
Mach Learn (2018) 107:149–176

https://doi.org/10.1007/s10994-017-5686-9

The online performance estimation framework:

heterogeneous ensemble learning for data streams

Jan N. van Rijn1,2
· Geoffrey Holmes3

·

Bernhard Pfahringer3
· Joaquin Vanschoren4

Received: 9 May 2016 / Accepted: 4 October 2017 / Published online: 21 December 2017

© The Author(s) 2017. This article is an open access publication

Abstract Ensembles of classifiers are among the best performing classifiers available in

many data mining applications, including the mining of data streams. Rather than training

one classifier, multiple classifiers are trained, and their predictions are combined according

to a given voting schedule. An important prerequisite for ensembles to be successful is that

the individual models are diverse. One way to vastly increase the diversity among the models

is to build an heterogeneous ensemble, comprised of fundamentally different model types.

However, most ensembles developed specifically for the dynamic data stream setting rely on

only one type of base-level classifier, most often Hoeffding Trees. We study the use of

heterogeneous ensembles for data streams. We introduce the Online Performance Estimation

framework, which dynamically weights the votes of individual classifiers in an ensemble.

Using an internal evaluation on recent training data, it measures how well ensemble members

performed on this and dynamically updates their weights. Experiments over a wide range of

data streams show performance that is competitive with state of the art ensemble techniques,

including Online Bagging and Leveraging Bagging, while being significantly

faster. All experimental results from this work are easily reproducible and publicly available

online.

Keywords Data streams · Ensembles · Meta-learning

Editors: Pavel Brazdil and Christophe Giraud-Carrier.

B Jan N. van Rijn

vanrijn@informatik.uni-freiburg.de

1 University of Freiburg, Freiburg, Germany

2 Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands

3 University of Waikato, Hamilton, New Zealand

4 Eindhoven University of Technology, Eindhoven, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-017-5686-9&domain=pdf

150 Mach Learn (2018) 107:149–176

1 Introduction

Real-time analysis of data streams is a key area of data mining research. Many real world

collected data are in fact streams where observations come in one by one, and algorithms

processing these are often subject to time and memory constraints. The research community

developed a large number of machine learning algorithms capable of online modelling general

trends in stream data and make accurate predictions for future observations.

In many applications, ensembles of classifiers are the most accurate classifiers available.

Rather than building one model, a variety of models are generated that all vote for a certain

class label. One way to vastly improve the performance of ensembles is to build heterogeneous

ensembles, consisting of models generated by different techniques, rather than homogeneous

ensembles, in which all models are generated by the same technique. Both types of ensembles

have been extensively analysed in classical batch data mining applications. As the underly-

ing techniques upon which most heterogeneous ensemble techniques rely can not be trivially

transferred to the data stream setting, there are currently no successful heterogeneous ensem-

ble techniques in the data stream setting. State of the art heterogeneous ensembles in a data

stream setting typically rely on meta-learning (van Rijn et al. 2014; Rossi et al. 2014). These

approaches both require the extraction of computationally expensive meta-features and yield

marginal improvements.

In this work we introduce a technique that natively combines heterogeneous models in

the data stream setting. As data streams are constantly subject to change, the most accurate

classifier for a given interval of observations also changes frequently, as illustrated by Fig. 1.

In their seminal paper, Littlestone and Warmuth (1994) describe a strategy to weight the

vote of ensemble members based on their performance on recent observations and prove

certain error bounds. Although this work is of great theoretical value, it needs non-trivial

adjustments to be applicable on practical data streams. Based on this approach, we propose a

way to measure the performance of ensemble members on recent observations and combine

their votes.

Our contributions are the following. We define Online Performance Estimation, a frame-

work that provides dynamic weighting of the votes of individual ensemble members across

the stream. Utilising this framework, we introduce a new ensemble technique that combines

heterogeneous models. The members of the ensemble are selected based on their diversity

in terms of the correlation of their errors, leveraging the Classifier Output Difference (COD)

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 5 10 15 20 25 30 35 40

a
c
c
u

ra
c
y

interval

Hoeffding Tree
Naive Bayes

SPegasos
k-NN

Fig. 1 Performance of four classifiers on intervals (size 1,000) of the electricity dataset. Each data point

represents the accuracy of a classifier on the most recent interval

123

Mach Learn (2018) 107:149–176 151

by Peterson and Martinez (2005). We conduct an extensive empirical study, covering 60 data

streams and 25 classifiers, that shows that this technique is competitive with state of the

art ensembles, while requiring significantly less resources. Our proposed methods are imple-

mented in the data stream framework MOA and all our experimental results are made publicly

available on OpenML.

The remainder of this paper is organised as follows. Section 2 surveys related work, and

Sect. 3 introduces the proposed methods. We demonstrate the performance by two experi-

ments. Section 4 describes the experimental setup, the selected data streams and the baselines.

Section 5 compares the performance of the proposed methods against state of the art methods,

and Sect. 6 surveys the effect of its parameters. Section 7 concludes.

