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Abstract Since its introduction into the biomedical

literature, statistical significance testing (abbreviated as

SST) caused much debate. The aim of this perspective

article is to review frequent fallacies and misuses of SST in

the biomedical field and to review a potential way out of the

fallacies and misuses associated with SSTs. Two frequentist

schools of statistical inference merged to form SST as it is

practised nowadays: the Fisher and the Neyman-Pearson

school. The P-value is both reported quantitatively and

checked against the a-level to produce a qualitative dichot-

omous measure (significant/nonsignificant). However, a

P-value mixes the estimated effect size with its estimated

precision. Obviously, it is not possible to measure these two

things with one single number. For the valid interpretation

of SSTs, a variety of presumptions and requirements have to

be met. We point here to four of them: study size, correct

statistical model, correct causal model, and absence of bias

and confounding. It has been stated that the P-value is

perhaps the most misunderstood statistical concept in clin-

ical research. As in the social sciences, the tyranny of SST is

still highly prevalent in the biomedical literature even after

decades of warnings against SST. The ubiquitous misuse

and tyranny of SST threatens scientific discoveries and may

even impede scientific progress. In the worst case, misuse of

significance testing may even harm patients who eventually

are incorrectly treated because of improper handling of P-

values. For a proper interpretation of study results, both

estimated effect size and estimated precision are necessary

ingredients.

Keywords Statistics � P-value � Confidence intervals

Since its introduction into the biomedical literature, null

hypothesis significance testing (abbreviated as SST) has

caused much debate. As early as 1919, Boring criticized

use of SST [1]. In 1957, Hogben described the logical and

practical errors in theory and teaching of SST [2]. In 1970,

Morrison and Henkel [3] published the compendium enti-

tled ‘‘The Significance Test Controversy’’. More recently,

Cohen wrote a very influential paper on the SST contro-

versy [4]. Despite many warnings and critical remarks

about the use of SST in biomedical projects, SST is still

one of the most prevalent statistical procedures in bio-

medical publications. The aim of this perspective article is

to review frequent misconceptions and misuses of SST in

the biomedical field and to review a potential way out of

the fallacies associated with SSTs.

What is a P-value?

A P-value may be viewed as the probability of obtaining an

estimate at least as far from a specified value (most often

the null value, i.e., the value of no effect, the so called ‘‘nil
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hypothesis’’) as the estimate we have obtained, if the

specified (null or test) value were (note the subjunctive) the

true value [5], p. 220. In other words, the P-value is a tail

area probability based on the observed effect estimate; it is

calculated as the probability of an effect estimate as large

as or larger than the observed estimate (more extreme in

the tails of the distribution), assuming the null hypothesis

were true [6]. As Miettinen stated ‘‘The P-value is a

function of the data computed under the statistical model

that underlies the analysis.’’ [7]. It should be noted that a

P-value is a confounded (mixed) measure: it mixes the

estimated effect size with its estimated precision, both

crucial aspects of the data [8]. Obviously, it is not possible

to present two quantities (estimated effect size and preci-

sion) by one single number. We can see this most clearly

when the test statistic is Z: the parameter estimate divided

by its estimated standard error. The higher the parameter

estimate or the lower the estimated standard error, the

greater the (absolute) value of Z and the lower the (two-

sided) P-value.

Perhaps more important than knowing what a P-value

actually is, is understanding what a P-value is not. Good-

man gave as many as 12 different misconceptions of the

P-value [9]. The most pervasive of these misconceptions is

interpreting the P-value as the probability of the null

hypothesis. The P-value is derived from the study data,

assuming that the null hypothesis is true. It cannot, there-

fore, make a concurrent statement of the probability of that

hypothesis. In addition, the P-value generally exaggerates

the evidence against the null hypothesis, thus calling ‘‘into

question the validity of much published work based on

comparatively small, including 0.05, P values’’ [10]. This

is because true posterior probabiltities (as they could be

derived, for example, in a Bayesian framework) are gen-

erally larger than the corresponding P-values.

What is a significance test?

Two frequentist schools of statistical inference merged to

form SST as it is practised nowadays: the Fisher and the

Neyman-Pearson school. The logic of Fisher’s null hypoth-

esis testing consisted of two steps: (1) One sets up a null

hypothesis. (2) One reports the P-value, called the level of

significance. This approach ‘‘lacks a specific alternative

hypothesis and therefore the concepts of statistical power,

Type II error and theoretical effect size have no place in

Fisher’s framework’’ [11]. Fisher saw the P-value as an

index measuring the strength of evidence against the null

hypothesis: the lower the P-value, the stronger the evi-

dence. He argued that ‘‘no scientific worker has a fixed

level of significance at which from year to year, and in all

circumstances he rejects hypotheses; he rather gives mind

to each particular case in the light of his evidence and his

ideas’’ [12, 13].

