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Abstract. We present a model for a continuum in which the strain rate depends

linearly on the stress, as long as the latter is below a fixed threshold, but it is frozen

to a constant value when the stress exceeds such a threshold. The constitutive equation

is given in an implicit form as the stress is a multi-valued function of the strain rate.

We derive the model in a general 3D setting and we study the one-dimensional case of a

pressure-driven flow between two parallel plates. We prove some analytical results and

describe a procedure to determine the main physical parameters (stress threshold and

viscosity) by means of a rotational viscometer. Finally we show that the model can be

obtained as the limit case of a piecewise linear viscous model.

1. Introduction. This paper concerns the response of implicit fluid models, which

are quite different from the ones commonly employed. In the case of the classical linearly

viscous (Newtonian/Navier-Stokes) fluid, the generalized Stokesian fluid,1 or a general
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of the symmetric part of the velocity gradient and the density of the fluid.
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simple fluid,2 one prescribes an expression for the Cauchy stress in terms of kinemat-

ical quantities such as the symmetric part of the velocity gradient, the history of the

deformation gradient, etc. However, not all fluids can be reasonably modeled within

such a framework. Striking examples are the extremely shear–thickening colloidal sus-

pensions [25]. Within such a framework, one cannot obtain a fluid model wherein the

fluid is incompressible but the material moduli of the fluid are functions of the pressure

(Lagrange multiplier that enforces the constraint), for example the viscosity, the normal

stress differences or the relaxation time being functions of the pressure. As considerable

evidence exists for the viscosity being a function of the pressure in many organic liquids

that are essentially incompressible (see [2] for the literature before 1931 and the recent

paper by Bulicek et al. [3] where references are provided for more recent experimen-

tal papers), one expects the relaxation time of geological materials such as the earth’s

mantle to depend on the pressure. In fact, it has been experimentally verified that the

viscosity can depend exponentially on the pressure (see the recent experiment of Bair

and Kottke [1], while the density of the fluid increases by a few percent (see Dowson

and Higginson [8], Rajagopal [19]). The viscosity increases by as much as 30 percent in

many organic liquids. While none of the classical fluid models or simple fluid models

can handle this dependence of viscosity on pressure, implicit constitutive models for flu-

ids can describe such dependence (see Rajagopal [18] and Rajagopal [19] for a detailed

discussion of implicit models for fluids)3. Nor can the classical Bingham fluid model

(see [15]) or the Herschel-Bulkley [13] fluid model be cast within the classical frame-

work. They can however be formulated as the symmetric part of the velocity gradient

depending on the stress. Recently, Malek et al. [14] have studied the flows of stress

power-law fluids, namely fluids wherein one can express the symmetric part of the ve-

locity gradient as a power-law function of the stress. They find that such fluids exhibit

a markedly different response from that of the classical power-law fluid in flows between

infinite parallel plates and between cylindrical annulis. We are interested in considering

a different subclass of implicit fluid models, but before describing them we would like to

motivate them by looking at the solid mechanical analogs that have been reasonably well

studied, and discussing them will provide guidance to understanding the fluid problem

and also to understanding some fundamental differences between such relationships. The

solid mechanics counterpart of implicit fluid models between the Cauchy stress and the

symmetric part of the velocity gradient are implicit models for solids, with the relation

being between the Cauchy stress and the Cauchy Green stretch tensor (see Rajagopal

[19], Rajagopal [20], Rajagopal and Srinivasa [21]). It is well known that there are many

solids, especially rubber-like materials, that exhibit limiting chain extensibility. A simple

model that takes limiting chain extensibility into account is the model due to Gent (see

[22]) wherein the stored energy includes a parameter that is referred to as the limiting

chain parameter. We are not interested in a detailed discussion of the limiting chain

2According to Truesdell and Noll [24] the Cauchy stress in a generalized simple fluid depends on the
history of the deformation gradient of the fluid. If the fluid is compressible, it will also depend on the
density of the fluid.

3The idea of implicit models is not new as such models have been used to describe viscoelastic fluids
(e.g. Maxwell fluid, Oldroyd-B fluid, Burgers fluid, etc.). Interestingly, in such rate-type fluid models,
one can once again have the material moduli, such as the relaxation time, depending on the pressure.
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extensibility models in elasticity. What is of consequence is the fact that these models

form a subclass of elastic solid models that are implicit. Rajagopal and Saccomandi [22]

have discussed the status of models with limiting chain extensibility within the context of

implicit constitutive equations for solids and they have also considered special solutions

within the context of such models. More recently, Rajagopal [23] has studied several

problems within the context of nonlinear elastic solids that exhibit limiting strain.

It is the appropriate counterparts of such solid models which exhibit limiting chain

extensibility within the context of fluid mechanics that we are interested in. Within the

context of fluid theories, we are interested in the class of fluid models with limiting shear

rate (shear strain) when subject to shear stresses. It turns out, just as in the case of solid

bodies, that the class of fluid bodies that exhibit limiting shear rate can be studied within

the context of implicit fluid models (see Rajagopal [19] and Rajagopal [18] for a detailed

discussion of implicit fluid theories). This paper is devoted to the study of such fluid

models with limiting shear rate. However, before we discuss the special initial-boundary

value problem that we are interested in, it is worthwhile to discuss briefly the results that

have been found in the case of solids with limiting stretch so that we can compare and

contrast the results that are obtained in the course of this study. In fact, there are some

striking differences with regard to the results. Recently, Farina et al. [10], [11] studied

the one-dimensional problem for an elastic solid with limited stretch and proved that the

equations governing the deformations of such a body have a unique solution. However,

they showed that the problem obtained from a limiting procedure for a constitutive model

with a piecewise linear elastic response showed a very interesting feature, namely that

the limit does not lead to the solution of the model with a threshold. On the other hand,

in the case of a fluid model we can show that the limit of the procedure with a piecewise

linear response does lead to the limiting strain rate (see Section 5.1). As we shall see

this has to do with the dissipative structure of the interface.