2 Related work

It has been recognised that data stream mining differs significantly from conventional batch

data mining (e.g., Domingos and Hulten 2003; Gama et al. 2009; Bifet et al. 2010a, b; Read

et al. 2012). In the conventional batch setting, a finite amount of stationary data is provided

and the goal is to build a model that fits the data as well as possible. When working with

data streams, we should expect an infinite amount of data, where observations come in one

by one and are being processed in that order. Furthermore, the nature of the data can change

over time, known as concept drift. Classifiers should be able to detect when a learned model

becomes obsolete and update it accordingly.

Common approaches Some batch classifiers can be trivially adapted to a data stream set-

ting. Examples are k Nearest Neighbour (Beringer and Hüllermeier 2007; Zhang et al.

2011), Stochastic Gradient Descent (Bottou 2004) and SPegasos (Stochas-

tic Primal Estimated sub-GrAdient SOlver for SVMs) (Shalev-Shwartz et al. 2011). Both

Stochastic Gradient Descent and SPegasos are gradient descent methods,

capable of learning a variety of linear models, such as Support Vector Machines and Logistic

Regression, depending on the chosen loss function.

Other classifiers have been created specifically to operate on data streams. Most

notably, Domingos and Hulten (2000) introduced the Hoeffding Tree induction algo-

rithm, which inspects every example only once, and stores per-leaf statistics to calculate

the information gain on which the split criterion is determined. The Hoeffding bound states

that the true mean of a random variable of a given range will not differ from the estimated

mean by more than a certain value. This provides statistical evidence that a certain split is

superior over others. AsHoeffding Trees seem to work very well in practice, many vari-

ants have been proposed, such as Hoeffding Option Trees (Pfahringer et al. 2007),

Adaptive Hoeffding Trees (Bifet and Gavaldà 2009) and Random Hoeffding

Trees (Bifet et al. 2012).

Finally, a commonly used technique to adapt traditional batch classifiers to the data stream

setting is training them on a window of w recent examples: after w new examples have been

observed, a new model is built. This approach has the advantage that old examples are ignored,

providing natural protection against concept drift. A disadvantage is that it doesn’t operate

directly on the most recently observed data, not before w new observations are made and the

model is retrained. Read et al. (2012) compare the performance of these batch-incremental

classifiers with common data stream classifiers, and conclude that the overall performance

is equivalent, although the batch-incremental classifiers generally use more resources.

123

152 Mach Learn (2018) 107:149–176

Ensembles Ensemble techniques train multiple classifiers on a set of weighted training

examples, and these weights can vary for different classifiers. In order to classify test exam-

ples, all individual models produce a prediction, also called a vote, and the final prediction is

made according to a predefined voting schema, e.g., the class with the most votes is selected.

Based on Condorcet’s jury theorem (Hansen and Salamon 1990; Ladha 1993) there is theo-

retical evidence that the error rate of an ensemble in the limit goes to zero if two conditions

are met. First, the individual models must do better than random guessing, and second, the

individual models must be diverse, i.e., their errors should not be correlated.

Classifier Output Difference (COD) is a metric which measures the number of observations

on which a pair of classifiers yields a different prediction (Peterson and Martinez 2005). It

is defined as:

CODT (l1, l2) =

∑

x∈T B(l1(x), l2(x))

|T |
(1)

where T is the set of all test instances, l1 and l2 are the classifiers to compare and l1(x) and

l2(x) is the label that the respective classifiers l1 and l2 give to test instance x; finally, B is

a binary function that returns 1 iff l1(x) and l2(x) are equal and 0 otherwise. Peterson and

Martinez (2005) use this measure to ensure diversity among the ensemble members. A high

value of COD indicates that two classifiers yield different predictions, hence they would be

well suited to combine in an ensemble. Lee and Giraud-Carrier (2011) use Classifier Output

Difference to build a hierarchical clustering among classifiers, resulting in classifiers that

have similar predictions to be closely clustered, and vice versa.

In the data stream setting, ensembles can be either static or dynamic. Static ensembles

contain a fixed set of ensemble members, whereas dynamic ensembles sometimes replace

old models by new ones. Both approaches have advantages and disadvantages. Dynamic

ensembles can actively replace obsolete models by new ones when concept drift occurs,

whereas static ensembles need to rely on the individual members to recover from it. However,

in order for dynamic ensembles to work properly, many parameters need to be set. For

example, when to remove an old model, when to introduce a new model, which model

should be introduced, and how long such new model should be trained before its vote will be

considered. For these reasons, in this work we focus on static ensembles, in order to provide

an off the shelf working method that does not require extensive parameter tuning. We will

compare it with both static and dynamic ensemble methods.

Static ensembles Bagging (Breiman 1996) exploits the instability of classifiers by training

them on different bootstrap replicates: resamplings (with replacement) of the training set.

Effectively, the training sets for various classifiers differ by the weights of their training

examples. Online Bagging (Oza 2005) operates on data streams by drawing the weight

of each example from a Poisson(1) distribution, which converges to the behaviour of the

classical Bagging algorithm if the number of examples is large. As the Hoeffding bound

gives statistical evidence that a certain split criteria is optimal, this makes them more stable

and hence less suitable for the use in a Bagging scheme. However, in practise this yields good

results. Boosting (Schapire 1990) is a technique that sequentially trains multiple classifiers,

in which more weight is given to examples that where misclassified by earlier classifiers.

