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Abstract: In cach of the 16 DES rounds we have a permutation of 64-bit-
blocks. According to the corresponding key-block there are 248 possible
permutations per round. In this paper we will prove that these permutations
generate the alternating group. The main parts of the paper are the proof that
the generated group is 3-transitive, and the application of a result from P. J.
Cameron based on the classification of finite simple groups. A corollary con-
ceming na-round functions generalizes the result.

1 Introduction

In each of the 16 DES-rounds a permutation of 64-bit-blocks is carried out
/NBS 77/. According to the corresponding key-block there are 2*® possible
permutations per round. In the following we will answer the question which group
they generate.

A question like this is important from the cryptographic point of view.' If the
generated group is "too small” in a certain sense, then the algorithm might be
vulnerable to cryptanalytic attacks (see for example /KRS 88/ and /RM 85/).

Several publications are concemed with group theoretic properties of the DES or
DES-like ciphers:

- Coppersmith/Grossman in /CG 75/ and Even/Goldreich in /EG 83/ denved
general results on "DES-like functions”. The one-round permutations of DES
form a subset of those functions. Further research in the direction of "DES-like
permutations” is done by Pieprzyk/Zhang in /PZ 90/. The permutations defined
there also generate the alternating group.
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- Reeds/Manferdelli in /RM 85/ and Chaum/Evertse in /CE 86/ exclude the
existence of several classes of nontrivial linear factors.

- Group theoretic properties of the 16-round DES-cipher are subject of papers
written by Kaliski/Rivest/Sherman /KRS 88/ and Simmons/Moore /SM 87/. The
results support the hypothesis that the corresponding group is not "small”.

The main result obtained in this paper is stated in Theorem 1. It will be proved that
the 248 one-round permutations generate the alternating group, i.c. that the
generated group is "large”. An essential part of the proof is done in Section 3. There
the 3-transitivity of the group is derived from some computational results
concerning properties of the S-boxes. In Section 4 we complete the proof of
Theorem 1. For this purpose we apply some propositions of P. J. Cameron /Cam 81/
based on the classification of finite simple groups. Corollary 4 shows that the result
also holds for n-round functions with independent subkeys.

2 Notations

VYmneN : mn ={mm+l,  n}form<n.

YmeN : V,,  :={0, 1}™ (m-dimensional vector space over {0, 1})
VaeV,, gy =(ap.ag....,a,)

YaeV,, D 8p 1= (s Gpyae o dopy) (a=(ap, ag)).

(IT) := the permutation group generated by the set I of permutations.

A,e4 = thealternating group on Vi,.

Syes = the symmetric group on V.

We consider the set of functions Fp V32 X V32 - V32 X V32:

Vike Vy Yae V32Vbe Vi Fy(a b) = (b, a® Sk ® EPb)),

where E: V,, o V48, P:Vy, - Vyand S: Vg — V32 are defined according to
/NBS 77/ .

The functions F, represent permutations on V,, and describe one round of the
DES-algorithm, if we follow an equivalent description of the DES algorithm given
in /DDF 84/ on page 183. (This modification does not influence the group
theoretical properties considered here.)
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The main object of our interest will be the group G:
G = ({Fye S | ke Vigh).

Further we will use the following notations:

d  =(0.0.20.1,0,..0)€ Vg
1 2 ...30 31 32 ... 64
d' := (O’ 0, wesy O, 1 ’ O’ weey 0) E V48

12 021 2223 ... 48

G, :={geG|gO)=0} - stabilizer of zero

G,ys ={ge G| 8(0) =0 A g(d) = d} - stabilizer of zero and d
M = {kK)e VEl k2 k ASKH =SK))
My = (e K)e VAl k2 k ASK) = SK) A SK® d) = SK D d)

YV (kK)e M Y (a,b)e Vo

Fip(ab) = F, (F (a. b)) = (a® S(k ® EPb) ® S(k © EPb), b);
Fip(ab) = F(Fy(a, b)) = (a,b® Sk ® EPa) ® S(K' ® EPa)).
(Obviously we have: Vkk)eM: (Fj; € Gog F’f ¢ € Gg)and

VkEYeMy:  (Faye GoynFrp €Gog))

3 The 3-Transitivity of the Group G

Two elementary properties of  are stated in Lemma 1:
Lemma 1:

a)GCA, e /EGS83.

b) G is transitive on Ves

Lemma 2 shows the way we will pursue to prove the 3-transitivity of G. Its proof
can be derived from theorem 9.1. in the book of H. Wiclandt /Wie 64/.
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Lemma 2:

If G, is transitive on Vi, \ {0, d} and G, is transitive on Vg4 \ {0}, then G is 3-
transitive on Vi,.