In this paper we study the response of the counterpart in fluid mechanics of the above

model, namely those which exhibited a limited shear rate response (see Figure 1). Below

a certain threshold for the shear rate, the fluid behaves like a linearly viscous Navier-

Stokes fluid. However, once a threshold in the shear rate is reached, the shear rate of

the fluid remains constant even when the shear stress is increased. Such a behavior can

be viewed as the opposite of a Bingham fluid-like response wherein the shear rate is zero

until a critical value in the shear stress is reached, beyond which the fluid flows like a

linearly viscous fluid.

The paper is organized as follows. In the next section we introduce the general repre-

sentation for implicit constitutive models between the Cauchy stress and the symmetric

part of the velocity gradient, and the special implicit constitutive model that we shall

consider in this paper. In section 3 we consider special unsteady unidirectional flows

between two infinite parallel plates which leads to two distinct regimes of flow for the

fluid model under consideration and prove a uniqueness theorem for the flow. In section

4 we consider the gravity-driven flow of the implicit fluid in a vertical cylinder. In the

following section we discuss how to measure the threshold value for the stress below

which it behaves like a Navier-Stokes fluid and the viscosity and also consider the flow

of a shear-thickening fluid. We end the paper with a few concluding remarks.
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2. The general model. A general class of implicit constitutive relations for an in-

compressible fluid can be defined through (see [18], [19])

g (T,D) = 0,

where T is the Cauchy stress and D is the symmetric part of the velocity gradient,

subject to the requirement4

trD =0.

If g is an isotropic function, then it has the following representation [17]:

αoI+ α1T+ α2D+ α3T
2 + α2

4D
2 + α5 (TD+DT)

+α6

(
T2D+DT2

)
+ α7

(
D2T+TD2

)
+ α8

(
T2D2+D2T2

)
= 0,

where αi, i = 0, 1, . . . , 8, depend at most upon trT, trT2, trD2, trT3, trD3, tr (TD),

tr
(
T2D

)
, tr

(
D2T

)
and tr

(
T2D2

)
as well as on other parameters characterizing the

material (e.g., the mass density ρ). If the fluid were compressible, or if other variables

such as the temperature were to be taken into account, in that they appear in the function

g, then the material moduli would also depend on the density and temperature.

Within this framework we consider the following implicit constitutive relation:

βoI+β1

(
T̂− 2ηD

)
= 0 with

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βo =

[
II

1/2
D − σo

2η

]
Θ
(
II

1/2
̂T

− σo

)
,

β1 = Θ
(
σo − II

1/2
̂T

)
,

(2.1)

where:

• T̂ is the deviatoric part of T, defined as follows:

T̂ = T− (1/3 trT) I.

We recall that such a decomposition has a purely geometrical character without

any appeal to physical principles.

• II
̂T and IID are the second invariant of T̂ and of D, respectively, i.e. II

̂T =

1/2 trT̂2 and IID = 1/2 trD2.

• Θ is the Heaviside function

Θ(z) =

⎧⎨⎩
0, if z < 0,

1, if z � 0.

• σo, [σo] = Pa, plays the role of a threshold stress.

• η, [η] = Pa s, is the fluid viscosity. Both σo and η are constant and positive.

In particular, when condition II
1/2
̂T

≤ σo is fulfilled, we have the usual law for viscous

fluids:

T̂ = 2ηD ⇒ T = −pI+ 2ηD,

where

p = −1

3
trT.

4trA denotes the trace of the tensor A.
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When II
1/2
̂T

> σo, II
1/2
D becomes constant and equals the value corresponding to II

1/2
̂T

at the threshold, i.e. II
1/2
D =

σo

2η
. Thus, if the stress exceeds a certain threshold, it

becomes undetermined while D stays on a manifold defined by 2η2 trD2 = σ2
o .

We consider the case in which the spatial domain occupied by the material at time t

is divided by a sharp interface S into two subdomains, characterized by II
̂T being above

or below the threshold. Thus, at the interface, the transition between two regimes takes

place.

3. Flow between parallel planes. We start by considering the one-dimensional

motion of a fluid within a layer confined between two infinite parallel plates at y = ±h.

Let the x-axis be the direction of the flow:

�v(y, t) = v(y, t)�ex,

so that the incompressibility constraint is automatically met. The symmetric part of the

velocity gradient is5

D =
1

2

⎛⎝ 0 γ̇ 0

γ̇ 0 0

0 0 0

⎞⎠ , where γ̇ = vy.

Hence

II
1/2
D =

1

2
| γ̇| .

Concerning T, we have

T =

⎛⎝ −p σ 0

σ −p 0

0 0 −p

⎞⎠ ,

because of symmetry considerations. In particular, II
1/2
̂T

= |σ|. Thus, we may discrimi-

nate between the two regimes as follows:

|σ| ≤ σo ⇔ σ = ηγ̇,

|σ| > σo ⇔ |γ̇| = γ̇o =
σo

η
.

The implicit constitutive law (2.1) then leads to

g(σ, γ̇) = (σ − ηγ̇)Θ (σo − σ) + Θ(σ − σo)(γ̇ − γ̇o) = 0, (3.1)

and it is shown in Figure 1.