In contrast, Neyman and Pearson’s decision theoretic

approach included the specification of two statistical

hypotheses the null hypothesis, H0, and an alternative

hypothesis, H1), the Type I and II error probabilities (a and

ß), and sample size before the trial or experiment is started.

Based on these specifications, rejection regions for both

hypotheses are defined. If the data falls into the rejection

region of H0, H0 is rejected in favour of H1, otherwise H0 is

not rejected. Thus, we use a decision rule for interpreting

the results of our experiment or trial in advance, and the

result of our analysis is simply the rejection or acceptance

of the null hypothesis.

Today’s practice of SST is a mixture of both schools.

The P-value is both reported quantiatively and checked

against the a-level to decide on the destiny of the null

hypothesis. In the world of SST, P\ 0.05 warrants a call

for action and the farther below 0.05 P falls, the stronger

the call. P C 0.05 means that the status quo is to be

maintained and the closer to 1.0 the P-value falls, the more

secure the status quo seems to be. Studies with P C 0.05

are commonly considered as failed studies, that is, studies

that failed to ‘‘achieve’’ significance [14]. Does it make

sense to adopt a new therapy because the P-value of a

single study was 0.048, and at the same time to reject

another therapy because the P-value was 0.052? That did

not make sense to Neyman and Pearson [15], but it does to

some today [16].

Presumptions for the interpretability of statistical

significance tests

For valid interpretation of SSTs, several presumptions or

requirements have to be met. We point here to four of

them: study size, correct statistical model, correct causal

model, and absence of bias and confounding.

Study size

Given a fixed effect size, the P-value is a function of the

sample size. Studies with small sample sizes tend to miss

important clinical differences in significance tests. In

contrast, studies with large study sizes tend to produce

significant findings that are clinically meaningless. Despite

these well-known relations between study size and statis-

tical significance, study size related misinterpretations of

SSTs are ubiquitous even after decades of educational

articles. For example, the authors of a recent randomized

trial hailed a statistically significant (P = 0.04) increase in

median survival from 10.1 months to 11.3 among patients

with advanced non-small-cell lung cancer as ‘‘a new
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treatment option’’ [16]. The clinical significance of that

statistically significant difference is questionable.

In 1995, Altman and Bland noted that ‘‘the non-equiv-

alence of statistical significance and clinical importance

has long been recognized’’ [17]. It is just as well under-

stood, and just as frequently ignored, that findings of

potentially great clinical importance may be statistically

non-significant. For example, the frequently replicated

association between greatest tumor dimension (GTD) and

prognosis is one component of the TNM-staging of uveal

melanoma [18]. The authors of one study [19] that repli-

cated this association, with an estimated relative risk of

poor outcome of 2.40 and a 95% CI of 0.98–5.88, failed to

emphasize this result because, ‘‘…of the clinical charac-

teristics, only the presence of extraocular extension was

associated with poor outcome’’. By ‘‘associated,’’ the

authors meant statistically significantly associated. The

exceedingly plausible, highly replicated, clinically signifi-

cant association with GTD was treated as no association

merely because P C 0.05. We note in passing that a post

hoc power analysis would not have changed that misin-

terpretation and, contrary to common beliefs, does not give

any additional information in such situations [20].

Stampfer et al. [21] recently studied the association

between daily alcohol drinking at baseline and cognitive

impairment (three primary outcomes) during follow-up in

the Nurses Health Study among 11,102 women. They

concluded that ‘‘women [drinking 1.0–14.9 g of alcohol

per day] had significantly better mean cognitive scores than

nondrinkers on all three primary outcomes’’. They stressed

that there were no significant associations with higher

levels of drinking (15.0–30.0 g per day). A closer look at

the distribution of drinking habits at baseline reveals that

51% of all women were nondrinkers, 44% were moderate

drinkers (1.0–14.9 g per day), and only 5% (648 women)

were in the highest drinking category. The results (Fig. 1)

showed essentially the same association for the moderate

and higher drinking levels compared with zero consump-

tion, with a less precise estimate for the higher category

owing to its low prevalence in the study population.

Correct statistical model

The validity of the calculated P-value, and therefore of the

SST, depends on the correct statistical model. Referring

again to the study of Stamper et al., the reported estimated

relative risks are derived from a standard logistic regres-

sion model with alcohol consumption and several other

confounders as covariates. Using this model explicitly

assumes that (1) all confounders act linearly (and not, for

example, in a quadratic relation) on the log odds of cog-

nitive impairment, (2) there are no interactions between

confounders, (3) all important confounders were included

in the model, (4) the link function between the probability

of cognitive impairment and the confounders is indeed the

logit function, and (5) no bias-inducing adjustment vari-

ables were included. Violations of any of these presump-

tions can potentially result in grossly biased P-values.