To prepare the next steps we consider the following linear subspaces:
Vje 1,8 Vye Vo \ {0}
U 0) = LS () s @) O (k)L g5 9| (k. k) € M)

Up ) =L{S;((k)g;s © ) @ S;((K g5 @0 | (k. k) € My},

(L := linear subspace of V4 spanned by the given subset of V3 §: V=V,

denotes the j-th § - box; (k).=5,5 denotes the vector (kg 5. kg 45 -1 Kg))-)

The propositions (a) - (d) of Lemma 3 were obtained by a computer program:

Lemma 3:

@Vje 1,8\{4} Vye V{\{0}: U/ (0) = U} ) = V.

(b)V y € V4\{(0,0,0,0,0,0). (1,0, 1,1, 1, D}: U* (3) = {(0, 0,0, 0)}.
OU (L 1L 1L,1L,0,)=U (1. 1.1,1,0, 1) =V,

(d)Vye V¢\{(0,0,0,0,0,0),(0,0,0,1,0,0),(1,0,1,0, 1, 1), (1,0, 1, 1, 1, D}:

Uy () #{(0.0,0, 0)}.

Notations:

- "~" denotes the following equivalence:

2
Vixye Ve (x~y &> Jge God:g(x)=y).
- Further we denote

e:=(l, v 1, 0L 1, .0, 1)E V32.
12 ...9 1011 .32



103

Lemma 4:
V(2. 2) € Vi (e, 2) ~ (e, ).

Proof:

The proof uses propositions (a) and (c) of Lemma 3.

Let (z #) € V. be arbitrarily fixed,

. . 1
Property (a) of Lemma 3 includes the equality U, ((1,1, 1, 1,1, 1)) = V,; hence
the vector (z\®z}, 2,2y, 23923, z4®z;) is a linear combination of vectors

S @1 1L L L) @S, @1, 1,1, 1. 1. 1)),

where (K1, i) € M., (k) # (), .

For the corresponding (k!, k%) we set:

Vie T48: k; = & = 0.

By carrying out the corresponding permutations Ffl 2 we finally obtain:
(e, 2) ~ (e, (2, 23, 23, 24, 250 Zgs --o Z30)).

Analogous, from Uj. (1,1, 1, 1, 1, 1)) = V,(see (a)) we obtain:

(e, (21, 23, 23, 23, 250 Zg, oo 239)) ~ (€4 (2], 29, 23, 240 250 260 270 Zgo 290 2100 -or 232))-

The continuation of these considerations (where the equality U;. (1,1, 1, 1,0, 1))
= V, follows from (c) and not from (a)) finally yields the statement of Lemma 4.

Lemma 5:

Vae Vge\{0,d} 3z€ Vyia~(e, 2).

Proof:

Leta € Vg \ {0. d} be arbitrarily fixed.
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At first we show:
da' eV \{0,d}: (@ ~an3iel32\{2,5,10,18,26,31}:4;=1). D

If3iel32\ (2,5, 10,18, 26, 31}: g; = 1, then we immediately obtain (1)
(@ =a).

If not:
- Ifwehave 3ie33,64:q,=1,

then because of (a), (b), the properties V (k!, k%) € M: F:‘ € Goy
and

there exists a pair (k!, k%) € M and
anindex j€ 132\{2,5, 10, 18,26, 31} such that [Fyi 2 (@) = 1.

We fix 4’ := Ffl_kz (a).

- If wehave Vie 33,64:4,=0,
then because of (2), (d) and a ¢ {0, d} we obtain;

3je 3364 3G K e My: (P @ = 1.

