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THE ONE-PHASE SUPERCOOLED STEFAN PROBLEM
WITH A CONVECTIVE BOUNDARY CONDITION

By
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Abstract. We consider the supercooled one-phase Stefan problem with convective
boundary condition at the fixed face. We analyse the relation between the heat transfer
coefficient and the possibility of continuing the solution for arbitrarily large time intervals.

I. Introduction. In this paper we study the following problem:
Problem I: Find 9(y, r) the temperature and r(r) the free boundary such that

r(r) is Lipschitz continuous for r > 0;
r(r) is continuous for r > 0;
9(y, t) is continuous for r > 0 and 0 < y < r(r);
0T{y, r), 9yy(y, r) are continuous for r > 0 and 0 < y < r(r);
9y(y, t) is continuous for r > 0, 0 < y < r(r);
r(r) and 9(y,r) obey the conditions:

9T = a9yy, 0 < y < r(r), 0 < r < r0,

0(r(r),T) = 0, 0 < r < T0,

k9y(r(r), t) = -pAf(r), 0 < r < r0,

key(0,T) = h{6{0,T) - g(r)), r > 0,

%,0) = 0o(y), 0 <y<b,

r(0) = b.

The parameters are
a — = material thermal diffusivity (m2/s);
k = material thermal conductivity (KJ/s°Cm);
p = material density (Kg/m3);
A = latent heat of melting (KJ/Kg);
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h = fluid to material surface heat transfer coefficient (KJ/s°Cm2);
g(r) — ambient fluid temperature (°C);
pc—C = specific heat (KJ/°CKg).

The melting front at time r is r(r) while 0(y,r) is the temperature at position y and
time r.

It is known that a solution to Problem I exists [1], when 0o(y) < 0 and g(r) < 0. This
problem is often referred to as a mathematical scheme for the freezing of a supercooled
liquid (although this simple scheme for such a nonequilibrium phenomenon is far from
being satisfactory) [3].

The freezing of a supercooled liquid is due to convective heat transfer from a fluid
with ambient temperature g{r) flowing across the face x = 0. The adimensional problem
is obtained by the following transforms:

y kr
x — —, t =

b ' pcb2 '

z(x, t) = 0{y, r), s{t) =

Then the variables (T, s, z) satisfy the problem
Problem II:

(1.1) zxx — Zt, in Dx 7
(1.2) s(0) = 1;
(1.3) z(s(t),t) = 0, 0 < t < T;
(1.4) zx(s(t),t) = -s(t), 0 < t < T;
(1.5) z(x,0) = <p(x), 0 < x < 1;
(1.6) zx(0, t) = /3[z(0, t) - G(*)], 0 < t < T,

where /3 — ^ is an adimensional parameter, and

Dt = {(x, t) | 0 < x < s(t), 0 < t < T},

II. The one-phase supercooled Stefan problem. In this section we consider the
following hypotheses:

ip(x) <0, 0 < x < 1 and G(t) <0, t > 0

and the compatibility condition

vA0)=/%(0)-G(0)].

The first simple properties of the solution of (1.1) (1.6) are summarized in the follow-
ing proposition:
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Proposition 2.1. If (T, s, z) is a solution of Problem II, then
i) 2 < 0 in Dt-

ii) s(t) < 0, t > 0.
iii) If G(t) < 0, (p(x) > G(0) = max(>0 G(t), then 2 > G(t) in Dt-
iv) If ip' > 0, G < 0, then zx > 0 in Dt-
v) If G > 0, ip" > 0, then zt> 0 in Dt.
Proof, i), ii), and iv) follow from the maximum principle.
iii) follows from the minimum principle applied to w = z — G, where w satisfies the

following equation: wxx — wt = G. Then the minimum of w is on the boundary,
v) follows from the maximum principle applied to v — zt — zxx.