Online Boosting (Oza 2005) applies this technique on data streams by assigning more

weight to training examples that were misclassified by previously trained classifiers in the

ensemble. Stacking (Wolpert 1992; Gama and Brazdil 2000) combines heterogeneous models

in the classical batch setting. It trains multiple models on the training data. All base-learners

output a prediction, and a meta-learner makes a final decision based on these. Caruana et al.

123

Mach Learn (2018) 107:149–176 153

(2004) propose a hill-climbing method to select an appropriate set of base-learners from a

large library of models.

Dynamic ensembles Weighted Majority is an ensemble technique specific to data

streams, where a meta-algorithm learns the weights of the ensemble members (Littlestone

and Warmuth 1994). The authors also provide tight error bounds compared for the meta-

algorithm compared to to the best ensemble member (under certain assumptions). Dynamic

Weighted Majority is an extension of this work, specific to data streams with chang-

ing concepts (Kolter and Maloof 2007). It contains a set of classifiers, and measures the

performance of these based on recent observations. Whenever an ensemble member classi-

fies a new observation wrong, its weight gets decreased by a predefined factor. Whenever

the ensemble misclassifies an instance, a new ensemble member gets added to the pool of

learners. Members with a weight below a given threshold get removed from the ensemble.

Accuracy Weighted Ensemble is an ensemble technique that splits the stream

into chunks of observations, and trains a classifier on each of these (Wang et al. 2003). Each

created classifier votes for a class-label, and the votes are weighted according to the expected

error of the individual models. Poorly performing ensemble members are replaced by new

ones. As was remarked by Read et al. (2012), this makes them work particularly well in

combination with batch-incremental classifiers. Once a new model is built upon a batch of

data, the old model will not be eliminated, but instead it is also used in the ensemble.

Meta-learning Meta-learning aims to learn which learning techniques work well on what

data. A common task, known as the Algorithm Selection Problem (Rice 1976), is to determine

which classifier performs best on a given dataset. We can predict this by training a meta-model

on data describing the performance of different methods on different datasets, characterised

by meta-features (Brazdil et al. 1994). Meta-features are often categorised as either simple

(number of examples, number of attributes), statistical (mean standard deviation of attributes,

mean skewness of attributes), information theoretic (class entropy, mean mutual information),

or landmarkers, performance evaluations of simple classifiers (Pfahringer et al. 2000). In the

data stream setting, meta-learning techniques are often used to dynamically switch between

classifiers at various points in the stream, effectively creating a heterogeneous ensemble

(albeit at a certain cost in terms of resources).

Earlier approaches often train an ensemble of stream classifiers and a meta-model decides

for each data point which of the base-learners will make a prediction. Rossi et al. (2014)

dynamically choose between two regression techniques using meta-knowledge obtained ear-

lier in the stream. van Rijn et al. (2014) select the best classifier among multiple classifiers,

based on meta-knowledge from previously processed data streams. Online Performance Esti-

mation was first introduced by van Rijn et al. (2015), which we will extend and improve in

this paper. Gama and Kosina (2014) uses meta-learning on time series with recurrent con-

cepts: when concept drift is detected, a meta-learning algorithm decides whether a model

trained previously on the same stream could be reused, or whether the data is so different from

before that a new model must be trained. Finally, Nguyen et al. (2012) propose a method that

combines feature selection and heterogeneous ensembles; members that performed poorly

can be replaced by a drift detector.

Concept drift One property of data streams is that the underlying concept that is being

learned can change over time (e.g., Wang et al. 2003). This is called concept drift. Some of

the aforementioned methods naturally deal with concept drift. For instance, k Nearest

Neighbour maintains a number of w recent examples, substituting each example after

w new examples have been observed. Change detectors, such as Drift Detection Method

(DDM) (Gama et al. 2004a) and Adaptive Sliding Window Algorithm (ADWIN) (Bifet and

Gavalda 2007) are stand-alone techniques that detect concept drift and can be used in combi-

123

154 Mach Learn (2018) 107:149–176

nation with any stream classifier. Both rely on the assumption that classifiers improve (or at

least maintain) their accuracy when trained on more data. When the accuracy of a classifier

drops with respect to a reference window, this could mean that the learned concept is outdated,

and a new classifier should be built. The main difference between DDM and ADWIN is the way

they select the reference window. Furthermore, classifiers can have built-in drift detectors.

For instance, Ultra Fast Forest of Trees (Gama et al. 2004b) are Hoeffding

Trees with a built-in change detector for every node. When an earlier made split turns out

to be obsolete, a new split can be generated.

It has been recognised that some classifiers recover faster from sudden changes of concepts

than others. Shaker and Hüllermeier (2015) introduce recovery analysis, a framework to

measure the ability of classifiers to recover from concept drift. They distinguish instance-

based classifiers that operate directly on the data (e.g., k-NN) and model-based classifiers, that

build and maintain a model (e.g., tree algorithms, fuzzy systems). Their experimental results

suggest, quite naturally, that instance-based classifiers generally have a higher capability to

recover from concept drift than model-based classifiers.

Evaluation As data from streams is non-stationary, the well-known cross-validation pro-

cedure for estimating model performance is not suitable. A commonly accepted estimation

procedure is the prequential method (Gama et al. 2009), in which each example is first used

to test the current model, and afterwards (either directly after testing or after a delay) becomes

available for training. An advantage of this method is that it is tested on all data, and therefore

no specific holdout set is needed.

