left edge separated from other occupied sites by a 0-block of

length at least 5. Then by Lemmas 3.1 and 4.1, if A′ has its rightmost 1 at x = −2, it follows

that A′P ′ is identical to P ′ for x + t ≥ 4. Hence A′P ′ and AP are also periodic.

For the odd case, Hickerson’s length 85 periodic seed P given in the Introduction suf-

fices: after 5 updates it has a 1 at the left edge followed by 8 0’s. (Figure 8 shows a detail

near the origin for an example of the construction based on this seed.) For even length, Ex-

ample 5c does the trick. If it is run for 827 steps, then the leftmost 248 cells are extracted,

the resulting periodic seed P has the desired property after 5 additional updates: a 1 at the

left edge followed by 15 0’s.

In order to apply Lemma 3.1 with R a singleton at the origin, A′ appended on the left

(with a 0 at x = −1), and R′ = P ′, it suffices to check that the evolution of seed A′R agrees

with that of R for x + t ≥ 4. We defer this step to the end of the proof.

Clearly, there is a distinct seed AP for each A leading to S7 in 4 steps. Another appli-

cation of the j -triples technique, summarized in Table 5, produces the given bound. (For

5 ≤ j ≤ 7 the bound is worse and we have been unable to compute the j = 8 bound.) �

All that remains to complete the proof, then, is the following result.

Lemma 6.1 The evolution of any seed A′R, as described above, agrees with that of R for

x + t ≥ 4.
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Table 5 Entropy estimates for

S7 based on j -triples j n0 + n1 λmax log2 λmax

0 9 21/8 0.1250

1 35 1.4831 0.5685

2 123 1.4847 0.5702

3 439 1.4801 0.5656

4 1563 1.5001 0.5850

Fig. 9 Edge representations from A′R (left) and R (right) in the construction for Theorem 4. The perturba-

tion due to A′ extends only 3 cells beyond the left edge of the occupied set started from R

Proof We compare the edge dynamics of A′R and R; a representative example is detailed

in Fig. 9. Now the edge dynamics from Sa also emulates an additive dynamics at even

times. As in the proof of Lemma 5.1, we find it convenient to use variant ℓ′
t . It is easy

to check that an initial seed from S7 corresponds to starting ℓ′
t from a seed A with only

even locations occupied. We also assume that the rightmost 1 of such an A is at the origin.

Our first claim is that for k = 0,1,2, . . . , either both ℓ′
2k(0) and ℓ′

2k+1(0) are 1, or both

are 0.

To check this, note that ℓ′
t is the prototypical dynamics with cancellative duality [13]: for

any initial set A, ℓ′A
t (x) = 1 if and only if #(ℓ

′{x}
t ∩ A) is odd. (This can be proved using

another equivalence, easily shown by induction: ℓ′A
t (x) = 1 if and only if the number of

paths from {(a,0) : a ∈ A} to (x, t) is odd — here paths are allowed to make two directed

steps, (x − 1, s − 1) → (x, s) or (x, s − 1) → (x, s).) Now, by definition of ℓ′
t , and duality

ℓ′A
2k+1(0) = (ℓ′A

2k(0) + ℓ′A
2k(−1))mod 2 = (ℓ′A

2k(0) + #(ℓ
′{−1}
t ∩ A))mod 2.

To establish the claim, observe that ℓ
′{−1}
t occupies only odd sites at even times, another

property easily proved by induction, so this last intersection is empty.

Returning to our Exactly 1 construction, we conclude that the edge dynamics of A′ at

sites −4 through −1 consists of either L-blocks: 1000 followed by 1110, or E-blocks: 0000

followed by 0000, and that the same types always appear in successive even-odd pairs. (Only

the bottom row of the initial L-block appears, as a 1110 in the seed A′.) It now remains to

calculate the interaction of this label structure with the evolution of R, a singleton at the

origin. This amounts to somewhat tedious case checking, so we will only describe the key

features. Consult Fig. 9 for confirmation in a representative example. First, note that A′

produces all 0’s at x = −1 since that column begins with a 0 and the previous two columns

have either 00 or 11 in each row. It follows that the only discrepancies at x = 0 due to A′,
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from the column of all 1’s created by R, consist of 00 temporal pairs at certain times 2k − 1

and 2k, k ≥ 1, and that each such pair must be preceded by a 1 at time 2k − 2. Then the only

discrepancies possible at x = 1, from the alternating pattern of R, are at even times at least