Correct causal model

To validly estimate the association between a treatment and

outcome, presumptions have to be met regarding the

timeline of treatment and treatment effect (see Fig. 2). Let

us assume a beneficial treatment has to last for at least

6 months to reduce the risk of an adverse outcome and it

takes an additional 6 months for that risk reduction to

occur A clinical trial of this beneficial treatment would be

Fig. 1 Association between daily

alcohol consumption and risk of

cognitive impairment in the nurses

health study [21]. Multivariate relative

risk of cognitive impairment among

women who drank 1.0 to 14.9 g of

alchol per day, as compared to

nondrinkers. TICS denotes the

telephone interview for cognitive

status. The verbal memory score

reflects the results of immediate and

delayed recall of both the TICS 10-

word list and the East Boston Memory

Test. The global cognitive score is the

average of the results of all cognitive

tests
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meaningless if the treatment duration, the follow-up dura-

tion or both are too short. In the field of outcomes research,

rough a priori ideas about these time intervals are often

available. However, a priori ideas about these intervals

may be more vague in other fields of biomedical research,

including the study of etiologic factors. The Women’s

Health Initiative (WHI) study assessed the association

between hormone replacement therapy (HRT) and risk of

breast cancer [22]. The risk of breast cancer among HRT

users was not increased during the first 3–4 years of fol-

low-up. Thereafter, the cumulative risks diverged, showing

a higher risk among women with HRT. If the follow-up

time had been only 3 years, the increased breast cancer risk

could not have been observed in that study.

No bias and no confounding

Although it sounds like a truism, the interpretability of

P-values and SSTs also depends on the absence of bias and

confounding, because bias and confounding can influence

the test size, power, or both—for better or worse. For

Ronald Fisher, randomization was necessary to ensure that

the estimates of error and tests of significance ‘‘should be

fully valid’’ [23]. In contrast to randomized trials, in which

randomization provides a solid theoretical basis for the

probability models from which P-values are derived, such a

mechanism is missing in observational studies. Hence,

precise and hairsplitting interpretations of P-values and

confidence intervals are even less wise in observational

research than they are in randomized trials [24].

Interpretation of nullhypothesis significance tests

in presence of prior studies

How can we ignore available prior studies that dealt with

the same study question as our own study when interpret-

ing our own results [14]? For example, a nonsignificant

association between smoking (ever vs. never) and lung

cancer (e.g., RR = 2.0, 95% CI: 0.9–4.2) in a cohort study

should not prompt investigators to claim that there is no

association between smoking and risk of lung cancer and

therefore contradicting evidence. Their non-significant

finding must be seen in light of the compelling evidence

that smoking is a risk factor of lung cancer. Yet, many

authors discuss their own study findings as if their study

would be the first and only study addressing the specific

study question, as in the study of GTD and uveal melanoma

prognosis discussed above [19]. In medical research,

decisions are rarely made on the basis of a single trial or

experiment [25] and many studies that are not statistically

significant contribute to the overall weight of the evidence

upon which associations come to be accepted as causal.

Figure 3a, b illustrate the two ways of thinking: ignoring

any prior evidence and accounting for it. Conducting sys-

tematic reviews has the immense side benefit that one

comes to view the contributions of individual studies in a

greatly improved light [14].

Themixture of SST schools (Fisher vs. Neyman-Pearson)

tempts investigators with strong prior beliefs of their

hypotheses to switch between SST schools depending on the

results of their SSTs. For example, consider an investigator

who strongly believes that a factor would be an important

predictor of a poor outcome of a disease observes a non-

significant association at a = 0.05 (the predefined Type I

error according to Neyman and Pearson) between this factor

and the outcome. This investigator might write, ‘‘Our study

result was close to significance (P = 0.08),’’ andmight even

seriously discuss the ‘‘almost positive’’ study finding or

‘‘trend’’ [26]. Frequently, those investigators claim that their

study findingwould have become significant if the study size

would have been larger.However, if the investigator does not

believe in a real association between a factor and an outcome

and the association becomes significant, this investigator

might write, ‘‘Our study result (P = 0.03) may be due to

chance,’’ and might argue why this finding most likely is an

artefact due to unexplained errors including bias and con-

founding—again circumventing the Neyman and Pearson

decision-theoretic approach.

Null hypothesis significance testing where chance

plays the only role or no role

P-values are frequently completely senseless. One example

is the typical table 1 of the publication of a randomized

controlled trial (two groups) presenting the distributions of

study characteristics just after randomization by group.

These tables are frequently accompanied by SSTs com-

paring the treatment groups with each other in order to

assess comparability (exchangeability) between the groups.

