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Abstract

We consider a stochastic extension of the loop-free shortest path problem with adversarial rewards.
In this episodic Markov decision problem an agent traverses through an acyclic graph with random
transitions: at each step of an episode the agent chooses an action, receives some reward, and
arrives at a random next state, where the reward and the distribution of the next state depend on
the actual state and the chosen action. We consider the bandit situation when only the reward of
the just visited state-action pair is revealed to the agent. For this problem we develop algorithms
that perform asymptotically as well as the best stationary policy in hindsight. Assuming that all
states are reachable with probability α > 0 under all policies, we give an algorithm and prove
that its regret is O(L2

√
T |A|/α), where T is the number of episodes, A denotes the (finite) set of

actions, and L is the length of the longest path in the graph. Variants of the algorithm are given that
improve the dependence on the transition probabilities under specific conditions. The results are
also extended to variations of the problem, including the case when the agent competes with time
varying policies.

1 Introduction
Consider the problem of controlling an inventory so as to maximize the revenue. This is an optimal control
problem, where the state of the controlled system is the stock, the action is the amount of stock ordered.
The evolution of the stock is also influenced by the demand, which is assumed to be stochastic. Further,
the revenue depends on the prices at which products are bought and sold. By assumption, the prices are
not available at the time when the decisions are made. Since the prices can depend on many external, often
unobserved events, their evolution is often hard to model. Then, a better approach might be to view this
problem as an instance of robust control, which can be formulated as follows: Choose a sufficiently large class
of controllers so that no matter how the prices evolve, the class contains some controller whose performance is
acceptable. The problem is to design an algorithm that is able to perform almost as well as the best controller
in the chosen class, where the mentioned best controller is selected based on hindsight.

This problem formulation shares many similarities with the so-called expert framework, where the task
is to find an algorithm that can predict (almost) as well as the best amongst a fixed set of experts in an ar-
bitrary prediction environment (cf. Chapter 2 of Cesa-Bianchi and Lugosi, 2006 and the references therein).
However, the control problem is made more complicated by the fact that one must take into account that the
decisions of the controller influence future states and thus also future rewards. This, in fact, has two conse-
quences: Firstly, in order to perform well, the controller must plan ahead in time. That is, the controller must
address the usual temporal credit assignment problem. This is usually done by resorting to some form of
(approximate) dynamic programming to maintain computational efficiency (Bertsekas and Tsitsiklis, 1996;
Sutton and Barto, 1998). Secondly, the controller must also address the exploration-exploitation problem
which arises because only the rewards associated with the state-action pairs visited are available for measure-
ment. This is again made difficult by the fact that in order to be able to explore an action in a given state, the
state must first be visited, which requires some planning.

In this paper we consider a special case of this general problem, which we call the online, loop-free
stochastic shortest-path (Online SSP, O-SSP) problem. This problem is a generalization of two previously
considered problems: it is an online extension of the (loop-free version of the) stochastic shortest-path prob-
lem (Bertsekas and Tsitsiklis, 1996) and a stochastic extension of the online shortest path problem (György
et al., 2007). The problem is defined as follows: The controlled dynamics is stochastic. It is assumed that
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Figure 1: Illustration of the general problem whose
special case is studied in the paper: The con-
trolled system has two components. One compo-
nent, whose state is controlled and observable and
is perfectly known, while the other component is
unknown and uncontrolled. The second component
influences the rewards received and the rewards
represent the only source of information about this
component. When the uncontrolled part has a com-
plex dynamics and/or a complex state, its identifica-
tion is hopeless and one might be better off with im-
plementing a robust optimal control strategy, such
as the one described in this paper.

the number of states and actions is finite. There is a distinguished initial state and terminal state amongst the
states and the state space has the structure of a layered graph: an action chosen at some state of some layer
of the graph leads to another state in the next layer. When the terminal state is reached, a new episode starts:
the state of the system is reset to the initial state. At the same time, a new reward function is chosen (since
no state is visited twice, there is no reason to change the reward function before the end of an episode). Note
that only the reward of the last state-action pair is made available to the algorithm, that is, we consider the
so-called bandit setting. The class of controllers that our algorithm must compete with is selected to be the
class of state-feedback policies, that is, policies that select actions according to the actual state, or the class
of policies which switch between such state-feedback policies.

Clearly, the inventory management problem mentioned beforehand falls into this class provided that we
restrict our attention to its finite horizon variant when the stocks, orders and demand are measured in discrete
units, the size of the inventory is limited to lie between a maximum size and zero (excess demands are lost)
and where the demands are independent, identically distributed random variables. The O-SSP setup is also
particularly suited to address the problem of robust adaptive routing in virtual networks over some (possibly
wireless) base network with a fixed routing strategy. Other examples include machine maintenance, asset
pricing, or production planning. In general, our framework captures operations research problems, where the
control objective involves components which depend on some exogenously developing, hard to model prices.