4 apart, where a 1 replaces a 0. Consequently, at x = 2 there is complete agreement, and at

x = 3 the only discrepancies arise one time step later than they did at x = 1, again with a

1 in place of a 0. Finally, at both x = 4 and x = 5 the two evolutions are identical, so the

effect of A′ has vanished. �

7 Entropy of Chaotic Seeds

Figure 1c illustrates the evolution of a seed that is believed to be chaotic in the sense of

Sect. 2. Many additional examples are mentioned in [29], p. 951. Although the proportion

of seeds with length at most 12 that are chaotic in any wedge is certainly less than 0.38, we

conjecture that for large lengths the chaotic seeds have asymptotic density 1. As a modest

step in this direction, we let c(n) be the number of chaotic configurations on the interval

[0,1, . . . , n + 1] that begin and end with 1, define

hc = lim inf
n

n−1 log2 c(n),

and determine a lower bound on this chaotic entropy assuming

(H ) There it at least one chaotic seed of each parity with 110110 at its left edge, say

1101101 (Example 1d) and 11011001.

Theorem 5 Under assumption H , the chaotic entropy satisfies hc ≥ 0.5850.

Proof We argue essentially the same way as for the periodic case. Given (H ), let C be either

of the specified seeds, or any other such, with its leftmost 1 at x = 5. As in Theorem 4, let

A be any configuration that leads to S7 after 4 updates. Then we claim that

C∗ = A[11 0’s]C

is also chaotic. See Fig. 10 for an example. Note that the evolutions of A and C do not

interact during the first five updates, and that at t = 5 the occupied region has the form

A′0C ′.

Here A′ has it’s rightmost 1 at x = −2 and consists of 1-blocks of length 3 separated by

0-blocks of length 5 mod 8 (the immediate successors of configurations in S7). C ′ has its

leftmost 1 at the origin, followed by a 0-block of length at least 5.

By Lemma 6.1, we know that C∗ evolves in exactly the same way as the chaotic seed C

at all sites more than distance 3 from the left edge. Hence C∗ is also chaotic, in the same

wedge as C. Finally, we have seen in the proof of Theorem 4 that the number of choices for

A with odd length n + 2 is at least a constant times 20.5850n. �

Fig. 10 An example of construction in the proof of Theorem 5
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8 Empirical Observations on Chaotic Seeds

To our knowledge, p. 951 of [29] contains the only claim in the literature about the evolu-

tion of Exactly 1 from a (finite) chaotic seed: that starting from 101101, the central chaotic

wedge advances exactly as fast as the Lyapunov exponent, defined as the equilibrium ve-

locity of damage spreading [12]. No explanation, evidence, or general condition for valid-

ity of this property is offered. Here we will present considerable empirical evidence that

Wolfram’s statement is false, provided one accepts the natural definition of chaos through

thermodynamic limits, as given in Sect. 2. Instead, the central wedge is distinguished by a

different rate of convergence to the thermodynamic quantities. Even this second order effect,

although apparently true for the majority of chaotic seeds, does not always hold; in fact it

fails with a probability bounded from below for large random seeds. We proceed to illustrate

and explain these intriguing phenomena.

Consider first the introductory chaotic case, Example 1c. Our primary focus is on the

density profile, i.e., the function ρ(u) giving the average occupation on each ray t = ⌊ux⌋,

for u ∈ [−1,1]. Given a time t and number N , we obtain an approximation ρ̂ to this function

as follows. For −N ≤ i < N , with

Bi =
{

(x, s) : 0 < s ≤ t,
i

N
≤ x

s
<

i + 1

N

}

,

ni = #Bi,

n1
i = #{(x, s) ∈ Bi : ξs(x) = 1},

let ρ̂(1) = 1, ρ̂(i/N) = n1
i /n1, and interpolate linearly. We have computed ρ̂ for t = 106

and N = 104. At first glance this approximation is very close to a constant function with

no interesting features, but a suitably large zoom, displayed in the left frame of Fig. 11,

reveals a sharp transition occurring near each edge, at ±uc where uc ≈ 0.77. This effect is

quite subtle and almost invisible before a few hundred thousand iterations. For |u| < uc , the

occupied sites appear to exhibit typical properties of a random field with low correlations;

we therefore conclude that the density profile approaches a constant value ρc . This value can