Experiment databases Experiment databases facilitate the reproduction of earlier results

for verification and reusability purposes, and make much larger studies (covering more clas-

sifiers and parameter settings) feasible. Above all, experiment databases allow a variety of

studies to be executed by a database look-up, rather than setting up new experiments. An

example of such an online experiment database is OpenML (Vanschoren et al. 2014). OpenML

is an Open Science platform for Machine Learning, containing many datasets, algorithms,

and experimental results (the result of an algorithm on a dataset). For each experimental

result it stores all predictions and class confidences, making it possible to calculate a wide

range of measures, such as predictive accuracy and COD. We use OpenML to obtain infor-

mation about the performance and interplay between various base-classifiers and to store our

experimental results.

3 Methods

Traditional Machine Learning problems consist of a number of examples that are observed in

arbitrary order. In this work we consider classification problems. Each example e = (x, l(x))

is a tuple of p predictive attributes x = (x1, . . . , x p) and a target attribute l(x). A data

set is an (unordered) set of such examples. The goal is to approximate a labelling function

l : x → l(x). In the data stream setting the examples are observed in a given order, therefore

each data stream S is a sequence of examples S = (e1, e2, e3, . . . , en, . . .), possibly infinite.

Consequently, ei refers to the i th example in data stream S. The set of predictive attributes of

that example is denoted by PSi , likewise l(PSi) maps to the corresponding label. Furthermore,

the labelling function that needs to be learned can change over time due to concept drift.

When applying an ensemble of classifiers, the most relevant variables are which base-

classifiers (members) to use and how to weight their individual votes. This work mainly

focuses on the latter question. Section 3.1 describes the Performance Estimation framework

123

Mach Learn (2018) 107:149–176 155

c

w

l 0.7

l 0.7

l 0.8

Fig. 2 Schematic view of Windowed Performance Estimation. For all classifiers, w flags are stored, each flag

indicating whether it predicted a recent observation correctly

to weight member votes in an ensemble. In Sect. 3.2 we show how to use the Classifier Output

Difference to select ensemble members. Section 3.3 describes an ensemble that employs these

techniques.

3.1 Online performance estimation

In most common ensemble approaches all base-classifiers are given the same weight (as done

in Bagging and Boosting) or their predictions are otherwise combined to optimise the overall

performance of the ensemble (as done in Stacking). An important property of the data stream

setting is often neglected: due to the possible occurrence of concept drift it is likely that in

most cases recent examples are more relevant than older ones. Moreover, due to the fact that

there is a temporal component in the data, we can actually measure how ensemble members

have performed on recent examples, and adjust their weight in the voting accordingly. In order

to estimate the performance of a classifier on recent data, van Rijn et al. (2015) proposed:

Pwin(l ′, c, w, L) = 1 −

c−1
∑

i=max(1,c−w)

L(l ′(PSi), l(PSi))

min(w, c − 1)
(2)

where l ′ is the learned labelling function of an ensemble member, c is the index of the last seen

training example and w is the number of training examples over which we want to estimate

the performance of ensemble members. Note that there is a certain start-up time (i.e., when w

is larger than or equal to c) during which we can only calculate the performance estimation

over a number of instances smaller than w. Also note that it can only be performed after

several labels have been observed (i.e., c > 1). Finally, L is a loss function that compares

the labels predicted by the ensemble member to the true labels. The most simple version is a

zero/one loss function, which returns 0 when the predicted label is correct and 1 otherwise.

More complicated loss functions can also be incorporated. The outcome of Pwin is in the

range [0, 1], with better performing classifiers obtaining a higher score. The performance

estimates for the ensemble members can be converted into a weight for their votes, at various

points over the stream. For instance, the best performing members at that point could receive

the highest weights. Figure 2 illustrates this.

There are a few drawbacks to this approach. First, it requires the ensemble to store the

w × n additional values, which is inconvenient in a data stream setting, where both time and

memory are important factors. Second, it requires the user to tune a parameter which highly

influences performance. Last, there is a hard cut-off point, i.e., an observations is either in

or out of the window. What we would rather model is that the most recent observations are

given most weight, and gradually lower this for less recent observations.

123

156 Mach Learn (2018) 107:149–176

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

e
ff
e
c
t

observations

f(x) = 0.99 • f(x-1)
f(x) = 0.999 • f(x-1)

f(x) = 0.9999 • f(x-1)

Fig. 3 The effect of a prediction after a number of observations, relative to when it was first observed (for

various values of α)

In order to address these issues, we propose an altered version of performance estimation,

based on fading factors, as described by Gama et al. (2013). Fading factors give a high

importance to recent predictions, whereas the importance fades away when they become

older. This is illustrated by Fig. 3.