Proposition 2.2. If (T, s, z) satisfy (1.1) (1.6) of Problem II, then the following integral
representations are satisfied:

rl l-t rs(t)

s(t) = 1+ / ip(x) dx — / zx(0, r)d,T — / z(x,t)dx, (2.1)
Jo Jo Jo

s2{t) 1 rl rt r>W! r1 ft rsKt)
— + / x(p(x) dx + / z(0,t)cIt— / xz(x,t)dx, (2.2)
2 Jo Jo Jo

s(t) l + !»(t)

/o
rl

L + 7^ + [ (1 + 0x)<p(x) dx + f (3G(t) dr
* Jo Jo
rs(t)

— / (1 + (3x)z(x, t) dx,
Jo

f3s4(t) s3(t) (3 1 f1 [fix3 x2\

J Ii") z(x,t)dx + J J z(x,t)((3x + l)dxdT.
Proof. Consider Green's identity

(2.3)

(2.4)

(vLu — uL*v) dx dr = <z> (vux — uvx) dr + uv dx
Dt JdDt

where L denotes the heat operator and L* its adjoint and the formulae (2.1)-(2.2) are
obtained by setting u = z(x,t) and v — 1 and x respectively. (2.3) follows from (2.1)
plus (3 times (2.2), and (2.4) is obtained by using v = —f □

Remark 1. In the following sections we denote

Q(t) = l + ^+ ( (1 + px)tp(x) dx + f /3G(t) dr. (2.5)
Jo Jo

If ip( 1) = 0, ip(x) is Holder continuous for x — 1, and G(t) is piecewise continuous on
every interval (0, t), t > 0, this problem possesses one solution for suitable T "sufficiently
small" (see [1], [2], [3] where uniqueness and continuous dependence are also discussed).

Moreover, if a solution exists, then three cases can occur (see [1], Theorem 8 and [2]).
(A) The problem has a solution with arbitrarily large T.
(B) There exists a constant Tb > 0 such that limt_>TB s(t) — 0.
(C) There exists a constant Tq > 0 such that infte(0,Tc) s(^) > 0 and hmt^Tc ®(£) —
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We shall investigate the occurrence of these cases in connection with the behavior
of the initial data <p, the adimensional temperature G of the external fluid, and the
adimensional coefficient p.

Our next aim will be to look for some conditions on ip, G, and (3 giving an a priori
characterization of cases (A), (B), and (C).

Proposition 2.3. If G < 0, tp(x) > G(0), and the solution (T, s, z) of Problem II is case
(B), then Q(Tb) = 0.

Proof. Setting t —> Tb in (2.3) and using the boundedness of z obtained in Proposition
2.1 we conclude the thesis. □

Remark 2. Q(t) is a decreasing function of time since Q(t) — 0G(t) < 0, Vt.
Remark 3. If we consider the particular case where the initial temperature <p(x) is

zero and the temperature of the external fluid G(t) = —B < 0 is a negative constant for
all time, then Q(t) is a linear function of time:

Q(t) = l + ^-t/3B.

If the solution is case (B), then the stopping time is

1 + i
T- = ^r>0-

Proposition 2.4. If (T, s, z) is a solution of Problem II, and the initial and boundary
data satisfy the following hypotheses:

i) ip(:r) > M(x — 1), 0 < x < 1, 0 < M < 1,
ii) G(t) > -M

and there exists a time Tb such that Q{Tb) = 0, then the solution (Tb,s,z) is case (B).
Proof. First we prove that z(x,t) > M(x— 1). This easily follows from the maximum

principle applied to w = z — M(x — 1).
We replace this inequality in (2.3) for t = Tb- Then s(Tb) satisfies the following

inequality:

s(TB) (1 -M) + s(TB) (3{1 - M) + M + f3s2(TB)f < 0.

The quadratic form in brackets has coefficients 1 — M > 0 and *'(1 Ap+M > 0. Then
s(Tb) = 0. □

Following [4] we obtain:

Proposition 2.5. Suppose that t0 < T and limt_,to s(t) > 0, and suppose <p satisfies
the hypotheses iv) of Proposition 2.1. Moreover, Q(t) > 0 for all t < to. Then if we
define a function

max{:r G [0, s(t)]\z(x, t) < —1}

0 if z(x. t) > — 1, x € [0, s(t)],
v(t) =

it follows that
lim r}{t) < lim s{t).

t—>to £—o
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Proof. Notice first that lim(^<0 s(t) exists because of Proposition 2.1. From iv) Propo-
sition 2.1 we have z(x,t) < —1 in [0,r;(t)] and —1 < z(x,t) < 0 in (r/(t),s(t)] for t < to-
Let s = limsupt_,t r/(t) and let {tn} be a sequence such that tn —* to and r]n = r)(tn) —» s.
Then from iii) of Proposition 2.2

