
RIGHT:
URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:The Online Graph ExplorationProblem on Restricted Graphs

MIYAZAKI, Shuichi; MORIMOTO, Naoyuki; OKABE,Yasuo

MIYAZAKI, Shuichi ...[et al]. The Online Graph Exploration Problem on Restricted Graphs.IEICE Transactions on Information and Systems 2009, E92-D(9): 1620-1627

2009-09-01

http://hdl.handle.net/2433/226939
© 2009 The Institute of Electronics, Information and CommunicationEngineers

1620
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.9 SEPTEMBER 2009

PAPER

The Online Graph Exploration Problem on Restricted Graphs

Shuichi MIYAZAKI†a), Member, Naoyuki MORIMOTO†b), Nonmember,
and Yasuo OKABE†c), Senior Member

SUMMARY The purpose of the online graph exploration problem is to

visit all the nodes of a given graph and come back to the starting node with

the minimum total traverse cost. However, unlike the classical Traveling

Salesperson Problem, information of the graph is given online. When an

online algorithm (called a searcher) visits a node v, then it learns informa-

tion on nodes and edges adjacent to v. The searcher must decide which node

to visit next depending on partial and incomplete information of the graph

that it has gained in its searching process. The goodness of the algorithm

is evaluated by the competitive analysis. If input graphs to be explored

are restricted to trees, the depth-first search always returns an optimal tour.

However, if graphs have cycles, the problem is non-trivial. In this paper

we consider two simple cases. First, we treat the problem on simple cy-

cles. Recently, Asahiro et al. proved that there is a 1.5-competitive online

algorithm, while no online algorithm can be (1.25 − ǫ)-competitive for any

positive constant ǫ. In this paper, we give an optimal online algorithm for

this problem; namely, we give a 1+
√

3
2

(≃ 1.366)-competitive algorithm, and

prove that there is no (1+
√

3
2
−ǫ)-competitive algorithm for any positive con-

stant ǫ. Furthermore, we consider the problem on unweighted graphs. We

also give an optimal result; namely we give a 2-competitive algorithm and

prove that there is no (2 − ǫ)-competitive online algorithm for any positive

constant ǫ.

key words: the graph exploration problem, online algorithm, competitive

analysis

1. Introduction

In the Traveling Salesperson Problem (TSP) [14], we are

given a graph and non-negative weights (lengths) on edges.

Our task is to find a tour visiting all the nodes and com-

ing back to the starting node with minimum cost. The cost

of a tour is the total length of the tour. This problem is

a well-known NP-hard problem, and there have been in-

tensive studies such as heuristics and approximation algo-

rithms. Apparently, TSP has plenty of practical applications,

which includes determining a pickup or delivery tour for de-

livery companies or minimizing the total movement cost of

robot arms in LSI wiring.

In TSP, all information on the graph is given to the al-

gorithm in advance. However, in some cases of real ap-

plications, the terrain may be unknown until the algorithm

visits the place, and the algorithm learns the local environ-

ment when it actually visits there. For example, suppose

Manuscript received February 16, 2009.
Manuscript revised May 8, 2009.
†The authors are with the Kyoto University Kyoto-shi, 606–

8501 Japan.
a) E-mail: shuichi@media.kyoto-u.ac.jp
b) E-mail: morimoto@net.ist.i.kyoto-u.ac.jp
c) E-mail: okabe@i.kyoto-u.ac.jp

DOI: 10.1587/transinf.E92.D.1620

that we wish to gather complete information of an unknown

environment using a robot searcher. At the beginning, the

robot has no knowledge of the environment. It should decide

where to visit next depending only on the partial information

of the environment that it has gained through the exploration

so far. This kind of problem is known as the exploration or

the map construction problem and there are several models.

In [13], the problem is formulated in an online problem on

undirected edge-weighted graphs as follows: At the begin-

ning, the searcher is at the starting node o, called the origin,

and it knows the local information, namely, the labels of the

nodes adjacent to o, and the weights of edges incident to o.

When the searcher visits a node v, then it learns the labels of

nodes adjacent to v and the weights of edges incident to v.

When the searcher moves from u to v along the edge (u, v),

it costs the weight of (u, v). The task of the searcher is to

visit all the nodes and return to the origin with as small cost

as possible. The goodness of the algorithm is evaluated by

the competitive analysis [5], [10].

The most natural algorithm one may consider is the

greedy type Nearest Neighbor algorithm (NN), which al-

ways visits a node nearest to the current node, among those

that have not yet been visited. However, it has been shown

that NN is not competitive even for planar graphs; there ex-

ists a planar graph G with n nodes such that the compet-

itive ratio of NN is Ω(log n) [15]. Kalyanasundaram and

Pruhs [13] proposed a modified version of NN, called Short-

Cut, and proved that it is 16-competitive for planar graphs.