The red (solid) line shows a relatively fast fading factor, where the effect of a given

prediction is already faded away almost completely after 500 predictions, whereas the blue

(dashed) line shows a relatively slow fading factor, where the effect of an observation is still

considerably high, even when 10,000 observations have passed in the meantime. Note that

even though all these functions start at 1, in practise we need to scale this down to 1 − α, in

order to constrain the complete function within the range [0, 1]. Putting this all together, we

propose:

P(l ′, c, α, L) =

{

1 iff c = 0

P(l ′, c − 1, α, L) · α + (1 − L(l ′(PSc), l(PSc))) · (1 − α) otherwise
(3)

where, similar to Eq. 2, l ′ is the learned labelling function of an ensemble member, c is

the index of the last seen training example and L is a loss function that compares the labels

predicted by the ensemble member to the true labels. Fading factor α (range [0, 1]) determines

at what rate historic performance becomes irrelevant, and is to be tuned by the user. A value

close to 0 will allow for rapid changes in estimated performance, whereas a value close

to 1 will keep them rather stable. The outcome of P is in the range [0, 1], with better

performing classifiers obtaining a higher score. In Sect. 6 we will see that the fading factor

parameter is more robust and easier to tune than the window size parameter. When building

an ensemble based upon Online Performance Estimation, we can now choose between a

Windowed approach (Eq. 2) and Fading Factors (Eq. 3).

Figure 4 shows how the estimated performance for each base-classifier evolves at the start

of the electricity data stream. Both figures expose similar trends: apparently, on this data

stream the Hoeffding Tree classifier performs best and the Stochastic Gradient Descent algo-

rithm performs worst. However, both approaches differ subtly in the way the performance of

123

Mach Learn (2018) 107:149–176 157

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000

O
n
lin

e
 P

e
rf

o
rm

a
n
c
e
 E

s
ti
m

a
ti
o
n

observations

NaiveBayes
Perceptron

SGD
kNN

HoeffdingTree

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000

O
n
lin

e
 P

e
rf

o
rm

a
n
c
e
 E

s
ti
m

a
ti
o
n

observations

NaiveBayes
Perceptron

SGD
kNN

HoeffdingTree

(a)

(b)

Fig. 4 Online performance estimation, i.e. the estimated performance of each algorithm given previous

examples, measured at the start of the electricity data stream. a Windowed, window size 1,000. b Fading

Factors, α = 0.999

individual classifiers are measured. The Windowed approach contains many spikes, whereas

the Fading Factor approach seems more stable.

3.2 Ensemble composition

In order for an ensemble to be successful, the individual classifiers should be both accurate and

diverse. When employing a homogeneous ensemble, choosing an appropriate base-learner

is an important decision. For heterogeneous ensembles this is even more true, as we have

to choose a set of base-learners. We consider a set of classifiers from MOA 2016.04 (Bifet

et al. 2010a). Furthermore, we consider some fast batch-incremental classifiers from Weka

3.7.12 (Hall et al. 2009) wrapped in the Accuracy Weighted Ensemble (Wang et al.

2003). Table 1 lists all classifiers and their parameter settings.

Figure 5 shows some basic results of the classifiers on 60 data streams. Figure 5a shows

a violin plot of the predictive accuracy of all classifiers, with a box plot in the middle. Violin

plots show the probability density of the data at different values (Hintze and Nelson 1998).

The classifiers are sorted by median accuracy. Two common Data Stream baseline methods,

the No Change classifier and the Majority Class classifier, end at the bottom of the

ranking based on accuracy. This indicates that most of the selected data streams are both

balanced (in terms of class labels) and do not have high auto-correlation. In general, tree-

based methods seem to perform best.

123

158 Mach Learn (2018) 107:149–176

0.00

0.25

0.50

0.75

1.00

N
oC

ha
ng

e

M
aj

or
ity

C
la

ss

SPeg
as

os
 lo

gl
os

s

SPeg
as

os
 h

in
ge

lo
ss

SG
D

 lo
gl

os
s

SG
D

 h
in

ge
lo

ss

D
ec

is
io

nS
tu

m
p

Per
ce

pt
ro

n

A
W

E(O
ne

R
)

A
W

E(D
ec

is
io

nS
tu

m
p)

R
ul

eC
la

ss
ifi

er

R
an

do
m

H
oe

ff
di

ng
Tre

e

N
ai

ve
B
ay

es

kN
N

 k
 =

 1

A
W

E(R
EPTre

e)

kN
N

 k
 =

 1
0

A
W

E(S
M

O
(P

ol
yK

er
ne

l))

A
W

E(L
og

is
tic

)

kN
N

w
ith

PA
W

 k
 =

 1
0

A
W

E(J
48

)

A
W

E(J
R
ip

)

H
oe

ff
di

ng
Tre

e

A
SH

oe
ff
di

ng
Tre

e

H
oe

ff
di

ng
O

pt
io

nT
re

e

H
oe

ff
di

ng
A

da
pt

iv
eT

re
e

P
re

d
ic

ti
v
e

A
cc

u
ra

cy

1

10

100

1000

10000

SPeg
as

os
 h

in
ge

lo
ss

SG
D

 h
in

ge
lo

ss

SPeg
as

os
 lo

gl
os

s

SG
D

 lo
gl

os
s

D
ec

is
io

nS
tu

m
p

N
oC

ha
ng

e

M
aj

or
ity

C
la

ss

H
oe

ff
di

ng
Tre

e

R
an

do
m

H
oe

ff
di

ng
Tre

e

Per
ce

pt
ro

n

N
ai

ve
B
ay

es

A
SH

oe
ff
di

ng
Tre

e

A
W

E(O
ne

R
)