We remark that strain rate vs. stress is a function whereas stress vs. strain rate is a

graph. The implicit law (3.1) shows that when σ < σo the material behaves like a viscous

Newtonian fluid with viscosity η, whereas for σ � σo the strain rate (or shear rate) is

fixed, γ̇ = γ̇o.

The implicit law (3.1) parallels the one presented in [10] where we studied the one-

dimensional problem for an elastic material with a limited extensibility range.

5vy and vt stand for
∂v

∂y
and for

∂v

∂t
, respectively.
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γ̇o

γ̇

σo0γ̇o γ̇0

σo

σ

σ

Fig. 1. Constitutive relation linking the shear rate γ̇ with the
shear stress σ.

Due to symmetry reasons, we may confine our attention to the region 0 ≤ y ≤ h. The

interface S has the equation y = s(t) and is not a material surface. In particular, for

0 ≤ y ≤ s(t), the stress is below threshold (see Figure 2).

σ < σo

σ < σo

y = h

y = s(t)

0

y = −h

y = −s(t)

Fig. 2. Flow between two parallel planes. The interface y =
s(t) is the free boundary separating the inner core (where the
stress is below the threshold) and the region where the stress
exceeds the threshold (fixed shear rate).

3.1. Mathematical formulation. We consider a flow driven by a known pressure gra-

dient fo > 0. In particular, we analyze the case in which fo is constant (the problem

can be extended to the case of a time-dependent pressure gradient f(t)). In the region
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s(t) � y � h we have

vy(y) = −σo

η
⇒ v(y) =

σo

η
(h− y), (3.2)

since the no-slip condition is imposed on y = h. Hence

v(s+) =
σo

η
(h− s).

Relations (3.2) express the fact that γ̇ is fixed in the region where σ � σo. Consequently

the velocity decreases linearly to 0 as y approaches the boundary.

In the domain 0 � y � s(t) the problem for v and s is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρvt − ηvyy = fo, 0 < y < s(t), t > 0,

v(y, 0) = vo(y), 0 < y < s(0),

vy(0, t) = 0, t > 0,

v(s−, t) =
σo

η
(h− s), t > 0,

vy(s
−, t) = −σo

η
, t > 0,

s(0) = b, 0 < b � h,

(3.3)

where:

• ρ is the fluid density (assumed constant).

• vo(y) is the initial velocity, and b is the initial position of the free boundary.

• vy(0, t) = 0 expresses the symmetry of v across y = 0.

• v(s−, t) = σo/η(h− s) expresses the assumption

[[ v ]] = 0, (3.4)

where

[[ (·) ]] = (·)|y=s+ − (·)|y=s−

denotes the jump of the quantity (·) across the interface. We remark that condi-

tion (3.4) ensures that slip phenomena do not occur at the interface y = s(t). In

particular, (3.4) also ensures the continuity of the stress (see, for instance, [4],

Chapter 8).

• vy(s, t) = −σo/η expresses the requirement for the stress6 to attain the threshold

value at the interface y = s(t).

We assume the following compatibility conditions for the initial data:

vo(b) =
σo

η
(h− b), v′o(b) = −σo

η
, and v′o(0) = 0. (3.5)

We cast problem (3.3) in a nondimensional form by means of the rescaling

y = y∗h, t = t∗tc, v = v∗vc, σ = σ∗σo, vo = v∗ovc, s = s∗h, b = b∗h,

and we set

tc =
ρh2

η
, vc =

foh
2

η

6Recall that in the region 0 < y < s(t), σ(y, t) = ηvy(y, t).
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as the characteristic time and velocity, respectively. Problem (3.3) becomes (we omit

“ ∗ ” to simplify the notation)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt − vyy = 1, 0 < y < s(t), t > 0,

v(y, 0) = vo(y), 0 < y < s(0),

vy(0, t) = 0, t > 0,

v(s, t) = λ(1− s), t > 0,

vy(s, t) = −λ, t > 0,

s(0) = b, 0 < b � 1,

(3.6)

where

λ =
σo

foh
> 0. (3.7)

The compatibility conditions (3.5) become vo(b) = λ(1 − b), v′o(0) = 0 and v′o(b) = −λ.

We observe that problem (3.6) has Cauchy conditions on the free boundary which make

it different from the parabolic free boundary problem describing Bingham flows (see [5]).

3.1.1. Auxiliary problems. To study problem (3.6) we follow a usual technique (see

e.g. [5], [9], [16]) introducing the transformation

z(y, t) = vy(y, t),

whose inverse is given by

v(y, t) = λ(1− s)−
∫ s

y

z(ξ, t)dξ. (3.8)

The problem for z(y, t) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zt − zyy = 0, 0 < y < s(t), t > 0,

z(y, 0) = zo(y), 0 < y < s(0),

z(0, t) = 0, t > 0,

z(s, t) = −λ, t > 0,

zy(s, t) = −1, t > 0,

s(0) = b, 0 < b � 1,

(3.9)

where zo(y) = v′o(y). We notice that (3.9) is still of Cauchy type. We also consider the

transformation

w(y, t) = vt(y, t),
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obtaining the following free boundary problem of Stefan type:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt − wyy = 0, 0 < y < s(t), t > 0,

w(y, 0) = wo(y), 0 < y < s(0),

wy(0, t) = 0, t > 0,

w(s, t) = 0, t > 0,

wy(s, t) = ṡ, t > 0,

s(0) = b, 0 < b � 1,

(3.10)

where wo(y) = v′′o (y) + 1. It is easy to see that

z(y, t) = s− y − λ−
∫ s

y

w(ξ, t)dξ, (3.11)

so that the solution of problem (3.6) can be obtained from the solution of (3.10) by

means of (3.11) and (3.8). The free boundary condition (3.10)5 can be rewritten in the

following integral form:

s(t) = λ+

∫ s(t)

0

w(y, t)dy, (3.12)

exploiting Green’s theorem applied to the equation (3.10)1.