Note that if input graphs to be explored are restricted to

trees, the depth-first search always returns an optimal tour

because to visit all nodes and come back to the origin, each

edge must be traversed at least twice, and the depth-first

search traverses each edge exactly twice. Hence, the sim-

plest non-trivial case is probably cycles. Recently, Asahiro

et al. [2] considered the graph exploration on cycles. They

proved that NN achieves the competitive ratio of 1.5 and

showed that no online algorithm can have the competitive

ratio better than 1.25.

Our Results.

In this paper we consider the problems on two classes of

graphs and give tight bounds on the competitive ratio for

both cases. First we improve both upper and lower bounds

of the problem on cycles, and give a tight bound 1+
√

3
2

(≃
1.366). For improving the upper bound, we propose a new

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp

MIYAZAKI et al.: THE ONLINE GRAPH EXPLORATION PROBLEM ON RESTRICTED GRAPHS

1621

algorithm called DIST, which decides the next node to visit

depending on the (weighted) distances between the current

node and each of the unvisited two nodes, the total length

of the exploration so far, and the distance from the origin

to the current node. We also consider the problem on un-

weighted graphs, and give a tight bound of 2; namely, we

prove that algorithm DFS is 2-competitive and that no on-

line algorithm can have the competitive ratio better than 2

(this lower bound holds even when graphs have planarity).

Related Results.

There are several variants of the problem of exploring un-

known environment online. Deng and Papadimitriou [6]

considered the problem of exploring a directed unweighted

graph. This problem requires us to explore not only all

nodes but also all edges, and the cost of the searcher is mea-

sured by the total number of edges traversed. They gave

an online algorithm with dO(d)m edge traversals, where m

is the number of edges in the graph and d is the minimum

number of edges that have to be added to make the graph

Eulerian. Albers and Henzinger [1] presented an algorithm

that achieves an upper bound of dO(log d)m, and Fleischer

and Trippen [9] gave an algorithm with an upper bound of

O(d8m). Fleischer and Trippen [8] also made an experi-

mental study of major online graph traversal algorithms and

evaluated their practical performance on various graph fam-

ilies. In the polygon exploration problem (e.g. [7], [12]), an

unknown environment is modeled by a polygon. The task

of a searcher is to see all the boundaries of the polygon

and come back to the starting point. Ausiello et al. [3] and

Ausiello et al. [4] have studied the online traveling sales-

person problem in which requests are presented online, and

the aim of the searcher is to visit each requested point (not

necessarily in the order of requests, unlike the k-server prob-

lem).

2. Preliminaries

The purpose of the Online Graph Exploration problem is to

visit all the nodes of a given graph G = (V, E), where V

and E denote the sets of nodes and edges, respectively. For

each edge (u, v) ∈ E, a non-negative weight ℓ(u, v), some-

times called the length, is associated. Initially, the searcher

is at the specified node o ∈ V , called the origin. It knows

only the labels of the nodes adjacent to o, and the length of

edges connecting o with those neighborhood nodes. Once

the searcher visits a node v, it learns the labels of nodes adja-

cent to v and the length of edges incident to v. The searcher

has a sufficiently large memory so that it can store all in-

formation obtained so far, namely, the labels of nodes, the

weights of edges, and the topology of the subgraph consist-

ing of nodes and edges it has already learned. The task of

the searcher is to determine the next node to visit, using only

the current knowledge. The goal of the searcher is to visit all

the nodes and return to the origin. The cost of the searcher

for the graph G is the total length of the tour made by the

searcher on G.

The performance of an online algorithms is evaluated

by the competitive analysis: Let ALG(G) denote the cost of

an algorithm ALG on G, and let OPT(G) denote the cost of

an optimal offline algorithm OPT for G. We say that ALG is

c-competitive for a class of graphs G if ALG(G)/OPT(G) ≤
c for any graph G ∈ G. We may write ALG and OPT instead

of ALG(G) and OPT(G), respectively, when G is clear.

3. A Tight Bound on Cycles

In this section we consider the problem on cycles and give a

tight bound for the competitive ratio. Here is one simple but

important fact [2]. Let ℓmax be the maximum length of edges

and L = Σ(u,v)∈Eℓ(u, v) be the sum of the length of all edges.

Fact 1: For any cycle C, OPT(C) = L if ℓmax ≤ L
2
, and

OPT(C) = 2(L − ℓmax) if ℓmax >
L
2
.

3.1 A Lower Bound

In this section, we give a lower bound on the competitive

ratio for any online algorithm.

Theorem 1: For any positive constant ǫ, there is no (1+
√

3
2
−

ǫ)-competitive online algorithm for cycles.