A
W

E(D
ec

is
io

nS
tu

m
p)

H
oe

ff
di

ng
O

pt
io

nT
re

e

H
oe

ff
di

ng
A

da
pt

iv
eT

re
e

A
W

E(R
EPTre

e)

A
W

E(J
48

)

A
W

E(J
R
ip

)

A
W

E(S
M

O
(P

ol
yK

er
ne

l))

R
ul

eC
la

ss
ifi

er

kN
N

 k
 =

 1

A
W

E(L
og

is
tic

)

kN
N

 k
 =

 1
0

kN
N

w
ith

PA
W

 k
 =

 1
0

R
u
n
 C

p
u
 T

im
e

(a)

(b)

Fig. 5 Performance of 25 data stream classifiers based on 60 data streams. a Predictive Accuracy. b Run time

(seconds)

123

Mach Learn (2018) 107:149–176 159

Table 1 Classifiers considered in this research

Classifier Model type Parameters

Majority Class Classification Rule

No Change Classification Rule

SGD / Hinge loss SVM

SPegasos / Hinge loss SVM

SGD / Log loss Logistic

SPegasos / Log loss Logistic

Perceptron Neural Network

Naive Bayes Bayesian

1-NN Lazy w = 1,000

k-NN Lazy k = 10, w = 1,000

k-NN with PAW Lazy k = 10, w = 1,000

Rule Classifier Classification Rules

Decision Stump Decision Tree

Hoeffding Tree Decision Tree

Hoeffding Adaptive Tree Decision Tree

Random Hoeffding Tree Decision Tree

AS Hoeffding Tree Decision Tree

Hoeffding Option Tree Option Tree

AWE(SMO) / Polynomial Kernel SVM n = 15, w = 1,000

AWE(Logistic) Logistic n = 15, w = 1,000

AWE(One Rule) Classification Rule n = 15, w = 1,000

AWE(JRIP) Classification Rules n = 15, w = 1,000

AWE(J48) Decision Tree n = 15, w = 1,000

AWE(REPTree) Decision Tree n = 15, w = 1,000

AWE(Decision Stump) Decision Tree n = 15, w = 1,000

All parameters are set to default values, unless specified otherwise

Figure 5b shows violin plots of the run time (in seconds) that the classifiers needed

to complete the tasks. From the top-half performing classifiers in terms of accuracy, the

Hoeffding Trees is the best ranked algorithm in terms of run time. Lazy algorithms

(k-NN and its variations) turn out to be rather slow, despite the reasonable value of window

size parameter (controlling the number of instances that are remembered). It also confirms

some observation made by Read et al. (2012), that the batch-incremental classifiers gener-

ally take more resources than instance-incremental classifiers; all classifiers wrapped in the

Accuracy Weighted Ensemble are on the right half of the figure.

Figure 6 shows the result of a statistical test on the base-classifiers. Classifiers are sorted

by their average rank (lower is better). Classifiers that are connected by a horizontal line are

statistically equivalent. The results confirm some of the observations made based on the violin

plots, e.g., the baseline models (Majority Class and No Change) perform worst; also

other simple models such as the Decision Stumps and OneRule (which is essentially

a Decision Stump) are inferior to the tree-based models. Oddly enough, the instance incre-

mentalRule Classifier does not compete at all with the Batch-incremental counterpart

(AWE(JRIP)).

123

160 Mach Learn (2018) 107:149–176

Fig. 6 Results of Nemenyi test (α = 0.05) on the predictive accuracy of the base-classifiers in this study

When creating a heterogeneous ensemble, a diverse set of classifiers should be

selected (Hansen and Salamon 1990). Classifier Output Difference is a metric that mea-

sures the difference in predictions between a pair of classifiers. We can use this to create a

hierarchical agglomerative clustering of data stream classifiers in an identical way to Lee

and Giraud-Carrier (2011). For each pair of classifiers involved in this study, we measure the

number of observations for which the classifiers have different outputs, aggregated over all

data streams involved. Hierarchical agglomerative clustering (HAC) converts this informa-

tion into a hierarchical clustering. It starts by assigning each observation to its own cluster, and

greedily joins the two clusters with the smallest distance (Rokach and Maimon 2005). The

complete linkage strategy is used to measure the distance between two clusters. Formally, the

distance between two clusters A and B is defined as max {COD(a, b) : a ∈ A, b ∈ B}. Fig-

ure 7 shows the resulting dendrogram. There were 9 data streams on which several classifiers

did not terminate. We left these out of the dendrogram.

We can use a dendrogram like the one in Fig. 7 to get a collection of diverse and well per-

forming ensemble members. A COD-threshold is to be determined, selecting representative

classifiers from all clusters with a distance lower than this threshold. A higher COD-threshold

would result in a smaller set of classifiers, and vice versa. For example, if we set the COD-

threshold to 0.2, we end up with an ensemble consisting of classifiers from 11 clusters. The

ensemble will consist of one representative classifier from each cluster, which can be cho-

sen based on accuracy, run time, a combination of the two (e.g., Brazdil et al. 2003) or any

arbitrary other criteria. Which exact criteria to use is outside the scope of this research, how-

ever in this study we used a combination of accuracy and run time. Clearly, when using this

technique in experiments, the dendrogram should be constructed in a leave-one-out setting:

it can be created based on all data streams except for the one that is being tested.