The main results of this paper are as follows: Assuming that all states are reachable with probability
α > 0 under all policies, we give an algorithm and prove that its regret is O(L2

√
T |A|/α), where L is

the number of layers, T is the number of episodes and A denotes the (finite) set of actions (Theorem 4).
Although the number of states in a given layer does not show up in the bound, the bound shows a scaling
that is at least linear with the number states since max1≤l≤L |Xl| ≤ 1/α, where |Xl| is the number of states
in the l-th layer. We also give a variant of this result that shows a possibly improved dependence on the
transition probabilities (since α can be exponentially small in the size of the number of states). This result
is given in Theorem 5. The results are also extended to compete with time-varying policies in Theorem 8.
A nice property of the algorithms proposed is that they use bandit algorithms developed for the prediction
(stateless) setting, the only requirement for the bandit algorithm being that it should return a probability
distribution over the actions. Hence, our algorithm can make use of specially tailored, improved bandit
algorithms, for example, algorithms with adaptive tuning that may achieve better performance (and bounds)
when the best action has very large gains (Auer et al., 2002b) or algorithms with improved performance when
many actions have relatively good performance (Exercise 2.6 of Cesa-Bianchi and Lugosi 2006). Specifically,
when the Exp3 algorithm of Auer et al. (2002a) is used, the dependence on α can be improved toO(1/

√
(α)

(Theorem 6). Finally, in this special case, under the less stringent assumption that for every state there is
some policy that reaches the state with positive probability we give an algorithm whose expected regret per
step vanishes over time (Theorem 7).

How do our results compare to those in earlier works in the online learning literature? As noted earlier,
our work can be viewed as a stochastic extension of works that considered online shortest path problems
in deterministic settings. Here, the closest to our ideas and algorithm is the paper by György et al. (2007).
One major difference between the algorithms is that our algorithm is based on direct estimates of the total
reward to go in every state-action pair, whereas the algorithm of György et al. (2007) estimates the reward
to go via estimating the immediate rewards. Compared to the bound in György et al. (2007), our bounds are
slightly larger (and thus weaker). In earlier work, Awerbuch and Kleinberg (2004) gave an O(T 2/3) regret
bound, while McMahan and Blum (2004) gave anO(T 3/4) bound, building upon the exponentially weighted
average forecaster and, respectively, the follow the perturbed leader algorithm, both under the assumption



that the only information received is the total reward at the end of the episodes. More recently, Dani et al.
(2008) proposed a generalization of Exp3 due to Auer et al. (1995), which can be applied to this setting and
which gives an expected regret of O(|X |3/2T 1/2), where |X | is the size of the state space. More recently,
Bartlett et al. (2008) showed that the algorithm can be extended so that the bound holds with high probability.
We note in passing that Dani et al. (2008) suggest that their algorithm can be implemented efficiently for the
MDP setting. However, this is not clear at all: Although, conceptually, the algorithm can be applied to our
case, when policies are represented through the distributions that they induce over the state space, but this
does not seem to lead to an algorithm that can be implemented.

Another thread of work that is closely related to ours considers algorithms for learning and acting in
Markovian decision processes (MDPs) with arbitrary reward sequences. In fact, clearly, our framework is a
special case of this more general framework. The first work that considered this setting is due to Even-Dar
et al. (2005, 2009). In this work the restriction on the MDP is that it must be unichain (i.e., all stationary
policies must generate a unique stationary distribution) and it is assumed that the worst mixing time, τ , over
all policies is uniformly small (the mixing time appears in the bounds). This is similar to our assumption of
the MDP being episodic, with all policies terminating afterL steps (though strictly speaking, their assumption
does not hold true in our setting). However, the major difference between our work and that of Even-Dar et al.
(2005, 2009) is that they assume that the reward function is fully observable, whereas we consider the bandit
setting. They propose an algorithm, MDP-E, which is very similar to ours in that it uses some (optimized)
expert algorithm in every state which is fed with the action-values of the policy used in the last round (which,
in our case, corresponds to the total reward to go). They prove a bound on the expected regret of this algorithm
of the form O(τ2

√
T log |A|). The improved dependence on the action set (as compared to our bound stated

above) is the result of the assumption that the reward function is available at every step and not only the
reward of the last state-action pair visited, otherwise the bound shows a dependence somewhat similar to ours
in the main quantities. We actually prove a similar bound for our problem, just to fix some ideas, in Section 4.

More recently, Yu et al. (2009) proposed algorithms for the same (full information) problem and proved a
bound on the expected regret of orderO((τ + |A|+ |X |) τ |A|2T 3/4+ε log T ) for arbitrary ε ∈ (0, 1/3).1 The
algorithm proposed (“Lazy FPL”) works with phases of length m1/3−ε and changes policies only at the end
of the phases. At the end of a phase the optimal (differential) value function corresponding to the sum of past
reward functions is first found. Within the phase, the action to be followed at some time step is then selected
as the one that maximizes the one-step lookahead action value computed with this value function but with
the immediate rewards perturbed randomly in an appropriate manner. The advantage of this algorithm to that
of Even-Dar et al. (2009) is that it is computationally less expensive, which, however, comes at the price of
an increased bound on the regret. Yu et al. (2009) introduced another algorithm (“Q-FPL”) which is shown
to enjoy a vanishing average regret over time (i.e., the algorithm is Hannan consistent). The major advance,
however, is that, for the first time, Yu et al. (2009) proposed an algorithm (“Exploratory FPL”) to address the
problem of learning in the bandit setting. This algorithm estimates the immediate rewards by appropriately
weighting the rewards received and in a phase either uses a uniformly exploring policy or that of underlying
their Lazy FPL algorithm. They prove that the average regret of this algorithm vanishes almost surely.