Proof. We will introduce an adversary giving the above

mentioned lower bound. Fix an integer n and a constant

µ such that n >
√

3
ǫ

and µ < 1. First, the adversary reveals

two edges (o, u1) and (o, v) incident to the origin with the

equal length one. Without loss of generality, assume that the

searcher moves to u1. Then, the adversary reveals an edge

(u1, u2) such that ℓ(u1, u2) = 1. If the searcher visits u2, then

a new edge (u2, u3) with ℓ(u2, u3) = 1 is revealed. Similarly,

as long as the searcher visits a new node ui (i ≤ n − 1), the

adversary gives an edge (ui, ui+1) with ℓ(ui, ui+1) = 1.

Suppose that the searcher visits the node v before vis-

iting un, and suppose that this happens just after it visited ut

where t ≤ n − 1 (i.e. it went back to v when it saw the edge

(ut, ut+1)) (Fig. 1 (a)). Then the edge (v, ut+1) with weight t

is revealed (Fig. 1 (b)). The only unvisited node is ut+1, and

the best way for the searcher is to go to ut+1 directly from

Fig. 1 Lower bound construction for cycles (I).

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp

1622
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.9 SEPTEMBER 2009

Fig. 2 Lower bound construction for cycles (II).

v, and go back to the origin by either clockwise or counter-

clockwise direction. The cost of the searcher is then 4t + 2.

The optimal tour is to visit all nodes along the cycle, whose

cost is 2t + 2. The competitive ratio in this case is then

(4t + 2)/(2t + 2) ≥ 1.5 since t ≥ 1.

Next, suppose that the searcher visits un before visit-

ing v. Then the adversary gives an edge (un,w) with length√
3n (Fig. 2 (a)). We have two cases. First, suppose that

the searcher visits w. Then the adversary reveals the edge

(w, v) such that ℓ(w, v) = µ (Fig. 2 (b)). The best way for the

searcher is to visit v and o in this order (note that µ < 1). The

cost of the searcher is then n+
√

3n+µ+1 = (1+
√

3)n+µ+1.

Note that the edge (un,w) has the length more than half the

total length of the whole cycle. So, by Fact 1, the optimal

cost is 2(n + µ + 1). The competitive ratio is
(1+
√

3)n+µ+1

2(n+µ+1)
=

1+
√

3
2
−
√

3(µ+1)

2(n+µ+1)
> 1+

√
3

2
−
√

3(µ+1)

2n
> 1+

√
3

2
−
√

3(1+1)

2n
> 1+

√
3

2
−ǫ.

Finally, suppose that after the edge (un,w) is revealed,

the searcher goes back to the node v. In this case, the adver-

sary reveals the edge (v,w) with ℓ(v,w) = (
√

3 + 1)n − 1

(Fig. 2 (c)). Then the only unvisited node is w, and the

best way for the searcher is now to visit w directly from

v, and then go back to the origin in either clockwise or

counter-clockwise direction. The total cost of the tour is

n+n+1+ (
√

3+1)n−1+ (
√

3+1)n = (2
√

3+4)n. The op-

timal tour is a one along the cycle, whose cost is (2
√

3+2)n.

The competitive ratio in this case is
(2
√

3+4)n

(2
√

3+2)n
= 1+

√
3

2
.

Fig. 3 Description of the algorithm.

3.2 An Upper Bound

In this section, we give an online algorithm DIST and ana-

lyze its competitive ratio.

3.2.1 Algorithm DIST

Since a given graph is a cycle, there are always two choices

for the searcher: (except for the 1st step), either to go for-

ward or to go back. (See Fig. 3 (a). The visited nodes are

surrounded by a dotted curve, and the current position of

the searcher is indicated by the black node.) Before present-

ing the algorithm, we give a few notations. Suppose that

as shown in Fig. 3 (a), the searcher is currently at the node

u, and is to determine which of x and y to visit. For any

two nodes v1 and v2, let d(v1, v2) denote the distance be-

tween v1 and v2 along the edges already known. Let X be

the total length the searcher has traversed so far, and define

W = X − d(o, u). The value of W may change as time goes,

so it might be appropriate to express it as e.g. Wi for Step

i. However, for conciseness, we use W when there is no

fear of confusion, or we sometimes say as “W-value at this

moment”. Now, we are ready to give our algorithm DIST:

Step 1: The searcher is at the origin o, and there are two

nodes adjacent to o. It moves to the node closer to o. If

both are in the same distance, it chooses arbitrary one.

Step i (i ≥ 2): Suppose that the searcher is at a node u as

shown in Fig. 3 (a). If ℓ(u, x) ≤
√

3d(u, y) − W, then

the searcher moves to x. Otherwise, i.e., if ℓ(u, x) >√
3d(u, y) −W, then the searcher moves to y.