Figure 7 can also be used to make some interesting observations. First, it confirms some

well-established assumptions. The clustering seems to respect the taxonomy of classifiers pro-

vided by MOA. Many of the tree-based and rule-based classifiers are grouped together. There

is a cluster of instance-incremental tree classifiers (Hoeffding Tree, AS Hoeffding

Tree, Hoeffding Option Tree and Hoeffding Adaptive Tree), a cluster of

123

Mach Learn (2018) 107:149–176 161

Fig. 7 Hierarchical clustering of stream classifiers, averaged over 51 data streams from OpenML

batch-incremental tree-based and rule-based classifiers (REP Tree, J48 and JRip) and

a cluster of simple tree-based and rule-based classifiers (Decision Stumps and One

Rule). Also the Logistic and SVM models seem to produce similar predictions, having

a sub-cluster of batch-incremental classifiers (SMO and Logistic) and a sub-cluster of

instance incremental classifiers (Stochastic Gradient Descent and SPegasos

with both loss functions).

The dendrogram also provides some surprising results. For example, the instance-

incremental Rule Classifier seems to be fairly distant from the tree-based classifiers.

As decision rules and decision trees work with similar decision boundaries and can easily be

translated to each other, a higher similarity would be expected (Apté and Weiss 1997). Also

the internal distances in the simple tree-based and rule-based classifiers seem rather high.

A possible explanation for this could be the mediocre performance of the Rule

Classifier (see Fig. 5). Even though COD clusters are based on instance-level pre-

dictions rather than accuracy, well performing classifiers have a higher prior probability of

being clustered together. As there are only few observations they predict incorrectly, naturally

there are also few observations their predictions can disagree on.

3.3 BLAST

BLAST (short for best last) is an ensemble embodying the performance estimation frame-

work. Ideally, it consists of a group of diverse base-classifiers. These are all trained using the

full set of available training observations. For every test example, it selects one of its mem-

bers to make the prediction. This member is referred to as the active classifier. The active

classifier is selected based on Online Performance Estimation: the classifier that performed

best over the set of w previous training examples is selected as the active classifier (i.e., it

gets 100% of the weight), hence the name. Formally,

ACc = arg max
m j ∈M

P(m j , c − 1, α, L) (4)

123

162 Mach Learn (2018) 107:149–176

Algorithm 1 BLAST (Learning)

Require: Set of ensemble members M , Loss function L and Fading Factor α

1: Initialise ensemble members m j , with j ∈ {1, 2, 3, . . . , |M |}

2: Set p j = 1 for all j

3: for all training examples e = (x, l(x)) do

4: for all m j ∈ M do

5: l ′
j
(x) ← predicted label of m j on attributes x of current example e

6: p j ← p j · α + (1 − L(l ′
j
(x), l(x))) · (1 − α)

7: Update m j with current example e

8: end for

9: end for

where M is the set of models generated by the ensemble members, c is the index of the cur-

rent example, α is a parameter to be set by the user (fading factor) and L is a zero/one

loss function, giving a penalty of 1 to all misclassified examples. Note that the perfor-

mance estimation function P can be replaced by any measure. For example, if we would

replace it with Eq. 2, we would get the exact same predictions as reported by van Rijn

et al. (2015). When multiple classifiers obtain the same estimated performance, any arbitrary

classifier can be selected as active classifier. The details of this method are summarised in

Algorithm 1.

Line 2 initialises a variable that keeps track of the estimated performance for each base-

classifier. Everything that happens from lines 5–7 can be seen as an internal prequential

evaluation method. At line 5 each training example is first used to test all individual ensem-

ble members on. The predicted label is compared against the true label l(x) on line 7.

If it predicts the correct label then the estimated performance for this base-classifier will

increase; if it predicts the wrong label, the estimated performance for this base-classifier

will decrease (line 6). After this, base-classifier m j can be trained with the example

(line 7). When, at any time, a test example needs to be classified, the ensemble looks up

the highest value of p j and lets the corresponding ensemble member make the predic-

tion.

The concept of an active classifier can also be extended to multiple active classifiers.

Rather than selecting the best classifier on recent predictions, we can select the best k classi-

fiers, whose votes for the specified class-label are all weighted according to some weighting

schedule. First, we can weight them all equally. Indeed, when using this voting schedule and

setting k = |M |, we would get the same behaviour as the Majority Vote Ensemble,

as described by van Rijn et al. (2015), which performed only averagely. Alternatively, we

can use Online Performance Estimation to weight the votes. This way, the best performing

classifier obtains the highest weight, the second best performing classifier a bit less, and so

on. Formally, for each y ∈ Y (with Y being the set of all class labels):

votesy =
∑

m j ∈M

P(m j , i, α, L) × B(l ′j (PSi), y) (5)

where M is the set of all models, l ′j is the labelling function produced by model m j and

B is a binary function, returning 1 iff l ′j voted for class label y and 0 otherwise. Other

functions regulating the voting process can also be incorporated, but are beyond the scope of

this research. The label y that obtained the highest value votesy is then predicted. BLAST is

available in the MOA framework as of version 2017.06.