Yu and Mannor (2009a,b) considered the problem of on-line learning in MDPs where the transition prob-
abilities may also change arbitrarily after each transition. This problem is significantly more difficult than
the case where only the reward function is changed arbitrarily. In particular, as it is shown in these papers,
Hannan consistency cannot be achieved in this setting. Yu and Mannor (2009b) also considered the case
when rewards are only observed along the trajectory traversed by the agent. However, this paper seems to
have gaps: If the state space consists of a single state, the problem becomes identical to the non-stochastic
multi-armed bandit problem. Yet, from Theorem IV.1 of Yu and Mannor (2009b) it follows that the expected
regret of their algorithm is O(

√
log |A|T ), which contradicts the known Ω(

√
|A|T ) lower bound on the

regret (Auer et al., 2002a).2

2 Problem definition
Formally, a Markovian Decision Process (MDP)M is defined by a state space X , an action setA, a transition
function P : X × A × X → [0, 1], and a reward function r : X × A → [0, 1]. In time step k, knowing
the state xk ∈ X , a decision maker (or agent) acting in the MDP M , chooses an action ak ∈ A(x) where
A(x) ⊂ A is the set of admissible actions at state x. As a result the process moves to state xk+1 ∈ X with
probability P (xk+1|xk, ak) and the decision maker receives reward r(xk, ak) (this implies that for any x ∈ X

1The notion of mixing time in this paper is somewhat, but not essentially different than that of used by Even-Dar et al.
(2005, 2009).

2To show this contradiction note that the condition T > N in the bound of Theorem IV.1 of Yu and Mannor (2009b)
can be traded for an extra O(1/T ) term in the regret bound. Then the said contradiction can be arrived at by letting ε, δ
converge to zero such that ε/δ3 → 0.



and a ∈ A(x), P (·|x, a) defines a probability distribution over X ). The goal of the agent is to maximize its
average reward. In an episodic MDP there is a terminal state x ∈ X : if this state is reached, the episode is
ended and the whole process starts again with a designated starting state. For a more detailed introduction
the reader is referred to, for example, Puterman (1994).

The loop-free stochastic shortest path (SSP) problem is a special case of episodic MDPs. Informally,
given an acyclic directed graph an agent has to traverse repeatedly over paths between two given vertices of
the graph. At each vertex the agent makes a decision, and based on the decision it follows a random edge of
the graph to the next vertex and receives some reward. The goal of the agent is to maximize its average reward
received over the paths. More formally, we consider MDPs where the state space X consists of layers, that is,
X = ∪Ll=0Xl, where Xl is called the lth layer of the state space and Xl ∩ Xk = ∅ for all l 6= k. The first and
last layers are singleton layers, that is, X0 = {x0} and XL = {xL}. The significance of the layers is given by
the fact that the state of the agent can only move between consecutive layers, that is, in each episode the agent
starts at layer 0, and at time instant l it is at layer l until it reaches the terminal state xL. This assumption is
equivalent to assuming that each path in the graph is of equal length, and is reflected by the special structure
of the transition function: for any xl ∈ Xl and a ∈ A(xl), P (xl+1|xl, al) = 0 if xl+1 6∈ Xl+1.3 For any state
x ∈ X we will use lx to denote the index of the layer x belongs to, that is, lx = l if x ∈ Xl.

In this paper we consider the online version of the loop-free SSP problem, in which case the reward
function is allowed to change between episodes, that is, instead of a single reward function r, we are given
a sequence of rewards {rt} describing the rewards at episode t that is assumed to be an individual sequence
fixed in advance4, that is, no statistical assumption is made about the reward values. Note that the constraint
that rt depends only on the current state and action is assumed only for simplicity: the results of the paper
can easily be extended to the situation where rt is allowed to depend on the next state as well (i.e., when the
reward function is of the form rt(xl, al, xl+1).

A stochastic stationary policy (or, in short: a policy) is a mapping π : A × X → [0, 1], where π(a|x) ≡
π(a, x) is the probability of taking action a in state x. The instantaneous value function and action-value
function with respect to π at episode t are defined, respectively, as

vπt (xl) = E

[
L−1∑
k=l

rt(xk,ak)

∣∣∣∣xl = xl

]

qπt (xl, al) = E

[
L−1∑
k=lx

rt(xk,ak)

∣∣∣∣xl = xl,al = al

]
,

where the sequence (x0,a0), (x1,a1), . . . , (xL−1,aL−1) is generated by the policy π and the MDP, and the
expectations are taken with respect to π and the transition function P . These values are equivalently defined
by the Bellman equations:

qπt (x, a) = rt(x, a) +
∑
x′

P (x′|x, a)vπt (x′)

vπt (x) =
∑
a

π(a|x)qπt (x, a),
(1)

with vπt (xL) = 0. The cumulative action-value and cumulative value functions are defined, respectively, as

Qπt =

t∑
s=1

qπs and V πt =

t∑
s=1

vπs .

Each policy generates a probability distribution µπ over each layer Xl, l = 0, 1, . . . , L, that is,
µπ(xl) = P[xl = xl|x0 = x0].