Final step: The current situation is like Fig. 3 (b). When

the searcher visits a node u, it learns that u is connected

to the unvisited but known node y (since it has seen y

when it was on the node of the other side). Now, it

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp

MIYAZAKI et al.: THE ONLINE GRAPH EXPLORATION PROBLEM ON RESTRICTED GRAPHS

1623

knows the entire graph, and there is only one unvisited

node y. The searcher selects the shorter path from u to

y, and then the shorter path from y to o.

3.2.2 Competitive Analysis

In this subsection, we prove the following theorem:

Theorem 2: DIST is 1+
√

3
2

-competitive for cycles.

Proof. Consider any time step of the online game, and sup-

pose that the situation is like Fig. 3 (a). (In the case just be-

fore the final step, x is equal to y as Fig. 3 (b).) Let W be

the current W-value, namely, the total distance the searcher

has traversed so far minus d(o, u). The following lemma is

crucial in our analysis:

Lemma 3: For anytime before the final step, W ≤ (
√

3 −
1)d(o, y).

Note: In the case of Fig. 3 (b), d(o, u) is the distance from o

to u in a clockwise direction, and d(o, y) is the distance from

o to y in a counter-clockwise direction.

Proof. The proof is by induction. After Step 1 is per-

formed, the situation is like Fig. 4 (a). Since W = ℓ(o, u) −
ℓ(o, u) = 0, the inequality holds clearly.

Next, we assume that the inequality holds after Step i,

and show that it holds after Step i+1. Suppose that after the

execution of Step i, the situation is like Fig. 3 (a). We denote

the W-value at this moment by Wi. By the induction hypoth-

esis, the following inequality holds: Wi ≤ (
√

3 − 1)d(o, y).

There are two cases to consider depending on whether the

searcher moves to x or y in the next step.

Case 1. The searcher moves to x at Step i + 1. Then

the situation is like Fig. 4 (b). Note that by definition, the

current W-value, denoted by Wi+1, is Wi+1 = Wi + ℓ(u, x) −
ℓ(u, x) = Wi. (This means that if the searcher goes forward,

then the W-value remains unchanged. This property will be

sometimes used hereafter.) So Wi+1 ≤ (
√

3 − 1)d(o, y) by

the induction hypothesis, which implies that the inequality

holds after Step i + 1.

Case 2. The searcher moves to y at Step i + 1. Then

the situation is like Fig. 4 (c). The total length of the tour

by the searcher increases by d(y, o) + d(o, u) at this step.

The distance from the origin was d(o, u) but is now d(o, y).

Hence, Wi+1 = Wi+d(y, o)+d(o, u)−d(o, y)+d(o, u) = Wi+

2d(o, u). Since the searcher selected y rather than x, ℓ(u, x) >√
3d(u, y) − Wi holds. Also, by the induction hypothesis,

Wi ≤ (
√

3 − 1)d(o, y). From these two inequalities and the

equality d(u, y) = d(u, o)+d(o, y), we have d(o, y) < ℓ(u, x)−√
3d(u, o). Now using the hypothesis again, we have

Wi+1 = Wi + 2d(o, u)

≤ (
√

3 − 1)d(o, y) + 2d(o, u)

< (
√

3 − 1)(ℓ(u, x) −
√

3d(u, o)) + 2d(o, u)

= (
√

3 − 1)(ℓ(u, x) + d(o, u))

= (
√

3 − 1)d(o, x)

Fig. 4 Proof of Lemma 3.

Fig. 5 Final step of DIST.

as required.

Now, suppose that we are at the moment just before the

final step. Then, the current situation looks like Fig. 5. The

searcher is at the node u, and it just learned that the node

y adjacent to u is the same as the one it saw from v before.

Since the searcher learned ℓ(u, y), it came to know the whole

information on the cycle.

For simplicity, let a, b, c, and d denote the lengths

of paths (edges) d(o, u), ℓ(u, y), d(o, v), and ℓ(v, y), respec-

tively, as depicted in Fig. 5. Let W∗ be the W-value at this

moment. Then, by Lemma 3, W∗ ≤ (
√

3 − 1)d(o, y) =

(
√

3 − 1)(c + d) holds. The only unvisited node is y, and the

searcher will visit y in either clockwise or counter-clockwise

direction depending on which route is shorter, and then go

back to o from y in either clockwise or counter-clockwise

direction, again depending on which route is shorter. We

will do a case analysis.

Case 1. b > a+c+d. In this case, a+b > c+d holds.