We assume the following hypotheses on the data:

(H1) vo(y) ∈ C3[0, b], and vo(b) = λ(1− b), 0 < b ≤ 1.

(H2) −λ � v′o(y) � 0 in [0, b] and v′o(b) = −λ, v′o(0) = 0.

(H3) v′′o (y) + 1 � 0 in [0, b], v′′o (b) = −1.

(H4) foh ≥ σo.

Hypothesis (H3) can be replaced by the following:

(H3∗ ) v′′o (y) + 1 � 0 in [0, b], and v′′o (b) = −1.

As we shall see later, hypothesis (H3) produces a decreasing y = s(t), while (H3∗ ) an

increasing y = s(t).

Definition 1. Let us define

Ds,T =
{
(y, t) ∈ R

2 : 0 < y < s(t), 0 < t < T
}
.

A pair (w(y, t), s(t)) is called a solution of Problem (3.10) in the time interval [0, T ], with

T > 0 if

1. s(t) ∈ C1[0, T ] and s(t) is positive.

2. w(y, t) ∈ C2,1(Ds,T ) ∩ C1,0(Ds,T ).

3. w(y, t) and s(t) satisfy all the equations of Problem (3.10).

3.1.2. Analytical results.

Theorem 1. Under hypotheses (H1)-(H4), problem (3.10) admits a unique solution

(w, s) for any time [0, T ] in the sense of Definition 1, with ṡ(t) < 0. When (H3) is

replaced by (H3∗ ), then ṡ(t) > 0.
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Proof. Global existence and uniqueness of a solution can be proved following the

results of [16], [9]. The maximum principle and Hopf’s lemma (see [12]) ensure the

monotonicity of the free boundary, i.e. ṡ(t) < 0 (ṡ(t) > 0 if (H3∗) holds). Indeed

w(y, t) takes its minimum along the whole boundary y = s(t), so that wy(s, t) = ṡ < 0

(wy(s, t) = ṡ < 0 under (H3∗ ), by Hopf’s lemma). �
Remark 1. From the hypotheses (H1)-(H4) we have that7 λ < b. Indeed

v′′o (y) � −1 =⇒
∫ b

0

v′′o (y)dy > −b =⇒ λ < b.

Moreover

λ < s(t) � b, ∀ t > 0.

When (H3) is replaced by (H3∗ ),

v′′o (y) � −1 =⇒
∫ b

0

v′′o (y)dy < −b =⇒ λ > b,

and

b � s(t) < λ, ∀ t > 0.

Once (w, s) is determined, the solution of problem (3.9) is obtained by means of (3.11),

whereas the solution of problem (3.6) is obtained by means of (3.8). Some estimates for

v and its derivatives are given in the following.

Lemma 1. Under hypotheses (H1)-(H4), the solution v(y, t) of problem (3.6) is such

that:

1. −λ � vy(y, t) � 0.

2. 0 � vt(y, t) � max[0,b][vo
′′(y) + 1].

3. 0 � v(y, t) � λ.

When (H3) is replaced by (H3∗ ), result 2 must be replaced by

2∗. min[0,b][v
′′
o + 1] � vt(y, t) � 0.

Proof. Results 1, 2 and 2∗ follow from the weak version of the maximum principle

applied to problems (3.9) and (3.10), respectively. Point 3 follows from (3.8) and −λ �
z � 0. �

Remark 2. Problem (3.6) admits the stationary solution

v∞(y) = −y2

2
+ (s∞ − s2∞

2
),

with

s∞ =
σo

foh
= λ.

Of course the stationary free boundary s∞ has a physical meaning only if s∞ � 1, that

is,

fo � σo

h
, (3.13)

which is guaranteed by hypothesis (H4).

7Recall that b � 1 from (H1).
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Lemma 2. The solution (v, s) of problem (3.6) tends asymptotically to (v∞, s∞) for

t → ∞.

Proof. Consider problem (3.9). Equation (3.9)1 can be rewritten as (yz)t−(yzy−z)y =

0. Integrating over Ds,t and applying Green’s formula we get∮
∂Ds,t

(yz)dy + (yzy − z)dτ = 0.

Therefore ∫ t

0

(s− s∞)dτ =
λ

2
(b2 − s2) +

∫ b

0

yzo(y)dy −
∫ s

0

yz(y, t)dy. (3.14)

The right-hand side of (3.14) is bounded because of Remark 1 and condition 1 of Lemma

1. Thus necessarily

lim
t→∞

s(t) = s∞ = λ

and

lim
t→∞

v(y, t) = v∞(y) = −y2

2
+ (s∞ − s2∞

2
),

uniformly in t. �
3.1.3. Monotone dependence of the solution on the initial data. Let us consider two

different sets of data (b1, vo1), (b2, vo2) satisfying (H1)-(H4) and such that

0 < b1 < b2 � 1, v′′o1(y) � v′′o2(y), y ∈ [0, b1]. (3.15)

Remark 3. Integrating the second inequality of (3.15) between 0 and y we get

v′o1(y) � v′o2(y). (3.16)

Recalling then that

vio(y) = λ(1− bi)−
∫ bi

y

v′oi(y)dy,

for i = 1, 2, we get

vo2(y)− vo1(y) = λ(b1 − b2) +

∫ b1

y

(v′o1(ξ)− v′o2(ξ))dξ −
∫ b2

b1

v′o2(ξ)dξ.