Hence, this case is traced back to the case: 37 e 33,64:a,= 1.
Therefore the proof of (1) is complete.
We fix a vector a' € Vg \ {0, d} according to (1).

As a next step we prove:
Ja"e Vg\{0,d}:(a"~a' AVie 132\ 13,16:d] = ¢). 3
IfVie 1,32\ 13,16: a; = ¢, then we immediately obtain (3).

If not, then we choose an index j € 1,32\ {2, 5, 10, 18, 26, 31} with a} =1
according to (1).
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Property (a) implies:
Ja%e Vg \{0,d}: (a® - a A (a1 = @), AV i€ I() [0, = 1), )
where the sets /(j) are defined in table 1.
We fix a®e Vi4\ {0, d} according to (4).
Because of (a) we obtain:
Jale Vg \ {0, d}: (@l ~a® A [ally = [a%1g A V i € J()): a} =e),
where the sets J(f) are defined according to table 2.
In the case of je {1, 6,9, 14, 16, 17, 19, 21, 22, 25, 29, 32} property (3)

holds with a":=al. In the other case, (3) follows by carrying out the same

procedure for al. At this we can take an index j € 1,32\ {2, 5, 10, 18, 26, 31}
with a} =1 and the property j € {1, 6,9, 14, 16, 17, 19, 21, 22, 25, 29, 32}.

That is possible because of:

Vje 18:4j-3,4i n {1.6.9, 14, 16,17, 19, 21, 22. 25,29, 32} = @.
This completes the proof of (3).
We fix a" € V¢, \ {0, d} according to (3). Then we can prove:
Jze Vyra'~ (e, 2). (5

Wehave: Vie 132\ 13,16:4d) =¢,

From this besides (a) and 13,16 n {2, 5, 10, 18, 26, 31} = & we get
JzeVy @~ a2 Aazg=0Az =25 = 213 = 236 = 231 = D).
We fix such a vector z € V3,. Because of (c) the equivalence ([a"];. z) - (e. 2)
holds.

Therefore the proof of (S) is complete.

Considering the chain a ~ @' ~ a" ~ (e, z) we obtain the proposition of Lemma 5
from (1), (3) and (5).
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j 1)
16 or 25 HUW
7 or 20 14
2l o0r29 18
12 or 28 58
lort7 5’7
15 0r 23 9,12
8or24 17.20
14 or 32 17.24
Jor27 2124
9or19 2128
13 or 30 2528
6or22 2532
d4orll m

Table 1. Definition of I())
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j 1.32\(13,16 U J()
1,6.9,14,16,17,19,21,22,25,29 32 %

7or20 - ﬁum
120r28 5—§uﬁ
150r23 1—4uﬁ2_
8or24 muﬁ
Jor27 51—21

13 or 30 172002528
4orll 9,12L29.32

Table 2. Definition of J(;)

Corollary 1:
God is transitive on V (,\ {0, d}.
Proof:

Let (a,a) € (V,\{0,d})2 By Lemma 4 and Lemma 5 we get:

3@ )e Vi@~ (e.9)~(e.2) ~ a).

Corollary 2:

G is transitive on Viea {0}.
Proof:

Because of Corollary 1 it suffices to show that

dge Goig(d) 2d (g(d) #0becauseof ge Go).
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Let (k, k) € M\M ;.. (M\M . = D; for example for k = 0 and

k:=(0,0,...0,1.0,0.1,1,0,..,0)
12 ... 1920212223 2425 ... 48

we have S(k) = S(k) and S(k D d") = S(k' © d").)

= Fyp (@)= (dy, dg® Sk ® d') ® Sk ® d)) #d.

Since we know F'f x € G, the proof is complete.

From Lemma 2, Corollary 1, and Corollary 2 we immediately obtain:

Corollary 3:
G is 3-transitive on V64,

4 Proof of the main Theorem

The proposition of Lemma 6 will help to complete the proof of the main theorem.

Lemma 6:

AhK)e M l{xe V| Frp@=xH =5-2%.