So, the searcher visits y by way of o, in a counter-clockwise

direction, and goes back to o by way of v, in a clockwise

direction. Since the cost of the searcher before the final step

is W∗ + d(o, u) = W∗ + a by the definition of the W-value,

the final cost is DIST = W∗ + a + (a + c + d) + (c + d) =

W∗ + 2(a + c + d). Because b > a + c + d, ℓmax = b > L/2.

So, the optimal cost is OPT = 2(a + c + d) by Fact 1. The

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp

1624
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.9 SEPTEMBER 2009

competitive ratio is

DIST

OPT
=

W∗ + 2(a + c + d)

2(a + c + d)

≤ 1 +
(
√

3 − 1)(c + d)

2(a + c + d)

≤ 1 +

√
3 − 1

2

=
1 +
√

3

2
.

Case 2. b ≤ a + c + d and a + b ≤ c + d. The

searcher visits y using the edge (u, y), and goes back to o in

a counter-clockwise direction, i.e., by way of u. So, DIST =

W∗ + a + b + (b + a) = W∗ + 2(a + b). Let emax be an edge

with maximum length, namely, ℓ(emax) = ℓmax. We consider

subcases according to the length and position of emax.

Case 2-(i). ℓmax ≤ L/2. By Fact 1, OPT = a+b+c+d.

Thus,

DIST

OPT
=

W∗ + 2(a + b)

a + b + c + d

≤ (
√

3 − 1)(c + d) + 2(a + b)

a + b + c + d

=
√

3 − 1 +
(3 −

√
3)(a + b)

a + b + c + d

≤
√

3 − 1 +
(3 −

√
3)(a + b)

2(a + b)

=
1 +
√

3

2
.

Case 2-(ii). ℓmax > L/2 and emax = (u, y). This does

not happen because b ≤ a + c + d.

Case 2-(iii). ℓmax > L/2 and emax = (v, y). By

Fact 1, OPT = 2(a + b + c). Consider the time when the

searcher was at v (Fig. 6 (a)), and let W′ be the W-value at

this moment. Let w be an unvisited node other than y (this

notation is used sometimes hereafter). Then, by Lemma 3,

W ′ ≤ (
√

3−1)d(o,w) ≤ (
√

3−1)a. Note that at the next step,

the searcher moved to w because y is the last node visited by

the searcher. Let W ′′ be the W-value just after the searcher

moved to w. Then, the total length of the tour increased

by c + d(o,w), and the distance between the origin and the

searcher changed from c to d(o,w). Hence, by a simple cal-

culation, W ′′ = W ′+c+d(o,w)+c−d(o,w) = W′+2c. Note

that the searcher does not change the direction hereafter un-

til it reaches u. So, the W-value remains unchanged until

the searcher reaches u, namely, W∗ = W ′′ = W ′ + 2c ≤
(
√

3 − 1)a + 2c (recall that W∗ is the W-value when the

searcher is at u). Now,

DIST

OPT
=

W∗ + 2(a + b)

2(a + b + c)

≤ (
√

3 − 1)a + 2c + 2(a + b)

2(a + b + c)

= 1 +
(
√

3 − 1)a

2(a + b + c)

Fig. 6 Case 2-(iii) and Case 2-(iv).

≤ 1 +

√
3 − 1

2

=
1 +
√

3

2
.

Case 2-(iv). ℓmax > L/2 and emax is in the path from

o to v (in a counter-clockwise direction). We can show

that this case does not happen in the following way: Sup-

pose, on the contrary, that this happens. Consider the time

when the searcher was at v (Fig. 6 (b)). Since the searcher

decided to move to w rather than y, it must be the case that

ℓ(v, y) >
√

3d(v,w) − W ′ where W ′ is the W-value at this

time. Also, by Lemma 3, W ′ ≤ (
√

3−1)d(o,w). So, ℓ(v, y) >√
3d(v,w) − (

√
3 − 1)d(o,w) =

√
3d(v, o) + d(o,w) ≥ ℓmax

because d(v, o) ≥ ℓmax by assumption. But this is a contra-

diction. So, we can conclude that this case does not happen.

Case 2-(v). ℓmax > L/2 and emax is in the path from o to

u (in a clockwise direction). This does not happen because

a + b ≤ c + d.

Case 3. b ≤ a + c + d and a + b > c + d. The

searcher visits y using the edge (u, y), and goes back to o in

a clockwise direction, i.e., by way of v. So, DIST = W∗+a+

b + (c + d). Similarly, we consider the following subcases:

Case 3-(i). ℓmax ≤ L/2. By Fact 1, OPT = a+b+c+d.

Thus,

DIST

OPT
=

W∗ + a + b + c + d

a + b + c + d

≤ 1 +
(
√

3 − 1)(c + d)

a + b + c + d

< 1 +
(
√

3 − 1)(c + d)

2(c + d)

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp

MIYAZAKI et al.: THE ONLINE GRAPH EXPLORATION PROBLEM ON RESTRICTED GRAPHS

1625

Fig. 7 Case 3-(v).