/ Q \ rv(tn) r*(tn)
s(tn) ^1 + -s(tn)J = Q(tn) - J (1 + 0x)z{x, t)dx - J (1 + (5x)z(x, t) dx

rv(tn)

> Q{tn) + / (1 + Px) dx
Jo

= Q(tn) + v(tn) +

Performing the limit with rj —* oo,

lim ( s(t)
t—*tr 1 + f*(t)> Q(t0) + Mm ( v(t) ( 1 +

t—*to

> hm ( rj(t)
t—>t0

1 + ^v(t)

This above inequality is equivalent to

lim
t—to

(s(t)-rj(t)) 1 + + T}(t)) > 0.

Since 1 + ^(s + rf) > 0, Vi < to, lim^(0 s(t) — rj(t) >0. □

Proposition 2.6. Let (T,s,z) be a solution of Problem II such that tp(x) > M(x — 1),
0 < x < 1, and St = inftS(o,T) s(t) > 0. If there exist two constants d G (0, St),
Zq € (0,1) such that Hd < zq, and

z(s(t) — d,t) > — Zq, 0 < t < T,

then

,(t) s
Proof. It is the same as the proof of Lemma 2.4 in [2]. (See also [4].) □

PROPOSITION 2.7. Let (T, s, z) be a solution of Problem II and let ip satisfy the hypothe-
ses of Proposition 2.1 iv). Then if the solution is case (C), Q(Tc) < 0.

Proof. Suppose Q{Tc) > 0. Then from Proposition 2.5 the isotherm z = — 1 is
separated from the free-boundary. Using Proposition 2.6, s has a lower bound, which
contradicts the case (C). □

Corollary 2.8. Let {T, s, z) be a solution of Problem II and let </?, G satisfy the follow-
ing hypotheses:

i) ip(x) > M(x — 1), 0 < x < 1;
ii) G{t) > -M, 0 < M < 1;

iii) <p(x) > 0, 0 < x < 1.
If the solution is case (C), then Q(Tq) < 0.

Proof. It follows from Propositions 2.4 and 2.7. □
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Proposition 2.9. Let (T, s, z) be a solution of Problem II, and let cp and G satisfy the
following hypotheses:

i) p(x) > M(x — 1), M > 0, 0 < x < 1;
ii) GeL1 (0, oo).
If the solution is case (A), then Q(t) > 0, t > 0. Moreover, if G(t) > —M(M > 0),

\/t > 0, then case (A) implies that Q(t) > 0, Vf > 0.
Proof. We suppose that the thesis is not true. Then there exists a first time To such

that Q(Tq) < 0. Since Q(t) is a decreasing function, Q(t) < 0 for t > Tq. We replace
this estimation in the inequality (2.3) and we obtain the following inequality:

ps(t)

/ (1 + f3x)z(x, t) dx = s(t)
Jo

1 + 77s(0 — Q(t) > -Q(T0), t > Tq

Now we integrate the above equation with respect to time:

ft rs(t)IfJJ 0
(1 + (3x)z{x,t) dxdr < Q(T0)(t - T0), t > T0; (2.6)

then
J J (1 + f3x)z(x,t) dxdt < Q(To)(t - T0), t>T0. (2.6)

The following step will be to seek an inequality that contradicts (2.6).
Using Eq. (2.4) we obtain

J J z(x,t)(0x + I) dxdt = - J <p(x)dx + + s3(t)
r

/ /9t3 <r2 '-(l + l) + l (^ + Y)z{'-t)dx {21)
+ "(^ + Y)z{x-t)dx-

From (2.3) and the hypotheses i) and ii)

fs^ T 0 1 0 [l
/ (1 + 0x)z(x,t)dxdt ——s(t) 1 + —s(t) +-;+ (1 + 0x)<p(x)dx

J o L 2 J 2 Jo

Jo

> -M

where

+ 0 I G(t) dr
n 8 8 1

ff-f-1 -M|m
— /?||G||i,t = —C, C > 0, C constant,

>-i-f+ i + f+ M
2 6

l|G||i,t = - f G(t) dr.
Jo
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Since 0 < x < s(t) < 1 and z < 0 in Dt :
rs(t) rs(t)fS(t) rs(t)

/ z(x,t){\ + (3x)x2 dx > / (1 + (3x)z(x,t) dx > — C.
Jo Jo

Then
s(i) / „2 \ C C

6+T)z{x't)dx-^-^ = ~D' D>0' (2-8)fJo
We replace (2.8) in (2.7):

JL(1 + (3x)z(x, t) dx dt > — ( ^ ^ ) — D, t > 0.

This last inequality is in contradiction with (2.6). Then Q(t) > 0, Vi > 0. Moreover,
if G(t) > —M (M > 0), Vi > 0, the case (A) and Proposition 2.4 imply that Q(t) > 0,
Vt > 0. □

III. Asymptotic behavior of the solution.

Proposition 3.1. Let (T,s,z) be a solution of Problem II of case (A) under the hy-
potheses of Proposition 2.9 and (iii) of Proposition 2.1. Moreover, we assume that the
limit of G(t) when t —> oo exists. If we denote Qoo = limf^oc Q{t) and Soo = limt_»oo s(t),
then Sqc is given by

_1 + VI + ZPQOC /g ^
13

Proof. The existence of the limit of G(t) when t —> oo and G € Ll (0, oo) assure that
lim^oo G{t) = 0.

We denote by z0c the limit of z when t tends to infinity. The existence of lim^oc z(x, t)
is due to Proposition 2.1 and [6, Chapter 6]. The function z^ satisfies: z^ = 0 in (0, s^o),
■Zoo(soo) = 0, 4o(0) = /?Zoo(0); then zoc(x) = 0, 0 < x < s^.

Taking the limit when t —» oo in (2.3), we have

[i + ^~2~] ~~ ~ o*

That means that s00 G (0,1) is the root of the above equation, that is, (3.1).
Moreover, we have s^ < 1 since

Soo < 1 1 + 2/3Qoc < (1 + (3f o 2QX - 2 - /? < 0.

By taking the limit when t —> oo in (2.3) the last inequality always holds due to the
following expression:

2 Qo 2 — /3 — 2 f (1+ Px)ip(x) dx - 2/?||G||i < 0
Jo

where ||G||i = — /0°° G(t) dr. □
Remark 4. We notice that

SoO = 0 4=7* Qoc = 0 1 ~t~ ̂ f (1 + j3x)ip(x) dx - /3||G||i = 0.
Jo
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Proposition 3.2. i) For any ^0 the free boundary of Problem II obeys the condition

s(t) > 1 + [ <p(x) dx + (3t inf G(t). (3.2)
Jo 0<r<t

ii) If G < 0 and <p{x) > G(0), then

s2(t)> 1 + 2 [ tp(x)dx + 2t inf G(t).
D <T<t

Proof, i) Using the integral representation (2.1) and i) of Proposition 2.1 we obtain
(3.2). ii) It follows from the integral representation (2.2) and iii) of Proposition 2.1.

IV. The oxygen-consumption problem. As in [4] we are interested in the de-
pendence on the temperature G{t) of the external fluid at the fixed face x — 0. If, in
Problem II, we perform the classical transformation

ns(t) r ns(t) }
i(x,t) — / < / [1 + z(a, i)] da >

then we obtain the following oxygen-consumption Problem III:
^xx "■/ 15 in Dt,
s(0) - 1;
u(s(t),t) = ux(s(t),t) — 0, t > 0;
u(cc,0) = H(x), 0 < x < 1;
ux(0,t) - H'{0) = 0[u(O,t) - H(0) + ||G||llt], t > 0,

where
»1 /■!

H(x) = f f (1 + ip(a)) dadf.
J X J "Yfx J 7

From now on, in this section, we consider the following hypotheses for tp\

— 1 < tp{x) <0, 0 < x < 1.

Then

H{x) >0, 0 < x < 1; H'(x) <0, 0 < x < 1; H"(x) >0, 0 < x < 1.

Proposition 4.1. Let (T, s,u) be a solution of Problem III with — 1 < ip < 0 in [0,1]
and iii) of Proposition 2.1. Then u(x, t) < H(x), x € (0, s(t)), t > 0.

Proof. We apply the maximum principle to W(x,t) = u(x,t) — H(x), which satisfies
the following problem: Wxx — Wt = 1 — H"(x) = —ip(x) > 0, W(x, 0) = 0, W(s(t),t) =
-H(s(t)) < 0, and Wx(0,t) = 0[W(0,t) + ||G||llt].