Proof:

We fix the following pair (&, k') € M:

k' =(0,0.-0.1.0,... 0)€ V,g and
P2 012 13 14 ... 48

K =(0.0.... 0. 1,0,..., 0) € Vgq.
12 .17 1819 . 48
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Then the permutation Ff 4 exactly has the following set of fixed points:

{(x.xp) € Vsl S(k® EPx;) @ S(k ® EPx)) =0} =
= {(x, Xp) € Vigyl S3(((k ® EPx)))15) = S;((K © EPxp))) i)} =

= {(xy, Xp) € Vg, | (((EPxy); )j‘f”) e {(0,0,0,0,0,0), (1,0,0,0,0,1), (0,0,0,1,1,0),
(11()’0»1,191)! (0,0,I,0,0,l), . (170a1v070)0)$ (0’1’1’0’0’1)’
(1,1,1,0,0,0), (0,1,1,1,0,1), (1,1,1,1,0,0)} }.

Thus the permutation F, . exactly has 10 - 226 232 = 5 - 2% fixed points.

Theorem 1:
The following equality holds: G = A 464 -

Proof:
Suppose G ¢A264 .

G is 3-transitive. Therefore we can apply proposition 5.2. of /Cam 81/ implying that
G has a unique minimal normal subgroup which is Abelian or simple.

- Suppose that this normal subgroup is simple. Following the table on page 8 of
/Cam 81/, which is based on the classification of finite simple groups (see also

2
/CC 91/, p. 462), we obtain that 264 has the form {;—T‘ = g+ 1, where gisa

prime or a power of a prime. But because 264 - 1 is neither a prime nor a power
of a prime, we get a contradiction.

- If this normal subgroup is Abelian, then G is "similar" to a subgroup of the affine
group Aff (V4,) (see /Rob 82/, pp. 192-193).

Two permutation groups 4 and H ' on X and X ', respectively, are called similar,
if there exist an isomorphism a: H — H ' and a bijection f: X — X ' with the
property:

Yhe HVxeX: Bhx) = (ah)) Bx) (see /Rob 82/, p. 32).
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That means that each element of G has the same cycle representation as a
certain element of Aff (V). Particularly the number of fixed points of each
element of G must be an element of the set {0, 20, 21, ..., 254}, because the

fixed points of an affine mapping (if there are any) form an affine subspace
of V64'

From Lemma 6 we know that there exists an element of G with exactly 5 - 2%
fixed points. Thus, also in the Abelian case we get a contradiction.

Hence, the supposition G # A 564 is wrong and the theorem is proved.
||
Corollary 4:

The groups G(,,) generated by the n - round functions of the DES (with independent
subkeys) areequal to A g (n=2,3, ).

Proof (sketch):

Obviously G, is a transitive subgroup of G.

Besides this, all permutations F’: x and Ff x also belong to G

: 1 1
(COﬂSldCr(FkoFko...oFk)o(Fk.oFkoFko...oFk) :FkoFk'

-1 -1
and  (FpoF,o..0F,) o(FyoFgo..0F 0F) =F oF,).

Because the given proofs of Lemma 4, Lemma 5, Corollary 2 and Lemma 6 make
use of no other group elements than Ff x and Ff x » we can prove G,y = A 6 IN
the same way as we proved G = A 64

5 Conclusions

Theorem 1 gives an answer to an open question formulated for example by
Pieprzyk/Zhang in /PZ 90/ ("Arc the DES generators complete?”). The result shows
that the structure of the one-round DES-permutations and the current S-boxes do
not restrict the number of possible permutations attainable by composition. Since
the generated alternating group A, 64 Is a large simple group and primitive on Vg,
we can exclude several imaginable cryptanalytic "shortcuts” of the DES-algorithm.
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Though the proofs in this paper are based on various special properties of the
permutations it is possible to find certain other S-boxes such that after replacement
we obtain the same final result as in Theorem 1.

Finally, with regard to Corollary 4 one may expect that the set of 16-round -DES-
cipher-permutations generates the alternating group, too. This, however, remains an
open question, because the influence of the DES key-scheduling must be taken into

account.
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