=
1 +
√

3

2
.

Case 3-(ii). ℓmax > L/2 and emax = (u, y). This does

not happen because b ≤ a + c + d.

Case 3-(iii). ℓmax > L/2 and emax = (v, y). This does

not happen because a + b > c + d.

Case 3-(iv). ℓmax > L/2 and emax is in the path from

o to v (in a counter-clockwise direction). This does not

happen because a + b > c + d.

Case 3-(v). ℓmax > L/2 and emax is in the path from o

to u (in a clockwise direction). Consider the time when

the searcher was at v. We first show that the searcher had

not yet traversed emax at this time. On the contrary, sup-

pose that it had already traversed emax (Fig. 7 (a)). Since the

searcher visits w at the next step, ℓ(v, y) >
√

3d(v,w) −W ′,
where W ′ is the W-value at this moment. Also, by Lemma 3,

W ′ ≤ (
√

3 − 1)d(o,w). Hence, ℓ(v, y) >
√

3d(v,w) − (
√

3 −
1)d(o,w) =

√
3d(o, v) + d(o,w) ≥ ℓmax, a contradiction. So,

the searcher traversed emax for the first time after it left v.

Now, let emax = (u′, u′′) and consider the time when the

searcher was at u′ (Fig. 7 (b)). Let W ′′ be the W-value at this

moment. Since the searcher visited u′′ next,

ℓmax ≤
√

3d(u′, y) −W ′′

=
√

3(d(o, u′) + d(o, y)) −W ′′

≤
√

3(d(o, u) − ℓmax + d(o, y)) −W ′′.

The last inequality follows from the fact that d(o, u′)+ℓmax ≤
d(o, u). From this inequality,

ℓmax ≤
√

3(d(o, u) + d(o, y)) −W′′

1 +
√

3

=

√
3(a + c + d) −W ′′

1 +
√

3

=

√
3(L − b) −W ′′

1 +
√

3
.

Here, recall that L is the total length of the cycle. Because

y is the last node visited by the searcher, the searcher does

not change the direction hereafter, until it gets u. Hence

W∗ = W ′′ (recall that W∗ is the W-value when the searcher

is at u). By Fact 1, OPT = 2(L − ℓmax). Hence,

DIST

OPT
=

W∗ + a + b + c + d

2(L − ℓmax)

≤ W∗ + L

2

(

L −
√

3(L−b)−W′′

1+
√

3

)

=
(1 +

√
3)(W∗ + L)

2(L +W∗ +
√

3b)

≤ 1 +
√

3

2
.

4. A Tight Bound on Unweighted Graphs

In this section we consider the problem on graphs in which

all edges have the same cost 1. Note that we do not restrict

the topology of graphs.

4.1 An Upper Bound

The Depth-First Search (DFS) gives a good upper bound.

When new edges and nodes are revealed, DFS chooses one

of the unvisited nodes adjacent to the current node arbitrarily

and visits it. If there is no such node, DFS backtracks, i.e.,

it goes back to the previous node through the edge used to

come to the current node for the first time, and does the same

procedure there.

To describe the behavior of DFS precisely, we give a

recursive procedure Search. Inputs of Search are a node x

and a sequence of nodes p (p could be empty). Intuitively,

x is the searcher’s current position and p is the record of the

exploration by the searcher so far.

Procedure Search(x: vertex, p: a sequence of nodes)

The searcher is now at x.

If there is an unvisited node z adjacent to x, go to z

and Search(z, px).

Otherwise,

If p � φ, let p = p′y where y is the last node of p,

and p′ is a sequence of nodes obtained by

eliminating y from p.

Go back to y, and execute Search(y, p′).
If p = φ, halt.

Algorithm DFS

Search(o, φ)

Theorem 4: DFS is 2-competitive for unweighted graphs.

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp

1626
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.9 SEPTEMBER 2009

Proof. For any given graph G, the set of the edges that al-

gorithm DFS traverses is a spanning tree of G. Let n denote

the number of nodes of G. Since DFS traverses each edge

exactly twice, DFS=2(n − 1). On the other hand, OPT ≥ n

holds because any algorithm should traverse at least n edges

in order to visit all the nodes and return to the origin. So,
DFS

OPT
≤ 2(n−1)

n
< 2.

4.2 A Lower Bound

In this section we prove the following theorem. Note that

this theorem holds even when graphs have planarity.

Theorem 5: For any positive constant ǫ, there is no (2−ǫ)-
competitive online algorithm for unweighted graphs.