From hypothesis (H2),

−
∫ b2

b1

v′o2(ξ)dξ � λ(b2 − b1).

Thus

vo2(y)− vo1(y) �
∫ b1

y

(v′o1(ξ)− v′o2(ξ))dξ � 0,

where the last inequality is by virtue of (3.16). Therefore

v′′o1 � v′′o2 =⇒ v′o1 � v′o2 =⇒ vo1 � vo2.
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Let us consider the solutions (w1, s1), (w2, s2) corresponding to the set of data given in

(3.15) and define

U(y, t) = w2(y, t)− w1(y, t).

Since s1, s2 are continuously differentiable and b1 < b2, s1(t) < s2(t) for sufficiently small

times. Let us suppose that there exists a time t̄ ∈ (0, T ] such that s1(t̄ ) = s2(t̄ ). Since

ṡ1, ṡ2 < 0 we have that

ṡ1(t̄ ) � ṡ2(t̄ ). (3.17)

In Ds1,t̄ the function U(y, t) solves⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ut − Uyy = 0, 0 < y < s1(t), 0 < t < t̄,

U(y, 0) = v′′o2(y)− v′′o1(y) � 0, 0 < y < b1,

Uy(0, t) = 0, 0 < t < t̄,

U(s1, t) = w2(s1, t) � 0, 0 < t < t̄,

Uy(s1, t) = w2y(s1, t)− ṡ1, 0 < t < t̄.

(3.18)

Let ȳ = s1(t̄ ) = s2(t̄ ). By the maximum principle, U(y, t) � 0 in Ds1,t̄ and U(ȳ, t̄ ) = 0;

that is, (ȳ, t̄ ) is a minimum. By Hopf’s lemma, Uy(ȳ, t̄ ) < 0, contradicting (3.18)5 where

Uy(ȳ, t̄ ) = ṡ2(t̄ )− ṡ1(t̄ ) � 0, because of (3.17). Thus we have proved the following.

Lemma 3. Under hypotheses (H1)-(H4), the solutions (v1, s1), (v2, s2) relative to the set

of data 0 < b1 < b2 � 1, v′′o1(y) � v′′o2(y), y ∈ [0, b1] are such that

1. v2t(y, t) � v1t(y, t), (y, t) ∈ Ds1,T ,

2. v2y(y, t) � v1y(y, t), (y, t) ∈ Ds1,T ,

3. v2(y, t) � v1(y, t), (y, t) ∈ Ds1,T ,

4. s1(t) < s2(t) for all T > 0.

Proof. Result 1 has already been proved. Result 2 can be easily obtained. Indeed,

from 1, we have∫ y

0

v2t(y, t)dy �
∫ y

0

v1t(y, t)dy =⇒
∫ y

0

v2yy(y, t)dy �
∫ y

0

v1yy(y, t)dy,

which, once integrated, gives 2. Result 3 is obtained from (3.8). Indeed

vi = λ(1− si)−
∫ si

y

zi(ξ, t)dξ, i = 1, 2.

Thus

v2(y, t)− v1(y, t) = λ(s1 − s2) +

∫ s1

y

(z1(ξ, t)− z2(ξ, t))dξ −
∫ s2

s1

z2(ξ, t)dξ, (3.19)

with y ∈ [0, s1], t > 0. From point 1 of Lemma 1,

−
∫ s2

s1

z2(ξ, t)dξ � λ(s2 − s1).
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Thus (3.19) becomes

v2(y, t)− v1(y, t) �
∫ s1

y

(z1(ξ, t)− z2(ξ, t))dξ � 0,

where the last inequality is due to 2. �

4. Gravity-driven flow in a vertical cylinder. In this section we study the flow

in a vertical cylinder of radius R. Let �ez, �er be the axial8 and radial unit normal vectors

and let �v(r, t) = v(r, t)�ez be the velocity in the domain 0 < r < s(t), i.e. the region where

the strain rate increases linearly with the stress σ. Analogous to the previous case, in

the region of fixed strain rate s(t) < r < R, we have

v(r, t) =
σo

η
(R− r), v(s, t) =

σo

η
(R− s),

∂v

∂r
(r, t) = −σo

η
.

Assuming that the flow is driven by gravity and by a constant pressure gradient fo we

have

ρ
∂v

∂t
= ρg + fo +

η

r

∂

∂r

(
r
∂v

∂r

)
, 0 < r < s(t), t > 0.

This situation corresponds to the flow produced in the vertical pipe when it is connected

to a reservoir in which the fluid level is kept constant (or has negligible variations).

We add the symmetry condition vr(0, t) = 0 and the initial condition v(r, 0) = vo(r).

Summarizing, the problem for v is the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
∂v

∂t
= ρg + fo +

η

r

∂

∂r

(
r
∂v

∂r

)
, 0 < r < s(t), t > 0,

v(r, 0) = vo(r), 0 < r < s(0),

vr(0, t) = 0, t > 0,

v(s, t) =
σo

η
(R− s), t > 0,

vr(s, t) = −σo

η
, t > 0,

s(0) = b, 0 < b � R.

From the rescaling

r = r∗R, t = t∗tc, v = v∗vc, σ = σ∗σo, vo = v∗ovc, s = s∗R, b = b∗R,

where we set

tc =
ρR2

η
, vc =

(ρg + fo)R
2

η
,

8�ez is pointing downward.
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we obtain (omitting the “ ∗ ” )⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v

∂t
= 1 +

1

r

∂

∂r

(
r
∂v

∂r

)
, 0 < r < s(t), t > 0,

v(r, 0) = vo(r), 0 < r < s(0),

vr(0, t) = 0, t > 0,

v(s, t) = λ(1− s), t > 0,

vr(s, t) = −λ, t > 0,

s(0) = b, 0 < b � 1,

(4.1)

where now

λ =
σo

(ρg + fo)R
.