The distribution µπ can be computed recursively as

µπ(xl) =
∑

xl−1,al−1

P (xl|xl−1, al−1)π(al−1|xl−1)µπ(xl−1), (2)

for l = 1, 2, . . . , L, with µπ(x0) = 1. The expected return of a fixed policy π for a time horizon T > 0 is
defined as RπT =

∑T
t=1 v

π
t = V πT . The return of the best policy in hindsight is given by

R∗T = sup
π

T∑
t=1

vπt (x0) = sup
π
V πT (x0).

3Note that all loop-free state spaces can be transformed to one that satisfies our assumptions. A simple transformation
algorithm is given in Appendix A of György et al. (2007).

4That is, we assume that we are dealing with a so called oblivious opponent.



It is known that there exists a stationary and deterministic policy π∗T that achieves the above maximum
(Puterman, 1994, Theorem 4.4.2), and so we can use max instead of sup in the above equation. By a slight
abuse of the notation we will use π∗T (x) to denote the action for which π∗T (a|x) 6= 0. The state distribution
generated by the optimal policy will be denoted as µ∗T ≡ µπ∗T .

Our goal is to construct a sequential decision algorithm (agent) that asymptotically achieves the above
return averaged over the episodes. The decision algorithm may follow a different policy πt at each episode
t = 1, 2, . . . , T . This policy may be random, as it may depend on the previous states the agent visited and
the previous rewards it received. The random path traversed by the agent at episode t will be denoted by

ut =
{
x
(t)
0 ,a

(t)
0 ,x

(t)
1 ,a

(t)
1 , . . . ,x

(t)
L−1,a

(t)
L−1,x

(t)
L

}
,

and the path history up to episode t by

Ut = {u1,u2, . . . ,ut} ,
for all t = 1, 2, . . . , T with U0 = ∅. Note that Ut covers all the randomness in the problem (including the
random transitions and the possible randomness in the agent’s decisions). Thus,

πt(a|x) = P [a = a|x = x,Ut−1] .

The value function and the action-value function of policy πt are given, respectively, by

vt(xl) = E

[
L−1∑
k=lx

rt(xk,ak)

∣∣∣∣xl = xl,Ut−1

]

qt(xl, al) = E

[
L−1∑
k=lx

rt(xk,ak)

∣∣∣∣xl = xl,al = al,Ut−1

]
where the sequence (x0,a0), (x1,a1), . . . , (xL−1,aL−1) is generated by the policy πt (that is fully deter-
mined by Ut−1). We will also use Qt =

∑t
s=1 qs and Vt =

∑t
s=1 vs. The state distribution generated by

πt is denoted by µt = µπt , where µπt(x) = P[x ∈ ut|Ut−1].
The expected return accumulated by the agent in the first T episodes is

R̂T =

T∑
t=1

E [vt(x0)] = E [VT (x0)] ,

and its relative loss with respect to the best fixed policy π∗T in hindsight, called regret, is defined as

L̂T = R∗T − R̂T = V ∗T (x0)− E [VT (x0)] .

The following lemma will be a key to our main results. Note that a similar argument is used by Even-Dar
et al. (2009) to prove their main result about online learning in unichain MDPs in the full information case
(cf. Lemma 4.1). The benefit of this lemma is that the problem of bounding the regret is essentially reduced
to the problem of bounding the difference between action-values of the policy followed by the agent.

Lemma 1 For any time horizon T > 0, let the state distribution generated by the optimal policy π∗T be
denoted by µ∗T , and define

V +
T (x) = E [QT (x, π∗T (x))] .

Then

V ∗T (x0)− E [VT (x0)] =

L−1∑
l=0

∑
xl∈Xl

µ∗T (xl)
(
V +
T (xl)− E [VT (xl)]

)
.

Proof:
V ∗T (x0)− E [VT (x0)] = V ∗T (x0)− V +

T (x0) + V +
T (x0)− E [VT (x0)]

= Q∗T (x0, π
∗
T (x0))− E [QT (x0, π

∗
T (x0))] + V +

T (x0)− E [VT (x0)]

=
∑
x1∈X1

P (x1|x0, π∗T (x0))
(
V ∗T (x1)− E [VT (x1)]

)
+V +

T (x0)− E [VT (x0)]

= · · · =
L−1∑
l=0

∑
xl∈Xl

µ∗T (xl)
(
V +
T (xl)− E [VT (xl)]

)
.



3 Sequential prediction with expert advice
A widely studied special case of our setting where the state space consists of a single state is called sequential
prediction with expert advice (Cesa-Bianchi and Lugosi, 2006). In this context, actions are usually referred
to as experts, and several algorithms have been developed that solve the many variants of the problem. Such
algorithms E satisfy a regret bound of the form

L̂T ≤ ρE(T,A) (3)

where ρE(T,A) is a sublinear function of T , and so limT→∞ L̂T /T → 0. Furthermore, we assume through-
out the paper that ρE(T,A) is a nondecreasing function of T and |A|. As usually the regret scales linearly
with the range of the rewards, it is assumed above that rt ∈ [0, 1]. In the course of solving our O-SSP problem
we are going to use such algorithms as basic building blocks. Note that depending on the actual form of the
algorithm, E may be universal in the sense that (3) is satisfied for all T , while several algorithms require T -
dependent parameter settings. On the other hand, these methods can be changed to be universal (sometimes
at the price of slightly deteriorating the bounds) with either adaptively changing the parameters or simply by
resorting to the doubling trick.