Proof. We will introduce an adversary giving the above

mentioned lower bound. Fix an integer n such that n > 3
ǫ
.

For a path v1, v2, . . . , vk, let 〈〈v1, v2, . . . , vk〉〉 denote its total

length.

First, the adversary reveals two edges (o, u1) and (o, v1)

incident to the origin. If the searcher moves to u1, a new

edge (u1, u2) is revealed. As long as the searcher visits

a new node ui (i ≤ n − 1), the adversary gives an edge

(ui, ui+1). Similarly, if the searcher visits vi (i ≤ n − 1), a

new edge (vi, vi+1) is revealed. This procedure continues un-

til the searcher reaches un or vn. Without loss of generality

we can assume he reaches un before vn.

Now we assume that v1, v2, . . . , vt1 have been visited,

and vt1+1 has not been visited. Let Da denote the total length

of the exploration so far. Because the searcher visited vt1

before reaching un,

Da ≥ 2〈〈o, v1, . . . , vt1〉〉 + 〈〈o, u1, . . . , un〉〉
= n + 2t1.

Then, new edges (un, p1) and (un, q1) are revealed

(Fig. 8 (a)). When the searcher visits new node pi (i ≤
n+ t1 − 1), (pi, pi+1) will be revealed, and when the searcher

visits qi (i ≤ n+ t1−1), (qi, qi+1) will be revealed (Fig. 8 (b)).

Hereafter, we will do a case analysis depending on the

searcher’s behavior.

First we consider the case that the searcher reaches

vt1+1 before visiting pn+t1 or qn+t1 . Let t2 (≤ n + t1 − 1) and

t3 (≤ n + t1 − 1) be integers such that pt3 and qt2 have been

visited, and pt3+1 and qt2+1 are unvisited (Fig. 8 (c)). The

adversary does not reveal new edges anymore. Let Dc de-

note the total length of the exploration so far. The searcher

moved from un to vt1+1 after visiting pt3 and qt2 , so

Dc ≥ Da + 2〈〈un, p1, p2, . . . , pt3〉〉 +
2〈〈un, q1, q2, . . . , qt2〉〉 +
〈〈un, un−1, . . . , u1, o, v1, . . . , vt1+1〉〉

= Da + 2t2 + 2t3 + n + t1 + 1

≥ 2n + 3t1 + 2t2 + 2t3 + 1.

Hereafter, the searcher visits qt2+1 and pt3+1, and returns to

o finishing exploration. The total distance is

Fig. 8 Lower bound construction for unweighted graphs.

ALG ≥ Dc + 〈〈vt1+1, vt1 , . . . , o, u1, . . . , un〉〉 +
2〈〈un, q1, q2, . . . , qt2+1〉〉 +
2〈〈un, p1, p2, . . . , pt3+1〉〉 +
〈〈un, un−1, . . . , o〉〉

= Dc + (t1 + 1 + n) + 2(t2 + 1) +

2(t3 + 1) + n

≥ 4(n + t1 + t2 + t3) + 6,

while OPT = 2(n + t1 + t2 + t3 + 3). So, ALG

OPT
> 2 − ǫ.

Secondly, we consider the case that the searcher

reaches pn+t1 or qn+t1 before visiting vt1+1 Without loss of

generality we can assume that the searcher reaches qn+t1 .

Now suppose that pt4 has been visited and pt4+1 is unvis-

ited. Let Dd denote the total length of the exploration so far.

By a similar observation as before,

Dd ≥ Da + 2〈〈un, p1, p2, . . . , pt4〉〉 +
〈〈un, q1, q2, . . . , qn+t1〉〉

= Da + 2t4 + n + t1

≥ 2n + 3t1 + 2t4.

Then the adversary reveals (qn+t1 , vt1+1) (Fig. 8 (d)), and fin-

ishes revealing. Hereafter the best way for the searcher is

to visit vt1+1 traversing (qn+t1 , vt1+1), and to return to o after

visiting pt4+1 (the last unvisited node). The total length of

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp

MIYAZAKI et al.: THE ONLINE GRAPH EXPLORATION PROBLEM ON RESTRICTED GRAPHS

1627

the tour is

ALG ≥ Dd + ℓ(qn+t1 , vt1+1) +

〈〈vt1+1, qn+t1 , . . . , un, p1, . . . , pt4+1〉〉 +
〈〈pt4+1, pt4, . . . , un, un−1, . . . , o〉〉

= Dd + 1 + (1 + n + t1 + t4 + 1) +

(1 + t4 + n)

≥ 4(n + t1 + t4 + 1).