Fig. 11 Example 1c. Left: the approximate density profile ρ̂(u) at time 106 . Right: standard deviation es-

timate δ̂ vs. time (in millions); the bottom curve represents central aperiodic region and the top curve the

quasiperiodic region. In this figure, and in all subsequent ones, N = 10,000 is fixed
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be estimated by

ρ̂c =
∑

|i|≤0.6N

n1
i

/

∑

|i|≤0.6N

ni,

giving to five decimals ρc ≈ 0.35095. Note that the estimate is based on a number of sites

of order t2 so, assuming central limit behavior, the error is of order t−1. This assumption is

confirmed by the right frame of Fig. 1, which suggests that the average standard deviation

δ̂ = 1

1.2N

∑

|i|≤0.6N

|n1
i − ρ̂c · ni |/

√
ni,

converges, and for large t and N is close to a constant somewhat less than 0.8. Our den-

sity computations are without the periodic boundary effects of those in [12]; nevertheless,

the estimates agree. In the notation of Sect. 2, ρc = ρ{(0,0)}; we also find, for instance,

ρ{(0,0),(1,0)} ≈ 0.1848 and ρ{(0,0),(2,0)} ≈ 0.1395.

What is going on for |u| > uc? It turns out that cells there are trapped in a periodic cycle

of the edge dynamics, defining the space-time quasiperiodic region. The period of this cycle

increases as one moves away from the edge. Presumably, the period approaches infinity

near uc as time gets large, but simulations indicate that this divergence is very slow—e.g.,

the largest period at time 106 is 256. As explained in Sect. 5, the period is always a power

of 2, and can jump only by a factor of 2 unless it jumps to infinity. Amusingly, the dynamics

thus appears to exhibit a kind of “period-doubling route to chaos” familiar from iteration of

maps.

The approximate value of uc (which we estimate to be between 0.7663 and 0.7664) is

strikingly close to the Lyapunov exponent estimated in [12]. This seems unlikely to happen

by coincidence and there is indeed a compelling, although heuristic, microscopic explanation

why the two constants should be equal, which we now sketch.

To begin, we formulate damage spreading in the context of edge dynamics. Consider

two systems, started from different initial states, that agree for x < 0, disagree at 0, and are

otherwise in (independent) equilibria. If they become equal at x = 0 next time, then equality

extends into x ≥ 0 and the new leftmost point of disagreement is the closest point to the

origin at which they disagree. In addition, they are bound to become equal at x = 0 if their

states at x = −1 and x = −2 are 11. This is exactly the mechanism by which the periodic

region extends at a fixed period π , namely by checking which contingent interval of states

beyond the current “trapped” locations of states agrees after π time steps, and again this

region will increase by at least 1 if the currently trapped region ends in 11. Computations

such as those depicted in Fig. 6 also make it clear that the periodic sites extend with π fixed

for the preponderance of time. To conclude that the two microscopic rates of expansion

agree asymptotically, we assume that π is large and argue that states to the right of trapped

points are in the nearly independent chaotic equilibria at the beginning and end of the period.

Thus the two environments—the first determines the spread of equality in the edge version

of damage spreading while the second governs the spread of points trapped in a fixed period

π by the edge dynamics—have asymptotically the same statistics.

The discussion so far may suggest that the quasiperiodic state generated by the rule for

|u| > uc is statistically different from the chaotic state in the middle cone |u| < uc . How-

ever, we claim that this is not true. First, note that sites (x, t) with x = tu belong to a region

of longer and longer period as t increases, as soon as |u| < 1. Heuristically, once sites are

caught in a really long period, there is no reason to expect the local statistics to be sig-

nificantly different from those in the aperiodic central cone. To confirm this intuition, we



198 J. Gravner, D. Griffeath

Fig. 12 The approximate

density profile ρ̂(u) for

Example 1d

approximated ρ{(0,0)}, ρ{(0,0),(1,0)}, and ρ{(0,0),(2,0)}, for the cone defined by 0.8 ≤ |u| ≤ 0.9,

at time 106. All these quantities differ from their central counterparts by less than 0.0001.