The type of the sequential decision problem is usually classified based on the amount of information
available to the decision maker, the set of the reference experts and the way the rewards are generated. In the
basic setup, known as the case of the oblivious opponent, the reward functions r1, r2, . . . are fixed in advance,
while in the more general non-oblivious setup the rewards may depend on any quantity that is determined
before round t. In the latter case, formally we have rt = rt(Ut−1).

Luckily, the following lemma, which can be obtained as a special case of a slight generalization of the
first part of Lemma 4.1 of Cesa-Bianchi and Lugosi (2006), shows that algorithms that work in the oblivious
case also work in the non-oblivious setting:

Lemma 2 Consider a randomized algorithmE such that, for every t = 1, 2, . . . , T , πt is fully determined by
the history Ut−1 and the reward sequence r1, r2, . . . , rt−1. Assume that the regret of the algorithm satisfies
(3) in the oblivious case. Then (3) also holds in the non-oblivious case.

Note that the regret in the non-oblivious case is still defined as maxa∈A
∑T
t=1 (rt(a)− rt(at)), where

r1, r2, . . . , rT : A → R are the reward functions that are obtained as a result of following E and at is
the action taken by E at time step t. In particular, this definition does not take into account that the sequence
of reward functions would be different if action a was followed from the beginning. Although this makes, in
general, questionable the meaningfulness of this regret definition, in our case this regret definition will still
be just good enough.

In the full information case the decision maker is informed about the rewards of all actions at the end of
each episode; while in the bandit setting only the reward of the chosen action is revealed. An optimized best
expert algorithm in the full information case is an algorithm that attains an expected regret ofO(

√
T log |A|),

and similarly, an optimized |A|-armed bandit algorithm is one that attains an expected regret of O(
√
T |A|).

Optimized best expert algorithms include the exponentially weighted average forecaster (EWA) (a variant
of Littlestone and Warmuth’s (1994) weighted majority algorithm, and Vovk’s (1990) aggregating strategies,
also known as Hedge (Freund and Schapire, 1997)) and the follow the perturbed leader (FPL) algorithm
(Kalai and Vempala, 2003). There exist a number of algorithms for the bandit case that attain regrets of
O(
√
T |A| log |A|), such as Exp3 by Auer et al. (2002a) and Green by Allenberg et al. (2006), while the

algorithm presented by Audibert and Bubeck (2009) achieves the optimal rate O(
√
T |A|).

4 Full information O-SSP
In this section we give an algorithm and a very short proof that bounds the algorithm’s regret in the full
information case. The purpose is mainly to fix some ideas that will be useful later on.

In the full information case the reward function rt is completely revealed after each episode t. We will
use the value functions of the agent’s policy at each episode t to construct the policy in the next round. Note
that as we can exactly compute these value functions, the sequence of the agent’s policies does not depend
on previous decisions, that is, the policies and the value functions are fully determined by the algorithm.
Algorithm 1 uses an arbitrary (optimized) best expert algorithm E in each state x to predict the actions to
be taken at that state based on previous values of qt(x, ·). (Thus, the algorithm is essentially the same as the
MDP-E algorithm of Even-Dar et al. 2009.)

In order to understand how the algorithm works, consider some fixed state x. By definition, πt+1(·|x) is
the distribution computed by the expert algorithm E(x) when used on a discrete prediction problem with the
“reward sequence” q1(x, ·), q2(x, ·), . . . and action setA(x). Since qt(x, ·) depends on πt, which depends on
the past rewards, the prediction problem is modeled as one with non-oblivious opponents. The cumulative



Algorithm 1 Algorithm for the full information O-SSP.

1. Initialize an expert algorithm E(x), an instance of algorithm E, for all states x ∈ X .

2. For t = 1, 2, . . . , T , repeat

(a) For all x ∈ X and all a ∈ A, let πt(a|x) be the probability that algorithm E(x) chooses action a.
(b) Traverse a path ut following the policy πt.
(c) Observe the reward function rt.
(d) Compute qt using the Bellman equations (1) for πt and rt.
(e) For all states x ∈ X , feed the algorithm E(x) with qt(x, ·).

expected reward of the algorithm up to episode T is VT (x) and the reward of a constant action a is QT (x, a).
Let E be a best expert algorithm with regret bound ρE(T,A). By Lemma 2, for any action a at state x, we
get

QT (x, a)−VT (x) ≤ (L− lx)ρE(T,A),

where we used that 0 ≤ qt(x, a) ≤ L − lx. Since in this case QT is non-random, V +
T (x) = QT (x, π∗T (x))

and thus
V +
T (x)−VT (x) ≤ (L− lx)ρE(T,A). (4)

Based on this bound and Lemma 1, we immediately obtain a performance bound on this algorithm for our
original problem:

Proposition 3 Let E be an expert algorithm with regret bound ρE(T,A). Then the regret of Algorithm 1 can
be bounded as

L̂T ≤
L(L+ 1)

2
ρE(T,A)

Remark: Applying EWA with (time-horizon dependent) optimized parameters as the expert algorithm E,
the above bound becomes5

L̂T ≤
L(L+ 1)

2

√
T log |A|

2
.

Proof: By Lemma 1, we have

L̂T =

L−1∑
l=0

∑
xl∈Xl

µ∗T (xl)
(
V +
T (xl)− E[VT (xl)]

)
.

Using (4) to bound the terms on the right hand side yields the desired bound.

5 Bandit O-SSP
In the bandit case, the rewards are only observed on the paths that the agent traverses at each episode t. In
this section we give an algorithm and analyze its performance for this case.

First, we define conditionally unbiased estimates of qt and vt given Ut−1 as follows:

q̂t(xl, al) =


∑L−1

k=l rt
(
x
(t)
k ,a

(t)
k

)
πt(al|xl)µt(xl)

if (xl, al) =
(
x
(t)
l ,a

(t)
l

)
;

0 otherwise.
(5)

v̂t(xl) =
∑
a

πt(a|xl)q̂t(xl, a) . (6)

Indeed, it is easy to check that E[q̂t(x, a)|Ut−1] = qt(x, a) and E[v̂t(x)|Ut−1] = vt(x). Note that the
estimates q̂t and v̂t can only be computed after the end of episode t. We will also use the following key
property of this estimate:

E[q̂t(x, a)− v̂t(x)|Ix∈ut
,Ut−1] = Ix∈ut

qt(x, a)− vt(x)

µt(x)
. (7)

5See Theorem 2.2 in Cesa-Bianchi and Lugosi (2006).



Similarly to the full information case, Algorithm 2 given below employs an |A(x)|-armed bandit algo-
rithm B in each state x to choose actions using the observations from the previous paths that include x. The
only assumption that we make aboutB is that it works with unbiased estimates of the rewards of the form (5),
and its regret scales linearly with the range of the rewards. Note that algorithms like Exp3 can be redefined
to receive unbiased estimates of this form instead of the actual rewards. In the following, we use all bandit
algorithms with these updates.

Algorithm 2 Algorithm for the bandit O-SSP.

1. Initialize an |A(x)|-armed bandit algorithm B(x), an instance of B, for all states x ∈ X .

2. For t = 1, 2, . . . , T , repeat

(a) For all x ∈ X and all a ∈ A, let πt(a|x) be the probability that algorithm B(x) chooses action a.
(b) Compute µt(x) for all x ∈ X using (2) recursively.
(c) Traverse a path ut following the policy πt.

(d) Observe rewards rt(ut) =
{
rt

(
x
(t)
0 ,a

(t)
0

)
, . . . , rt

(
x
(t)
L−1,a

(t)
L−1

)}
.

(e) Construct estimates q̂t using equation (5).
(f) For all states x ∈ X , feed the algorithm B(x) with q̂t(x, ·)

Theorem 4 Let B be an multi-armed bandit algorithm with regret bound ρB(T,A). Assume that there exists
some α > 0 for which µπ(x) ≥ α holds for all x ∈ X and all stationary policies π. Then the regret of
Algorithm 2 can be bounded as

L̂T ≤
L(L+ 1)

2α
ρB(T,A).

Remark: For example, using the algorithm of Audibert and Bubeck (2009) with appropriate parameters as
the base bandit algorithm B yields

L̂T ≤
15L(L+ 1)

2α

√
T |A|.

Also note that the conditions of the proposition are satisfied if, for example,

min
x∈Xl,a∈A,x′∈Xl+1,l∈1:L−1

P (x′|x, a) > 0.

In fact, our assumption of α being positive is closely related to the uniform mixing assumption used generally
in the literature considering online learning in MDPs.
Proof: The set of episodes when state x is visited will be denoted by Tx = {1 ≤ t ≤ T |x ∈ ut}. By
Lemma 1, we have

L̂T =

L−1∑
l=0

∑
xl∈Xl

µ∗T (xl)
[
V +
T (xl)− E [VT (xl)]

]
. (8)

On the other hand, we have, for any fixed x,

V +
T (x)− E [VT (x)] = E

[
T∑
t=1

E
[
q̂t(x, π

∗
T (x))− v̂t(x)

∣∣∣Ut−1

]]

=

T∑
t=1

E [q̂t(x, π
∗
T (x))− v̂t(x)] . (9)



Therefore, by (7) we obtain

V +
T (x)− E [VT (x)] = E

[
T∑
t=1

q̂t(x, π
∗
T (x))− v̂t(x)

]

= E

[
T∑
t=1

E
[
q̂t(x, π

∗
T (x))− v̂t(x)

∣∣∣ Ix∈ut ,Ut−1

]]

= E

[
T∑
t=1

Ix∈ut

qt(x, π
∗
T (x))− vt(x)

µt(x)

]

= E

[∑
t∈Tx

qt(x, π
∗
T (x))− vt(x)

µt(x)

]
. (10)

As for every xwe are using an independent |A(x)|-armed bandit algorithmB with regret bound ρB(T,A(x))
that is fed with values q̂t(x, ·) which are conditionally unbiased estimates of values that belong to [0, (L −
lx)/α], by Lemma 2 we have the following for any fixed a:

E

[∑
t∈Tx

qt(x, a)− vt(x)

µt(x)

]
≤ 1

α
(L− lx)ρB(T,A(x)) ≤ 1

α
(L− lx)ρB(T,A).

Combining this bound with (8)-(10) finishes the proof.

A problem with the above theorem is that the bound scales with 1/α, but in certain cases α can be
exponentially small. On the other hand, if the minimal probability of visiting a state is exponentially small
then the maximal probability of visiting the same state may often be also exponentially small (clearly this is
the case in the grid-world example considered in the simulations in Section 6, see Figure 2). The following
theorem can be very useful in these situations.

Theorem 5 Let B be a multi-armed bandit algorithm with regret bound ρB(T,A), and define

α(x) = min
π
µπ(x) and β(x) = max

π
µπ(x).

Assume that κ = maxx∈X
β(x)
α(x) <∞. Then the regret of Algorithm 2 can be bounded as

L̂T ≤ κL|X |ρB(T,A).

Proof: Following the proof of Theorem 4 we obtain, for any l,

∑
xl∈Xl

µ∗T (xl)
(
V +
T (xl)− E [VT (xl)]

)
=

∑
xl∈Xl

µ∗T (xl)E

 ∑
t∈Txl

qt(xl, π
∗
T (xl))− vt(xl)

µt(xl)


≤

∑
xl∈Xl

β(xl)
1

α(xl)
(L− l)ρB(T,A)

≤ |Xl|κLρB(T,A).

Summing up for all l finishes the proof.

In particular, if we use Exp3 (as described in Section 6.8 of Cesa-Bianchi and Lugosi 2006) as the
bandit algorithm B, we can prove regret bounds that have slightly better dependence on α. The proof of the
results, given in the following theorem, follows closely the derivation of the original regret bound of the Exp3
algorithm (Auer et al., 2002a) and will be given in details in an extended version of this paper.

Theorem 6 Assume that the conditions of Theorem 4 hold and the bandit algorithm B is the Exp3 algorithm
with parameters 0 < γ ≤ 1 and 0 < η ≤ αγ

|A|(L−lx) . Then, if Algorithm 2 is used, for each state x ∈ X we
have

E [QT (x, a)−VT (x)] ≤
(
γ + (e− 2)η

L− lx
α
|A|
)

(L− lx)T +
ln |A|
η

.

An optimal choice of γ and η yields the following bound on the regret:

L̂T ≤
L(L+ 1)

2

√
T |A| ln |A|(e− 2)

α
.



Furthermore, let κ′ = maxx∈X
β(x)√
α(x)

<∞ where α(x) and β(x) are defined in Theorem 5. Then

L̂T ≤ κ′ L|X |
√
T |A| ln |A|(e− 2).

In the above results we used the assumption that any stationary policy induces a distribution that visits each
state with positive probability. However, this assumption may be too restrictive in many situations. If we only
require that each state is reachable with positive probability for an adequately chosen policy, then using Exp3
in our algorithm with different γ at each layer yields a consistent strategy with sublinear regret, although the
convergence rate becomes very slow.

Theorem 7 Let
pmin = min

x∈Xl,a∈A,x′∈Xl+1,1≤l≤L−1,P (x′|x,a)>0
P (x′|x, a)

and assume that for each state x there is a policy π such that µπ(x) > 0. If Algorithm 2 is run with the Exp3
algorithm with parameters γl = T−2

−l−1

and ηl =
γl
∏l−1

i=1(pminγi/|A|)
|A|(L−l) for each state xl ∈ Xl, then

L̂T /T ≤
L(L+ 1)

2

(
(e− 1) +

|A|L+1 ln |A|
pLmin

)
T−2

−L−1

Proof: For any l our assumptions imply µt(xl) ≥
∏l−1
i=0(pminγi/|A|). Therefore, similarly to the first

statement of Theorem 6, for all x and a we have

E [QT (x, a)−VT (x)] ≤

(
γlx +

(e− 2)ηlx(L− lx)|A|∏lx−1
i=0 (pminγi/|A|)

)
(L− lx)T +

ln |A|
ηlx

=

(
(L− lx)(e− 1) +

(L− lx)|A|lx+1 ln |A|
plxmin

)
T 1−2−lx−1

by straightforward calculations. Summing up the above formula for lx = 0, . . . , L− 1 proves the proposition
by Lemma 1.

So far the regret of our algorithm was measured relative to the best fixed policy. On the other hand, in
our motivating examples it may be the case that the best policy changes over time, and hence it is natural
to compare our performance to the best time varying policy. Let π1:T = (π1, π2, . . . , πT ) be a sequence of
policies, and let RT (π1:T ) denote the expected return, after T episodes, of the algorithm that applies policy
πt at episode t. Our goal is to minimize the expected loss RT (π1:T )− R̂T relative to π1:T .

Clearly, it is not possible to provide a uniform bound on this loss, as, in general, it is harder to achieve
the performance of an algorithm that changes the employed policy more often (the extreme situation is when
the policy changes in each time instant). In the following we will give an algorithm that bounds the tracking
regret with the help of the complexity of π1:T that can be defined as

C(π1:T ) = 1 + |{t : πt 6= πt+1, 1 ≤ t ≤ T − 1}|.
That is C(π1:T ) is the number of times the employed policy changes between consecutive episodes.

While this problem seems much harder than the ones considered before, the tracking algorithms for the
prediction framework help us in solving it. Several algorithms are known for the full information case with
vanishing tracking regret under various conditions and with different rewards, see, for example, Willems
(1996); Helmbold and Warmuth (1998); Shamir and Merhav (1999); Vovk (1999); György et al. (2008).
These methods can be extended to the bandit case as well, see, for example, Auer et al. (2002a). Assume that
we have an algorithm BT for the bandit sequential prediction problem (that is, when there is only one state)
that satisfies, for every policy sequence π1:T ,

RT (π1:T )− R̂T ≤ ρBT (T,A, C(π1:T )) (11)

with some function ρBT (T,A, C(π1:T )) that is a nondecreasing function of T , A, and C(π1:T ). Then using
such an algorithm as the expert algorithm B in Algorithm 2 solves the tracking problem in the following
sense.

Theorem 8 Assume that BT is a multi-armed bandit algorithm that satisfies the regret bound (11). If κ,
defined in Theorem 5, is finite and Algorithm 2 is used with the bandit algorithm BT , then the regret relative
to any fixed sequence of policies π1:T can be bounded as

RT (π1:T )− R̂T ≤ κL|X |ρBT (T,A, C(π1:T )).



Remark: In particular, if the Exp3.S algorithm of Auer et al. (2002a) is used, then if T is known in advance
and is used optimally in setting the parameters of the algorithm, we obtain

RT (π1:T )− R̂T ≤ κL|X |

(
C(π1:T )

√
|A|T ln(|A|T ) + 2e

√
|A|T

ln(|A|T )

)
.

Furthermore, if a bound C on the complexity of π1:T is known in advance (this is useful, if the complexity of
the optimal π1:T is bounded), then using this value in setting the parameters of Exp3.S, we obtain

RT (π1:T )− R̂T ≤ κL|X |
√
e− 1

√
|A|T (C ln(|A|T ) + e).

Proof: A simple generalization of Lemma 1 yields

RT (π1:T )− R̂T = V π1:T

T (x0)− E [VT (x0)] =

T∑
t=1

vπt
t (x0)− E [VT (x0)]

=

L−1∑
l=0

∑
xl∈Xl

T∑
t=1

µt(xl)E [qt(xl, πt(xl))− vt(xl)]

Now we have, for any x, similarly to (9),

E [qt(x, πt(x))− vt(x)] = E [q̂t(x, πt(x))− v̂t(x)] .

Therefore, similarly to (10), we obtain

T∑
t=1

µt(x)E [qt(x, πt(x))− vt(x)] =

T∑
t=1

µt(x)E
[
qt(x, πt(x))− vt(xl)

µt(x)

]

≤ β(x)E

[∑
t∈Tx

qt(x, πt(x))− vt(x)

µt(x)

]
Finally, (11) and Lemma 2 yields, as at the end of the proof of Theorem 4,

E

[∑
t∈Tx

qt(x, πt(x))− vt(x)

µt(x)

]
≤ L

α(x)
ρBT (T,A, C(π1:T ))

since ρBT (T,A, C) is an increasing function of C by assumption. Combining the above results finishes the
proof.

6 Simulations
We have run our experiments on a grid world of size 10 × 10, where in each episode the agent has to find
the shortest path from the lower left corner to the upper right corner. The agent has two actions: Both make
the agent move right or up, the “right” (“up”) action makes the agent move right (respectively, “up”) with
probability 0.7, while it makes it move “up” (respectively, “right”) with probability 0.3. That is, we have
L = 20, |X | = 100, α = 0.310, κ = (0.7/0.3)10 (the values of α and κ correspond to the top-left and
bottom-right corners). The experiment is run with T = 100, 000, rewards are set randomly 20 times at
episodes t = 1, 5000, 10000, . . . for all x, a, and change linearly in between. We have simulated the policies
generated by EWA for the full information case, and the policies generated by Exp3 for the bandit case. An
example of the grid-world (of smaller size) and the results of a typical simulation are shown in Figure 2.

7 Conclusions and future work
In this paper we considered the problem of online learning in loop-free stochastic-shortest path problems
in a bandit setting when only the reward of the current transitions is available for measurement. The per
episode complexity of our algorithm is O(|A| |X |2) and the algorithm is easy to implement. According to
our knowledge, ours is the first algorithm that can be implemented efficiently and which is known to achieve
an O(

√
T |A|) regret in the bandit setting, under the assumption that every policy reaches every state with

positive probability. Unfortunately, the regret bound scales with the inverse of the minimal such probability,
which is clearly undesirable in many situations. To alleviate this problem, variants of the original bound have
been developed that may be preferred in certain specific cases. For the case when this latter condition does
not hold, we proposed an algorithm whose expected average expected regret vanishes over time. We view our
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Figure 2: (a) An example of a grid-world. (b) The average regret in an episode of the proposed algorithms as
the function of the number of episodes in a simple MDP.

results as a step towards algorithms that work efficiently and which can be implemented efficiently. However,
much work remains to be done.

As for immediate future work, obvious directions include extending our results to the case of unichain
MDPs setting, or, less ambitiously, to the case when the stochastic shortest-path problem may have loops.
Although one can construct an unbiased estimate of the action values by plugging in an unbiased estimate of
the rewards, these estimates are not of the form (5), thus our analysis does not apply. It is nontrivial whether
a proper estimate of the action values can be found; even with a positive answer there are further obstacles
to eliminate (e.g., the change rate of the distributions generated by the applied bandit algorithm has to be
controlled in order to be able to apply the analysis of Even-Dar et al., 2009). Alternate directions to extend
our results include the case of unknown transition probabilities, partial monitoring, high probability bounds,
or when the state and action space are too large to keep a value for each of them, in which case one must
resort to some form of function approximation, just to mention a few.
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