The total length of an optimal offline tour is

OPT = 〈〈o, v1, . . . , vt1+1〉〉 + ℓ(vt1+1, qn+t1) +

〈〈qn+t1 , . . . , q1, un, p1, . . . , pt4+1〉〉 +
〈〈pt4+1, . . . , p1, un, . . . , u1, o〉〉

= (t1 + 1) + 1 + (n + t1 + t4 + 1) +

(t4 + 1 + n)

= 2(n + t1 + t4 + 2).

So, ALG

OPT
> 2 − ǫ.

5. Concluding Remarks

In this paper, we have studied the online graph exploration

problem on two graph classes. First, we have given a tight

competitive ratio of 1+
√

3
2

for the problem on cycles. We

have also studied the problem on unweighted graphs and

have given a tight bound of 2.

For planar graphs, the best known upper bound is 16,

as mentioned in Sec. 1. Since Theorem 5 holds for planar

graphs, 2 is the current best lower bound for planar graphs.

There still remains a large gap between these upper and

lower bounds. Narrowing the gap is a challenging problem.

Another future work is to consider randomized algorithms

to break deterministic lower bound.

Acknowledgements

The authors would like to thank anonymous reviewers for

their helpful comments. This work was supported by

KAKENHI (20700009).

References

[1] S. Albers and M.R. Henzinger, “Exploring unknown environments,”

SIAM J. Comput., vol.29, no.4, pp.1164–1188, 2000.

[2] Y. Asahiro, E. Miyano, S. Miyazaki, and T. Yoshimuta, “Weighted

nearest neighbor algorithms for the graph exploration problem on

cycles,” Proc. 33rd SOFSEM 2007, LNCS 4362, pp.164–175, 2007.

[3] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo,

“Algorithms for the on-line traveling salesman,” Algorithmica,

vol.29, no.4, pp.560–581, 2001.

[4] G. Ausiello, V. Bonifaci, and L. Laura, “The on-line asymmetric

traveling salesman problem,” Proc. 9th WADS, pp.306–317, 2005.

[5] A. Borodin and R. El-Yaniv, Online Computation and Competitive

Analysis, Cambridge University Press, 1998.

[6] X. Deng and C.H. Papadimitriou, “Exploring an unknown graph,”

Proc. 31st FOCS, pp.355–361, 1990.

[7] X. Deng, T. Kameda, and C.H. Papadimitriou, “How to learn an

unknown environment,” Proc. 32nd FOCS, pp.298–303, 1991.

[8] R. Fleischer and G. Trippen, “Experimental studies of graph traver-

sal algorithms,” Proc. 2nd WEA, LNCS 2647, pp.120–133, 2003.

[9] R. Fleischer and G. Trippen, “Exploring an unknown graph effi-

ciently,” Proc. 13th ESA, LNCS 3669, pp.11–22, 2005.

[10] A. Fiat and G.J. Woeginger, “Competitive analysis of algorithms,”

Online Algorithms: The State of the Art, ed. A. Fiat and G.J.

Woeginger, Springer, 1998.

[11] F. Hoffmann, C. Icking, R. Klein, and K. Kriegel, “A competitive

strategy for learning a polygon,” Proc. SODA, pp.166–174, 1997.

[12] F. Hoffmann, C. Icking, R. Klein, and K. Kriegel, “The polygon

exploration problem,” SIAM J. Comput., vol.31, no.2, pp.577–600,

2001.

[13] B. Kalyanasundaram and K.R. Pruhs, “Constructing competi-

tive tours from local information,” Theor. Comput. Sci., vol.130,

pp.125–138, 1994.

[14] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoyes,

eds., The traveling salesman problem: A guided tour of combinato-

rial optimization, Wiley, Chichester, 1985.

[15] D.J. Rosenkrantz, R.E. Stearns, and P.M. Lewis, “An analysis of sev-

eral heuristics for the traveling salesman problem,” SIAM J. Com-

put., vol.6, no.3, pp.563–581, 1977.

Shuichi Miyazaki is an associate professor

of Academic Center for Computing and Media

Studies, Kyoto University, Kyoto, Japan. He re-

ceived BE, ME, and Ph.D. degrees from Kyu-

shu University in 1993, 1995 and 1998, respec-

tively. His research interests include algorithms

and complexity theory.

Naoyuki Morimoto is a student of Grad-

uate School of Informatics, Kyoto University,

Kyoto, Japan. He received BE and ME degrees

from Kyoto University in 2006 and 2008, re-

spectively. His research interests include online

algorithms.

Yasuo Okabe is a professor of Academic

Center for Computing and Media Studies, Kyoto

University. He received BE, ME and Ph.D. from

Kyoto University in 1986, 1988, 1994 respec-

tively. His current research interest includes In-

ternet architecture, ubiquitous networking and

distributed algorithms. He is a member of IPSJ,

JSSST, IEEE, ACM and EATCS.

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp

