
The One-Round Functions of the DES Generate the 
Alternating Group 

Ralph Wernsdorf 

SIT Gesellschaft fiir S ysteme der Informationstechnik mbH 
0- 1252 Griinheide (Mark), Germany 

Charlottenside 7 

Abstract; hi c a d  of thc 16 DES rounds we have a permutation of @-bit- 
blocks. According to the corresponding key-block there are 248 possible 
permutations per round. In this paper we will prove that these permutations 
generate the alternating group. The main parts of the paper are the proof that 
the generated group is 3-transitive, and the application of a result from p. J. 
Cameron based on the classification of finite simple groups. A corollary con- 
cerning n-round functions generalizes the result 

1 Introduction 
In each of the 16 DES-rounds a permutation of 64-bit-blocks is carried out 
/NBS 77/. According to the corresponding key-block there are 248 possible 
permutations per round. In the following we will answer the questiuii which group 
they generate. 

A question like this is important from the cryptographic point of view. If the 
generated group is "too small" in a certain sense, then the algorithm might be 
vulnerable to cryptanalytic attacks (see for example / K R S  88/ and /RM 850. 

Several publications are concerned with group theoretic properties of the DJ3 or 
DES-like ciphers: 

- Coppersmith/Gmssman in /CG 751 and Even/Goldreich in /EG 83/ derived 
general results on "DES-like functions". The one-round permutations of DES 
form a subset of those functions. Further research in the direction of "DES-like 
permutations" is done by Piepnyk/Zhang in /PZ 90/. The permutations dcfined 
there a1.w generate the alternating group. 
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- Reeds/Manferdelli in /RM85/ and Chaurn/Evertse in fCE 86/ exclude the 
existence of several classes of nontrivial linear factors. 

- Group theoretic properties of the 16-round DES-cipher are subject of papers 
written by Kaliski/Rivest/Sherman /KRS 88/ and Simmons/Moore /SM 87/. The 
results support the hypothesis that the corresponding group is not "small". 

The main result obtained in this paper is stated in Theorem 1. It will be proved that 
the 248 one-round permutations generate the alternating group, i s .  that the 
generated group is "large". An essential part of the proof is done in Section 3. There 
the 3-transitivity of the group is derived from some computational results 
concerning properties of the S-boxes. In Section 4 we complete the proof of 
Theorem 1. For this purpose we apply some propositions of P. J. Cameron /Cam 8 1/ 
based on the classification of finite simple groups, Corollary 4 shows that the result 
also holds for n-round functions with independent subkeys. 

2 Notations 

- 
V ( m , n ) E N 2  : m , n  : = { r n , m + ~  ,..., n j f o r m ~ n .  

V m E N  : V ,  := (0, 11''' (m-dimensional vector space over (0, 1)) 

V U €  v, : U L  := (ap a*. ..., a,) 

Y O €  v,, : UR .- ( f fm+,.  u,+2. .--, a h )  (a = (UL, OR)). .- 

(n) := the permutation group generated by the set II of permutations. 

A,, := the alternating group on Vb4. 

S 2 ~  := the symmetric group on V64. 

We consider the set of functions F,: V,, x V,, -+ V3* x V,, : 

v k f V,, 

where E: V,, + V48, P :  V , ,  3 V , ,  and S: V48 + V3* are defined according to 
/NBs 771. 

The functions F, represent permutations on v64 and describe one round of the 
DES-algorithm. if we follow an equivalent description of the DES algorithm given 
in D D F  84/ on page 183. (This modification does not influence the group 
theoretical properties considered here.) 

E V32 v b E V32: F, (a,  6)  := (b, u @ S(k @ EPb)), 
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The main object of our interest will be the group G: 

Further we will use the following notations: 

d := (0,OI .-., 0. 1, 0, ..., 0) E v,, 
1 2 ... 30 31 32 ... 64 

d' := (070, *... 0, 1 ,  0, ..., 0)  E v,, 
1 2 ... 21 22 23 .._ 48 

Go 

Go, 

M 

:= {g E GI g(0) = 0} 

:= {g E G I g(0) = 0 A g(d) = d )  - stabilizer of zero and d 

:= {(k, k') E v48 I k f k' A S(k) = S(k ' ) }  

- stabilizer of zero 

2 

2 
Md' := { (k, k') E v48 I k Z k' A S(k) = S(k') A S(k  @ d' )  = S(k' fT3 d') I 

v (k, k') E M v (a, b) E v;2: 

(a, 6) 

ff# (a, 6)  

:= F';I(Fk(a, b)) = (a @ S(k fT3 EPb) @ S(k' fT3 EPb), b); 

:= F J F ;  (a, b))  = (a, b G3 S(k Cf3 EP a)  @ S(k' @ EPa)).  
1 

3 The 3-Transitivity of the Group G 

Two elementary properties of C; are stated in Lemma 1: 

Lemma 1: 

a) G s A, /EG 83/. 
b) G is transitive on V,. 

Lemma 2 shows the way we will pursue to prove the 3-transitivity of G. Its proof 
can be derived from theorem 9.1. in the book of H. Wielandt /Wie 64.  
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Lemma 2: 

If G od is transitive on v64 \ (0, d}  and Go is transitive on v64 \ (0). then G is 3- 
transibve on v64. 

To prepare the next steps we consider the following linear subspaces: 

Y j E  r,8 V ~ E  v,\(o): 

U j  (y) := L{S, ((kj&+ @ y) @ S, ((ki $& @ y) I (k, k') E M} 

uj. (y) := U S ;  ( ( k [ ) L j - 5  @ y) @ sj ((kj: )Lj-5 63 y) 1 (k, k') E MJ. 

(L := linear subspace of V, spanned by the given subset of V,; S$ v 6  3 v, 
denotes thej-th S - box; (ki)id,-5 denotes the vector (k6j-s, k6j-4, ..., kbj).)  6i 

The propositions (a) - Id) of Lemma 3 were obtained by a computer program: 

Notations: 

- "-" denotes the following equivalence: 

e := (1, 1. .... 1, 0. 1 ,  .... 1) E V3, . 
1 2 ... Y 10 11 ... 32 
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Lemma 4: 

2 V (z, z') E V32: (e, z) - (e, z'), 

ProoF: 

The proof uses propositions (a) and (c) of Lemma 3.  

Let (z, 2') E V32 be arbitrarily fixed. 

Property (a) of Lemma 3 includes the equality Ud, ((1,  1, 1, 1, 1, 1)) = V,; hence 
the vector (Zl@Zi, z2@zj, z3@zi, z4@zJ is a linear combination of vectors 

2 

1 

1 6  2 6  
Sl((k[)j,l @ (1, 1, 1, 1, 1, 1)) L.$(lkf)i=l @ (1, 1 ,  1, 1. 1, 1)). 

1 6  2 6  
where (kl. k2) E M d q ,  (kiIizl  * (kiIfEl ~ 

For the corresponding (kl, k2) we set: 

- 1  2 ' d i ~  7,48: ki = k, = 0. 

By carrying out the corresponding permutations (19 we finally obtain: 

4 The continuation of these considerations (where the equality Udv ((1, 1, 1, 1,0, 1)) 

= V,  follows from (c) and not from (a)) finally yields the statement of Lemma 4. 

Lemma 5: 

V u E V64\ (0, d }  3 z E V3*: a - ( e ,  z). 

Proof 

Let a E V64 \ {O. d }  be arbitrarily fixed. 
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At first w e  show: 

- 
3 a' E V,, \ (0 ,  d}:  (a' - Q A 3 i E 1,32 \ {2,5, 10, 18,26,31): u; = 1). (1) 

- 
If 3 i E 1,32 \ (2, 5, 10, 18,26, 31): ui = 1, then we immediately obtain (1) 
(a' := a). 

If not: 

If we  have 3 i E 33,64: Q~ = 1. 

then because of (a), (b), the properties V (k', k2> E M: 
and 

E G,J 

b b E V ~ Z :  ([EPb]l7= [EPb],,  A [EPb]34= [EPb]26) (2) 

there exists a pair (kl, k2) E M and 

- 
an indexj E 1.32 \ ( 2 , 5 ,  10, 18,26, 31) such that [l$p (a)], = 1. 

If we have V i E 33,64: ai = 0. 

then because of (2), (d) and u ct (0 ,  d )  we obtain; 

3 j  € 3354 3 (k! k2) E Md': [$1&2 = 1. 

Hence, this case is traced back to the case: 3 i E 33,64: ui = 1. 

Therefore the proof of ( 1 )  is complete. 

We fix a vector Q' E V64\ (0, d }  according to (1). 

As a next step we prove: 

-- 
3 u" E Vb4\ (0, d } :  (a" - u' A V i E 1,32 \ 13,16: a; = ei)- (3) 

-- 
If b' i E 1,32 \ 13,16: a; = e , ,  then we immediately obtain (3). 

- 
If not, then we choose an indexj E 1.32 \ (2. 5 ,  10, 18, 26, 31) with a; = 1 
according to (1).  
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Property (a) implies: 

3 ao E v,, \ (0, d):  (ao - u' A [uT, = [u'lL A v i E I~ I :  [a?132+i = 1). (4) 

where the sets 10) are defined in table 1. 

We fix a0 E v~~ \ {o, d )  accorhng to (4). 

Because of (a) we obtain: 

3 a1 E VS4 \ (0, d):  (a' - ao A [al lR = [ n q R  A V i E J o :  a = ei), 

where the sets J o ]  are defined according to table 2. 

In the case of j E { 1, 6, 9, 14, 16, 17, 19, 21, 22, 25, 29, 32) property (3) 
holds with a" := a l .  In the other case, (3) follows by carrying out the same 

procedure for u l .  At this we can take an indexj E 1,32 \ (2, 5, 10, 18,26,31} 

with aj  = 1 and the propertyj E { 1,6,9,  14, 16, 17, 19,21,22, 25,29, 321. 

That is possible because of: 

1 

- 

1 

-- 
V j  E 1.8: 4j-3,4j n { 1.6.9, 14, 16, 17, 19, 21,22. 25,29, 32) f 0. 

This completes the proof of (3). 

We fix u" E V,, \ (0, d }  according to (3). Then we can prove: 

3 z E V3*: u" - (e. z ) .  

-- 
We have: V i E 1,32 \ 13,16: u',' = e j .  

From this besides (a) and 13,16 n (2, 5 ,  10, 18, 26, 31) = 0 we get: 
3 z E V32: (a" - I) A zl0 = O A z2 = 25 = z18 = 126 - ~ 3 1  = 1). 
We fix such a vector z E V32. Because of (c) the equivalence ([u"IL, z) - (e. z> 
holds. 
Therefore the proof of ( 5 )  is complete. 

- 

Considering the chain u - u' - (I" - (e. Z) we obtain the proposition of Lemma 5 
from (l), (3) and (5). 
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i 

16 or 25 

7 or 20 

21 or 29 

12 or 28 

1 or 17 

15 or 23 

8 or 24 

14 or 32 

3 or 27 

9 or 19 

13 or 30 

6 or 22 

4 o r l l  

-- 
1,4u29,32 

1,8 

- 
5.8 

- 
5,12 

- 
9.12 

17.20 

- 
17.24 

2 1.24 

2 1.28 

- 
25.28 

- 
25,32 

- 
29,32 

Table 1. Defmitian oflG) 
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1,6,9,14,16,17,19,21,22,25,29,32 

7 or 20 

12 or 28 

15 or 23 

8 or 24 

3 or 27 

13 or 30 

4or 1 1  

-- 
1,32 \ ( 13,16 u Jo] )  

0 

-- 
1,4u25,28 

-- 
5 ,a u zi,24 
-- 
1,4 u 9,12 

17,20u29,32 
-- 

21,24 

17.20 u 2528 

9,12 u29,32 

-- 

-- 

Table 2. Definition of /(J 

Corollary 1: 

Go, is transitive on Vb4\ (0, d } .  

ProoF: 

Let (a, a') E (V64\ (0, d } )  '. By Lemma 4 and Lemma 5 we get: 

3 (z, z') E V 3 2 :  (u - (e. 2) - ( e ,  z') - a'). 
2 

Corollary 2: 

Proof: 
Because of Corollary 1 it suffices to show that 

3 g E Go : gtdlg d 

G o  is transitive on V64\ (0). 

(g(4 # 0 because of g E Go) .  
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Let (k, k') E M\ Mdv . (A4\ Md' f 0; for example for k = 0 and 

k ' : = ( O , O . . . - ,  0 ,  1 . 0 . 0 .  1,  1 ,  o,-.- ,  0) 
1 2 ... 19 20 21 22 23 24 25 ... 48 

we have S(k) = S(k') and S(k @ d')  # S(k' @ d').) 

* 4J (4 = (d, , dR @ S(k C€I d')  G3 S(k' G.3 d'))  f d. 

Since we h o w  E Go, the proof is complete. 

From Lemma 2, Corollary 1, and Corollary 2 we immediately obtain: 

Corollary 3: 
G is 3-transitive on V64. 

4 Proof of the main Theorem 

The proposition of Lemma 6 will help to complete the proof of the main theorem. 

Lemma 6: 

Proof 

We fix the following pair (k. k') E M: 

k := (0,O. -.., 0 .  1 . 0,  ..., 0 )  E VdS  and 
1 2 ... 12 13 14 ... 48 

k' := (0.0. . * * *  0, 1 ,  0, ..a, 0) E v48. 
1 2 ... 17 18 19 ... 48 
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Theorem 1: 

The following equality holds: G = A ,  64 . 

Proof: 

Suppose G z A, 

G is 3-transitive. Therefore we can apply proposition 5.2. of /Cam Sl/ implying that 
G has a unique minimal normal subgroup which is Abelian or simple. 

- Suppose that this normal subgroup is simple. Following the table on page 8 of 
/Cam 81/, which is based on the classification of finite simple groups (see also 

/CC 91/, p. 462). we obtain that 264 has the form 4-1 = q + 1, where q is a 

prime or a power of a prime. But because 264 - 1 is neither a prime nor a power 
of a prime, we get a contradiction. 

- If this normal subgroup is Abelian, then G is "similar" to a subgroup of the &fine 

Two pennutation groups H and H ' on X and X ', respectively, are called similar, 
if there exist an isomorphism a: H + H ' and a bijection p: X + X ' with the 
property: 

2 

4 -  1 

group Afl(v64) (see /Rob 82/, pp. 192-193). 

v h E H v x E x: P(h(x)) = (a(h)) (p(x)) (see /Rob 82/, p. 32). 
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That means that each element of G has the same cycle representation as a 
certain element of Af l (V ,J .  Particularly the number of fixed points of each 
element of G must be an element of the set (0, 2O, 2l, ..., 264}, because the 
fixed points of an affine mapping (if there are any) form an affine subspace 

From Lemma 6 we know that there exists an element of G with exactly 5 . 2'9 
fixed points. Thus, also in the Abelian case we get a contradiction. 

of V64. 

Hence, the supposition G f A 61 is wrong and the theorem is proved. 

Corollary 4: 

The groups G(,,) generated by the n - round functions of the DES (with independent 
subkeys) are equal to A ,  ( n  = 2.3, ...). 

* 

Proof (sketch): 

Obviously G(,,) is a transitive subgroup of G. 

Besides this, all permutations $x and ek also belong to G(nl 

Because the given proofs of Lemma 4, Lemma 5 ,  Corollary 2 and Lemma 6 make 

use of no other group elements than 4k and i$, , we can prove G,,, = A, 64 in 
the Same way as we proved G = A 2 & .  

5 Conclusions 
Theorem 1 gives an answer to an open question formulated for example by 
PieprzykEhang in /PZ 901 ("Are the DES generators complete?"). The result shows 
that the structure of the one-round DES-permutations and the current S-boxes do 
not restrict the number of possible permutations attainable by composition. Since 
the generated alternating group A ,  64 is a large simple group and primitive on V6, 
we can exclude several imaginable cryptandytic "shortcuts" of the DES-algorithm. 
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Though the proofs in this paper are based on various special properties of the 
permutations it is possible to find certain other S-boxes such that after replacement 
we obtain the same final result as in Theorem 1. 

Finally, with regard to Corollary 4 one may expect that the set of 16-round DES- 
cipher-permutations generates the alternating group, too. This, however, remains an 
open question, because the influence of the DES key-scheduling must be taken into 
account. 
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