The mechanism that produced these distributions is a

chance mechanism by definition. That is, we know in

Minimum treatment

duration

Minimum Latency

Period

Observable

Treatment Effect on 

Outcome

TimeStart of 

Treatment

RR=1.0

RR< 1.0

Fig. 2 Minimum treatment duration, minimum latency period, and

observable treatment effect on outcome
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advance that the SST of equal means or proportions in

treatment groups is true and so it is completely useless to test

this hypothesis. If randomization worked, we expect that on

average one out of 20 variables will show statistically sig-

nificant differences (P\ 0.05) between the groups. There-

fore, the assessment of chance as an explanation of an

imbalance of confounders between the groups by SSTs is

unreasonable as the answer is yes, regardless what the result

of the SST is. It is the magnitude of imbalances between the

groups that is important to consider [27]. The meaning of

these imbalances is based not on statistics but on subject

matter judgment. For example, in a large antihypertensive

treatment trial, at randomization one group may have a

mean systolic blood pressure of 148 mmHg (standard

deviation, SD = 5.6) and the other group a mean systolic

blood pressure of 150 mmHg (SD = 5.7). Is the 2 mmHg

difference of the mean blood pressure values a relevant

difference from a clinical perspective? This question cannot

be answered by SSTs. It can be answered by clinical

judgment or by a quantitative evaluation of confounding.

Similar unreasonable uses of SSTs can be observed in

observational studies. For example, it is popular to study

the distribution of matching factors (for example age)

between cases and controls (see for example [28]). How-

ever, the similarity of the distributions of the matching

factors among cases and controls is dependent on the

quality of the matching, which is under control of the

investigator. Comparisons of those distributions are there-

fore not scientific findings.

What is a confidence interval?

For a given estimate, a 95% confidence interval (CI) is the

set of all parameter values (i.e., hypotheses) for which P C

0.05 [24]. If the underlying statistical model is correct and

there is no bias, the proportion of CIs derived over

unlimited repetitions of the study containing the true

parameter value is no smaller than 95% and is usually close

to that value. This means that a confidence interval pro-

duces a move from a single value, or point estimate, to a

range of possible effects in the population about which we

want to draw conclusions.

A confidence interval conveys information about both

magnitude of effect and precision and therefore is prefer-

able to a single P-value [29]. Although CIs can be used for

a mechanistic accept–reject dichotomy by rejecting any

null hypothesis if the value indicating the null effect is

outside the interval, they can and should move us away

from that dichotomy. The width of a CI indicates how

much the point estimate is influenced by chance. For

instance, when a relative risk estimate of 4.1 (95%CI: 1.2–

14.0), P = 0.02, is compared with an estimate of 1.4

(95%CI: 0.8–2.4), P = 0.20, the first is much more influ-

enced by chance (as reflected by its wider CI) and is

therefore much less trustworthy, even though the first

estimate is statistically significant and the second is not

[24]. Since 1999, the Board of Scientific Affairs (BSA) of

the American Psychological Association (APA) has rec-

ommended the presentation of confidence intervals for all

effect size estimates [30].

Conclusions

It has been stated that the P-value is perhaps the most

misunderstood statistical concept in clinical research [6].

As in the social sciences [31], the tyranny of significance

testing is still highly prevalent in the biomedical literature,

even after decades of warnings against SST [25]. The

ubiquitous misuse and even tyranny of significance testing,

given the authoritarian way in which it tends to be prac-

ticed, threatens scientific discoveries and may even impede

scientific progress [9]. In the worst case, it may even harm

patients who eventually are incorrectly treated because of

improper handling of P-values. As Sterne and Davey Smith

recently reminded us, ‘‘In many cases published medical

literature requires no firm decision: it contributes incre-

mentally to an existing body of knowledge’’ [13]. Bio-

medical research is an endeavour in measurement. Its

objective is to obtain a valid and precise estimate of a

measure of effect, the true value of which may be no effect,

Ignoring Prior Studies Accounting for Prior Studies 

1.0 2.0 4.00.50.25

Incidence Rate Ratio (IRR) & 95% Confidence Intervals (95%CI)

IRR=2.0 (95%CI: 0.9-4.2)
“No association (p 0.05)“

1.0 2.0 4.00.50.25

Incidence Rate Ratio (IRR) & 95% Confidence Intervals (95%CI)

IRR=2.0 (95%CI: 0.9-4.2)
“No association (p 0.05)“

Prior 

Studies

Fig. 3 Interpretation of study

results ignoring and accounting

for prior studies
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a small and unimportant effect, or a large and meaningful

effect. We should strive for good data description and

careful interpretation of estimated effect measures and their

accompanying precision rather than mechanical signifi-

cance testing with yes–no answers which lead inherently to

biased interpretations. An important way out of signifi-

cance fallacies such as those we have described is to

interpret statistical findings based on confidence intervals

that convey both the size and precision of estimated effect

measures.

Disclosure None of the authors reports any conflict of interest.
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