Analogous to the previous case, we cast the problems for z = vr and w = vt, thereby

obtaining ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zt = zrr +
zr
r

− z

r2
, 0 < r < s(t), t > 0,

z(r, 0) = zo(r), 0 < r < s(0),

z(0, t) = 0, t > 0,

z(s, t) = −λ, t > 0,

zr(s, t) =
λ

s
− 1, t > 0,

s(0) = b, 0 < b � 1,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt = wrr +
wr

r
, 0 < r < s(t), t > 0,

w(r, 0) = wo(r), 0 < r < s(0),

wr(0, t) = 0, t > 0,

w(s, t) = 0, t > 0,

wr(s, t) =

(
1− λ

s

)
ṡ, t > 0,

s(0) = b, 0 < b � 1,

(4.2)

where bR = so, zo(r) = v′o(r), and wo(r) = 1 + r−1v′o(r) + v′′o (r).

It is easy to show that problem (4.1) admits the stationary solution

v∞ = −r2

4
+

s∞
2

(
1− s∞

2

)
, with s∞ = 2λ.

The free boundary condition (4.2)5 can be rewritten by means of the relation∫
Ds,t

[
∂

∂r

(
r
∂w

∂r

)
− ∂

∂τ
(rw)

]
dr =

∮
∂Ds,t

(
r
∂w

∂r

)
dτ + (rw)dy = 0,
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which yields

(s− λ)2 = (b− λ)2 − 2

∫ b

0

rwo(r)dr + 2

∫ s(t)

0

rw(r, t)dr.

The results obtained in section 3 still hold for the radial case here presented. In particular,

(3.13) is replaced by

2σo ≤ (ρg + fo)R.

5. Measuring the parameters σo and η. Parameters9 σo and η can be measured

by means of a rotational viscometer (for the analogous subject concerning Bingham

fluids, see [6], [7]). Consider the steady flow of a fluid of the type under investigation

between two coaxial cylinders. The inner cylinder (radius Ri) rotates with constant

angular velocity ω. The outer cylinder (radius Re) is kept immobile. As long as the

stress is everywhere below the threshold, sufficiently far from the upper and lower ends

of the cylinder, the velocity field is �v = v (r)�eθ, with

v(r) =

[(
Re

Ri

)2

− 1

]−1 [(
Re

r

)2

− 1

]
ωr.

In a rotational flow,

D =

⎛⎜⎜⎜⎝
0

r

2

∂

∂r

(v
r

)
0

r

2

∂

∂r

(v
r

)
0 0

0 0 0

⎞⎟⎟⎟⎠ ,

so that IID =

∣∣∣∣r2 ∂

∂r

(v
r

)∣∣∣∣.
We denote by M (r) the torque acting at the radius r, namely

M (r) = 2πr2h |τrθ (r)| ,

where τrθ is the tangential stress and h is the height of the cylinder. In case the stress is

everywhere below the threshold, i.e.

|τrθ (r)| < σo, ∀ Ri ≤ r ≤ Re,

M is given by

M = 4πhη
R2

iR
2
e

R2
e −R2

i

ω, (5.1)

since

τrθ(Ri) = ηr
∂

∂r

(v
r

)
= −2ηω

R2
eR

2
i

R2
e −R2

i

1

r2
.

Relation (5.1) is used to calculate η, as it occurs for ordinary Newtonian fluids.

The threshold σo is reached at the wall of the rotating cylinder, and the limit torque

is

Mo = 2πR2
i hσo.

9Throughout this section the quantities considered are dimensional.
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Hence, for M > Mo, the domain occupied by the material has to be split into two

sub-domains:

• Ω1 = {Ri < r < s(t)}, where the strain rate is constant and equal to σo/η,

• Ω2 = {s(t) < r < Re}, where the strain rate is smaller than σo/η.

In Ω1 the strain rate is constant; hence

r
∂

∂r

(v
r

)
= − σ̂o

η
, with σ̂o = 2σo,

and
v

r
= − σ̂o

η
ln

(
r

Ri

)
+ ω. (5.2)

In Ω2 the problem for v(r, t) is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρvt = η
(
vrr +

vr
r

− v

r2

)
, s(t) < r < Re, t > 0,

v(r, 0) = vo(r), s(0) < r < Re,

v(Re, t) = 0, t > 0,

v(s, t)

s
= − σ̂o

η
ln

(
s

Ri

)
+ ω, t > 0,

∂v(s, t)

∂r
= − σ̂o

η

[
ln

(
s

Ri

)
+ 1

]
+ ω, t > 0,

s(0) = so, Ri < so < Re,

(5.3)

where (5.3)5 derives from the requirement

r
∂

∂r

(v
r

)∣∣∣∣
r=s

= − σ̂o

η
.

Looking for the steady solution (s∞, v∞) of (5.3) we get

s2∞ = R2
e

(
1− 2ηω

σ̂o

)
+ 2R2

e ln

(
s∞
Ri

)
(5.4)

and
v∞(r)

r
=

σ̂o

2η
s2∞

[
1

r2
− 1

R2
e

]
. (5.5)

The steady state free boundary s∞ is defined implicitly by (5.4), from which we determine

s∞ = s∞(ω,Ri, Re, σ̂o, η). We thus get

M = 2πhσ̂o · s2∞(ω,Ri, Re, σ̂o, η), (5.6)

which provides a relation between M , ω and σ̂o. If we differentiate expression (5.4) w.r.t.