Clearly, though, quasiperiodicity imposes significant space and time correlations affecting

the fluctuations around this limit. The resulting oscillations are strong enough that we can-

not confidently predict, say, the rate of convergence of the density profile to its limit ρc , but

it seems clear that it is slower than 1/t (and may be dependent on the slope u). See Fig. 11,

where the right frame also shows the evolution of the counterpart of δ̂ in the quasiperi-

odic region (defined with the range of summation 0.8N ≤ |i| ≤ 0.9N and corresponding

normalization 0.2N ).

Our experiments suggest that the scenario described above holds at every edge which

does not find a robust handle-link pair, and that for the majority of large seeds both edges

fall in this category. On the other hand, a robust pair occurs with probability at least 2−32. To

see this, recall that our shortest handle (from Example 1d) has 35 sites, with a 1-condition

required at the 36th site to initiate the link. Since π = 8, there are at least 8 configurations

on the 35 sites following the leftmost 1 that lead to a robust pair. The remaining examples

of this section will illustrate what transpires in this case.

For Example 1d the approximate density profile at time 106 is depicted in Fig. 12. One

easily sees the phase transitions between ρc and ρ1 = 11/26 at ±u1
c , with u1

c ≈ 0.70. The

periodic region is thus decidedly larger that the quasiperiodic one in the previous example.

Needless to say, the periodic profile is constant at 8 beyond u1
c , so the dynamics transitions

directly from this period to chaos.

As a rule of thumb, velocity of growth of a periodic region increases with its density,

although, as we will see below, this is not always so. We know of one additional case such

that ρ > ρc and the periodic cone extends from the left edge to beyond −uc , both barely. That

is Example 3c, with density about 0.358 and the chaotic region’s left edge at −u2
c ≈ −0.764.

Next, consider Example 3b. Its density profile is depicted at time 2.2 × 106 in Fig. 13.

The right edge finds no robust pair and therefore behaves like the two edges in Fig. 11. So

we concentrate on the left edge. Observe the signature of its π = 32 robust handle-link pair

with density ≈0.269 and its transition to chaos at −u3
c ≈ −0.88, decidedly to the left of the

Lyapunov exponent −uc . Even though we ran this case for an extended time, the detail at

the right of Fig. 13 exhibits no apparent change at −uc .

Finally, we examine Example 4b. Of all the robust seeds we know, this one has the slowest

growth of the periodic region, with its edge at −u4
c ≈ −0.94. Convergence to the limiting

density profile is also rather slow, as illustrated by Fig. 14, which superimposes the profiles

at times 105 and 106. We remark that the periodic wedge in Example 4a grows much faster,

with −u5
c ≈ −0.83, despite its smaller density.

To summarize, the extent of the central chaotic wedge at either side depends on whether a

robust handle-link pair appears at the corresponding edge. If it does, the critical slope, which
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Fig. 13 The approximate density profile ρ̂(u) at the left edge for Example 3b

Fig. 14 The approximate

density profile ρ̂(u) at times 105

and 106 (dashed curve), near the

left edge, for Example 4b

delineates the chaotic wedge from the periodic one, is given by the expansion velocity of

the robust periodic state. Therefore, a large, possibly infinite, number of critical slopes are

possible. If the edge does not find a robust pair, then the chaotic state extends all the way to

the maximum slope (1 or −1) at that edge. This state is divided into two regions with the

same asymptotic statistics but the outer, quasiperiodic region feels the effects of the edge

dynamics, resulting in a slower rate of convergence. The critical slope between the two is

given by a universal constant uc , the Lyapunov exponent for Exactly 1.

9 Additional open problems

(1) Assume seed A is a maternal replicator. Must there be a time t when ξA
t ∈ Sq?

(2) Is any finite sequence of 0’s and 1’s part of a replicator? The same question arises for

periodic seeds.

(3) Can a nontrivial upper bound on the replicating or periodic entropies be proved? Note

that negative answers to questions in (2) imply corresponding positive answers to these.

(4) What is the size of the Stage I tree for large π?

(5) Is there a periodic seed attracted to a periodic state within a wedge Wα,β for some

−1 ≤ α < 0 < β < 1, but not within W−1,1?

(6) There are a great many robust handle-link pairs with spatial period of the form σ =
31 · 2k , e.g., 992 = 31 · 32 for π = 32 and 3968 = 31 · 128 for π = 64. Why?

(7) Why are all our robust handle-link pairs with σ = 2π part of a matching pair?
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