We suppose there exists a To > 0 such that W(Q, To) > 0. The point (0, To) will
be a maximum for W. Then the maximum principle implies W'x.(0, To) < 0, which is a
contradiction to

Wx(0, To) = 0[W(0,T„) + HGIIi.ib] > 0.
We conclude that there does not exist such To. Then W(x,t) = u(x,t) — H(x) < 0,

Vx G (0, s(t)),t >0. □
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Corollary 4.2. Let (T,s,u) be a solution of Problem III. If G(t) > —1, t > 0, then
u(x, t) > 0 in Dt .

Proof. Using Proposition 2.1 iii) we obtain the following inequality:

rs(t) rs(t) rs(t) rs(t)

u(x,t) = / / 1 + z(x,t) dad-y > / / 1 + G(t) da d^
J x J "y J x J'y

= (l + GW)(^-s(^+y)>0. □

We now consider some properties related to the qualitative behavior of the free-
boundary.

Proposition 4.3. Let (T,s,u) be a solution of Problem III. Then s and u satisfy the
following integral representations:

i) fo S(T)dl~ = fo H(x) dx ~ fo(t) u(x>dx ~ /oL%(°>T) H (°) + HGllr] + dr;
ii) J*s2(r)dT = fg xH(x) dx — J0s(#' xu(x,t) dx + f('u(0, t) dr;

iii) /0's(r)[l + (3s(r)\dT = f* H(x)[l + f3x\dx — /Qs(f) u(x, t)[l + /3x] dx

+ ti[\\G\\T+H'(0)-H(0)}dT.
Proof, i) and ii) follow by applying the Green's formula used in Proposition 2.2 and

iii) is obtained as a combination of i) and ii). □
We now address the question of how the solution to Problem III depends upon G(t).

Proposition 4.4. The solution (T,s,u) of Problem III depends monotonically on G.
In particular, if (), i = 1,2, are the solutions for G\ and G2, respectively, and if
G\(t) < G2(i), then si(£) < S2(t) and u\(x,t) < U2(x,t) however they are both defined.

Proof. This is seen by considering the difference

v(x, t) = U2{x, t) — Ui(x, t)

at the points where they are both defined.
Let t* = sup{£ > 0 | U2(0,t) > ui(0,t)} and let t** = supji > 0 | s2(t) > Si(t)}.

Let us suppose that both t* and t** are finite. By definition, v satisfies the following
problem:

Vxx = vt, xe(0,Si(t)), t G (0, t**);

v(x, 0) = 0;

v(si(t),t) = u2(si(t),t) > 0;

M0, t) = (3[v(0, t) + (||<J2IIi,t — IIG\ ||i,t)].
Claim 1: t* ^ t**.
In order to prove that t* and t** are different from each other, let us suppose that

they are equal. Then
a) = s2(t*);
b) si(t*)>s2(t*);
c) v(si(t*),t*) = u2(si(t*),t*) = u2(s2{t*),t*) = 0.
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Moreover, 112(0,t) > ui(0,t) for t < t*. Then

i>(0, t) > 0, t < t*

and
v(si(t),t) = u2(si(t),t) > 0.

Since v has the minimum value zero at (si(t*),t*), the minimum principle to v in Dj.,
we get vx(si(t*),t*) < 0, which is a contradiction by (a) to

vx(si{t*),t*) = u2x(si{t*),t*) = u2x(s2(t*),t*) = 0.

Then t* ± t**.
Claim 2: t* < t** is impossible.
On [0, £*], Si (£) < s2{t), whence t>(si (t),t) > 0. By definition, u(0, t) > 0 for t < t* and

v(0, t*) =0. That implies u(0, t*) is a minimum value up to time t*, whence vx(0, t*) > 0,
which contradicts

vx(0,t*) — /3[f(0, t*) + (||Gr2IIi,t* — l|Gi||i,t-)] = /3|||Gr21| 1,4* — IICi lli.f*] < 0.

Claim 3: t** < t* is impossible since:
Let t** < t*. Since v(0,t) > 0, v(si(t),t) = u2(si(t),t) > 0, for t < t**, the

point (si(t**),t**) is a minimum point for v because v(s\(t**),t**) = =
= 0.

By the corner minimum principle,

<0,

which contradicts
vx(si = u2x(s2{t**),t**) = 0.

Thus the proposition is proved. □
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