ω we get
∂s∞
∂ω

=
ηR2

es∞
σ̂o(R2

e − s2∞)
> 0.

Taking the limit s∞ → Ri is equivalent to letting ω → ωo (which is the angular velocity

corresponding to the torque Mo). Thus from (5.4),

ωo =
σo

2η

(
1− R2

i

R2
e

)
. (5.7)
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Expressions (5.1) and (5.6) provide the 1-1 relation between M and ω below and above

the threshold. The torque applied is a function of ω which is linear up to ωo and nonlinear

for ω > ωo. Thus, since the viscometer plots M as a function of ω, a simple analysis

of this plot provides ωo. Indeed ωo corresponds to the angular velocity marking the

transition to the nonlinear regime. By means of (5.7), we can therefore get the stress

threshold σo.

5.1. Comparison with a piecewise shear-thickening model. In this section we shall see

that the peculiar dynamics described in section 5, can be obtained as a limit case from

the piecewise linear viscous model shown in Figure 3 when the slope beyond the threshold

tends to infinity.

γ̇γ̇o

σ̂o

σ

0

Fig. 3. The piecewise linear viscous model.

Let us consider the following (σ, γ̇) constitutive relation10, depending on the parameter

α:

σ =

⎧⎨⎩
η γ̇ , 0 ≤ γ̇ ≤ γ̇o,

αη (γ̇ − γ̇o) + σ̂o, γ̇o < γ̇,

with σ̂o = ηγ̇o, (5.8)

where the strain rate (or shear rate) is given by γ̇ = r
∂

∂r

(v
r

)
. The inverse of (5.8) is

γ̇ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ

η
, 0 ≤ σ ≤ σ̂o,

σ − σ̂o

ηα
+

σ̂o

η
, σ > σ̂o,

(5.9)

so that γ̇ → γ̇o if α → +∞. In other words, (5.9) tends to the implicit model as α → ∞.

10This procedure is nothing but a penalization method.
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Considering now the steady problem treated in section 5, for ω ≥ ωo the domain

{R1 < r < Re} has to be divided into two subdomains, say Ω1 and Ω2, separated by

r = s, such that:

• In Ω1 = {Ri < r < s} the governing system is⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r
∂

∂r

(v
r

)
= − σ̂o

αη

(s∞
r

)2

− σ̂o

η

(
1 +

1

α

)
,

v (Ri)

Ri
= ω.

Hence

v (r)

r
− ω =

s2σ̂o

2ηα

(
1

r2
− 1

R2
i

)
− σ̂o

η

(
1 +

1

α

)
ln

r

Ri
. (5.10)

• In Ω2 = {s < r < Re} the governing system is⎧⎪⎪⎨⎪⎪⎩
r
∂

∂r

(v
r

)
= − σ̂o

η

s2

r2
,

v (Re) = 0

⇒ v (r)

r
=

s2σ̂o

2η

(
1

r2
− 1

R2
e

)
,

which coincides with (5.5).

• The interface s is determined by solving

σ̂o

2η

(
1− s2

R2
e

)
= ω +

σ̂o

2ηα

(
1− s2

R2
i

)
− σ̂o

η

(
1 +

1

α

)
ln

s

Ri
, (5.11)

which is a consequence of the no-slip assumption.

Now, when α → ∞, it is easy to observe that:

(1) The velocity field (5.10) tends to (5.2).

(2) The equation for the interface (5.11) tends to (5.4).

We thus conclude that the shear-thickening model tends to the implicit one depicted in

Figure 1, when α tends to infinity. The reason why model (5.9) recovers, in the limit

α → +∞, the implicit model lies essentially in the fact that the no-slip condition imposed

at the interface r = s entails the continuity of the stress and so does not introduce any

further dissipation. This is not always the case for materials with constitutive laws

of implicit type. For instance, in [10], the presence of an “entropy source” located on

the interface makes the model of an elastic material with limited deformability range

unattainable by means of the same kind of penalization procedure.

We finally remark that, when α → ∞, we recover the dynamics associated with the

model (5.9) studied in sections 3 and 4.

6. Conclusions. Working within the framework of implicit constitutive equations,

we have developed a new constitutive model which applies to the so-called self-blocking

fluids. The peculiarity of the model is that the stress and strain rates are not linked

by an invertible relation, the stress being a multi-valued function of the strain rate. In

particular when IIT̂ is less than a certain threshold, T and D are linked in a linear way,
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but when IIT̂ exceeds such a threshold, T can attain any value with D belonging to the

manifold II
1/2
D = σo/(2η).

We have then analyzed three particular flows: (i) the flow between two parallel planes

driven by a given pressure gradient; (ii) the vertical flow in a cylinder driven by gravity;

(iii) the axial flow in a rotational viscometer. In each case the mathematical formulation

was a free boundary problem of Stefan type, characterized by Cauchy conditions on the

free boundary.
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[4] J. Coirier, Mécanique des milieux continus, Dunod, Paris, 1997.
[5] E. Comparini, A one-dimesional Bingham flow, J. Math. Anal. Appl., 169, 127-139, (1992).

MR1180677 (93j:76008)
[6] E. Comparini and E. De Angelis, Flow of a Bingham fluid in a concentric cylinder viscosimeter,

Adv. Math. Sci. Appl., 6, N. 1, 97-116, (1996). MR1385761 (97e:76005)
[7] E. Comparini, Regularization of singular free boundary problems in rotational Bingham flows, Z.

Angew. Math. Mech., 77, 543-554, (1997). MR1466444 (98f:76005)
[8] D. Dowson and G. R. Higginson, Elastohydrodynamic Lubrication, the Fundamentals of Roller and

Gear Lubrication, Pergamon, Oxford, UK (1996).
[9] A. Fasano and M. Primicerio, General free boundary problems for heat equation, I, J. Math. Anal.

Appl., 57, 694-723, 1977. MR0487016 (58:6695a)
[10] A. Farina, A. Fasano, L. Fusi and K.R. Rajagopal , Modelling materials with a stretching threshold,

Mathematical Models and Methods in Applied Sciences (M3AS), Vol. 17, Issue 11, (2007), 1799-
1846. MR2372339 (2009g:74013)

[11] A. Farina, A. Fasano, L. Fusi, and K.R. Rajagopal, On the dynamics of an elastic-rigid material,

Adv. Math. Sci. Appl. 20 (2010), 193–217. MR2760725
[12] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, 1964. MR0181836

(31:6062)
[13] W. H. Herschel and R. Bulkley, Konsistenzmessungen von Gummi-Benzollosungen, Colloid Polym.

Sci. 39(4), 291–300 (1926).
[14] J. Malek, V. Prusa and K. R. Rajagopal, Generalization of the Navier-Stokes fluid from a new

perspective, submitted for publication.
[15] J.G. Oldroyd, A rational formulation of the equations of plastic flow for a Bingham solid, Math.

Proc. Camb. Philos. Soc. 43(01), 100–105 (1947). MR0018095 (8:240j)
[16] A. Schatz, Free boundary problems of Stephan type with prescribed flux, J. Math. Anal. Appl., 28,

569-580, 1969. MR0267285 (42:2187)
[17] A.J.M. Spencer, Theory of invariants, in Continuum Physics, Vol. 3, A.C. Eringen Ed., Academic

Press, New York, 1975. MR0468444 (57:8277b)
[18] K.R. Rajagopal, On implicit constitutive theories, Appl. Math., 48 (2003), 279–319. MR1994378

(2004j:74006)
[19] K.R. Rajagopal, On implicit constitutive theories for fluids, J. Fluid Mech., 550 (2006), 243–249.

MR2263984 (2007e:76004)
[20] K.R. Rajagopal, The elasticity of elasticity, Zeitschrift für Angewandte Mathematik und Physik,

58, 309-417 (2007). MR2305717 (2008a:74003)
[21] K.R. Rajagopal and A.R. Srinivasa, On the response of non-dissipative solids, Proc. Roy. Soc.

London A463, 357-367 (2007). MR2288826 (2007j:74001)
[22] K.R. Rajagopal and G. Saccomandi, The mechanics and mathematics of the effect of pressure on

the shear modulus of elastomers, Proc. Roy. Soc. London A 465, 3859-3874 (2009).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

http://www.ams.org/mathscinet-getitem?mr=2515781
http://www.ams.org/mathscinet-getitem?mr=2515781
http://www.ams.org/mathscinet-getitem?mr=1180677
http://www.ams.org/mathscinet-getitem?mr=1180677
http://www.ams.org/mathscinet-getitem?mr=1385761
http://www.ams.org/mathscinet-getitem?mr=1385761
http://www.ams.org/mathscinet-getitem?mr=1466444
http://www.ams.org/mathscinet-getitem?mr=1466444
http://www.ams.org/mathscinet-getitem?mr=0487016
http://www.ams.org/mathscinet-getitem?mr=0487016
http://www.ams.org/mathscinet-getitem?mr=2372339
http://www.ams.org/mathscinet-getitem?mr=2372339
http://www.ams.org/mathscinet-getitem?mr=2760725
http://www.ams.org/mathscinet-getitem?mr=0181836
http://www.ams.org/mathscinet-getitem?mr=0181836
http://www.ams.org/mathscinet-getitem?mr=0018095
http://www.ams.org/mathscinet-getitem?mr=0018095
http://www.ams.org/mathscinet-getitem?mr=0267285
http://www.ams.org/mathscinet-getitem?mr=0267285
http://www.ams.org/mathscinet-getitem?mr=0468444
http://www.ams.org/mathscinet-getitem?mr=0468444
http://www.ams.org/mathscinet-getitem?mr=1994378
http://www.ams.org/mathscinet-getitem?mr=1994378
http://www.ams.org/mathscinet-getitem?mr=2263984
http://www.ams.org/mathscinet-getitem?mr=2263984
http://www.ams.org/mathscinet-getitem?mr=2305717
http://www.ams.org/mathscinet-getitem?mr=2305717
http://www.ams.org/mathscinet-getitem?mr=2288826
http://www.ams.org/mathscinet-getitem?mr=2288826


568 A. FARINA, A. FASANO, L. FUSI, AND K. R. RAJAGOPAL

[23] K.R. Rajagopal, Non-linear elastic bodies exhibiting limiting small strain, Mathematics and Me-
chanics of Solids, 2010, doi:10.1177/1081286509357272.

[24] C. Truesdell and W. Noll, The nonlinear field theories of mechanics, 2nd edn., Springer-Verlag,
1992. MR1215940 (94c:73002)

[25] N.J. Wagner and J.F. Brady, Shear thickening in colloidal dispersion, Physics Today, 62, 27-32
(2009).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

http://www.ams.org/mathscinet-getitem?mr=1215940
http://www.ams.org/mathscinet-getitem?mr=1215940

	1. Introduction
	2. The general model
	3. Flow between parallel planes
	3.1. Mathematical formulation

	4. Gravity-driven flow in a vertical cylinder
	5. Measuring the parameters o and 
	5.1. Comparison with a piecewise shear-thickening model

	6. Conclusions
	References