123

Mach Learn (2018) 107:149–176 163

4 Experimental setup

In order to establish the utility of BLAST and Online Performance Estimation, we conduct

experiments using a large set of data streams. The data streams and results of all experiments

are made publicly available in OpenML for the purposes of verifiability, reproducibility and

generalizability.1

Data streams The data streams are a combination of real world data streams (e.g., elec-

tricity, covertype, IMDB) and synthetically generated data (e.g., LED, Rotating Hyperplane,

Bayesian Network Generator) commonly used in data stream research (e.g., Beringer and

Hüllermeier 2007; Bifet et al. 2010a; van Rijn et al. 2014). Many contain a natural drift

of concept. Table 2 shows a list of all data streams, the number of observations, features,

classes and their default accuracy. We estimate the performance of the methods using the

prequential method: each observation is used as a test example first and as a training example

afterwards (Gama et al. 2009). As most data streams are fairly balanced, we will measure

predictive accuracy in the experiments.

Baselines We compare the results of the defined methods with the Best Single Classifier.

Each heterogeneous ensemble consists of n base-classifiers. The one that performs best

on average over all data streams is considered the Best Single Classifier. This

will allow to measure the potential accuracy gains of adding more classifiers (at the cost

of using more computational resources). Which classifier should be considered the best

single classifier is debatable. Based on the median scores depicted in Fig. 5a, Hoeffding

Adaptive Tree is the best performing classifier. Based on the statistical test depicted in

Fig. 6, the Hoeffding Option Tree is the best performing classifier. We selected the

Hoeffding Option Tree as the single best classifier.

Furthermore, we compare against the Majority Vote Ensemble, which is a heteroge-

neous ensemble that predicts the label that is predicted by most ensemble members. This

allows to measure the potential accuracy gain of using Online Performance Estimation

over just naively combining the votes of individual classifiers. Finally, we also compare

the techniques to state of the art homogeneous ensembles, such as Online Bagging,

Leveraging Bagging, and Accuracy Weighted Ensemble. These are embod-

ied with a Hoeffding Tree as base-classifier, because this is a good trade-off between

predictive performance and run time. Amongst all classifiers that are considered statistically

equivalent with the best classifier (Fig. 6 on page 14), it has the lowest median run time

(Fig. 5b on page 13). This beneficial trade-off was also noted by Domingos and Hulten

(2003), and Read et al. (2012), and allows for the use of a high number of base-classifiers.

In order to understand the performance of these ensembles a bit better, we provide some

results.

Figure 8 shows violin plots of the performance of Accuracy Weighted Ensemble

(left bars, red), Leveraging Bagging (middle bars, green) and Online Bagging

(right bars, blue), with an increasing number of ensemble members.Accuracy Weighted

Ensemble (AWE) uses J48 trees as ensemble members, both Bagging schemes use

Hoeffding Trees. Naturally, as the number of members increases, both accuracy and

run time increase, however Leveraging Bagging performs eminently better than the

others. Leveraging Bagging using 16 ensemble members already outperforms both

AWE and Online Bagging using 128 ensemble members, based on median accuracy.

This performance also comes at a cost, as it uses considerably more run time than both other

techniques, even when containing the same number of members. Accuracy Weighted

1 Full details: https://www.openml.org/s/16.

123

https://www.openml.org/s/16

164 Mach Learn (2018) 107:149–176

Table 2 Data streams used in the experiment

Name Instances Symbolic

features

Numeric

features

Classes Default

accuracy

BNG(kr-vs-kp) 1,000,000 37 0 2 0.52

BNG(mushroom) 1,000,000 23 0 2 0.51

BNG(soybean) 1,000,000 36 0 19 0.13

BNG(trains) 1,000,000 33 0 2 0.50

BNG(vote) 131,072 17 0 2 0.61

CovPokElec 1,455,525 51 22 10 0.44

covertype 581,012 45 10 7 0.48

Hyperplane(10;0.001) 1,000,000 1 10 5 0.50

Hyperplane(10;0.0001) 1,000,000 1 10 5 0.50

LED(50000) 1,000,000 25 0 10 0.10

pokerhand 829,201 6 5 10 0.50

RandomRBF(0;0) 1,000,000 1 10 5 0.30

RandomRBF(10;0.001) 1,000,000 1 10 5 0.30

RandomRBF(10;0.0001) 1,000,000 1 10 5 0.30

RandomRBF(50;0.001) 1,000,000 1 10 5 0.30

RandomRBF(50;0.0001) 1,000,000 1 10 5 0.30

SEA(50) 1,000,000 1 3 2 0.61

SEA(50000) 1,000,000 1 3 2 0.61

electricity 45,312 2 7 2 0.57

BNG(labor) 1,000,000 9 8 2 0.64

BNG(letter) 1,000,000 1 16 26 0.04

BNG(lymph) 1,000,000 16 3 4 0.54

BNG(mfeat-fourier) 1,000,000 1 76 10 0.10

BNG(bridges) 1,000,000 10 3 6 0.42

BNG(cmc) 55,296 8 2 3 0.42

BNG(credit-a) 1,000,000 10 6 2 0.55

BNG(page-blocks) 295,245 1 10 5 0.89

BNG(pendigits) 1,000,000 1 16 10 0.10

BNG(dermatology) 1,000,000 34 1 6 0.30

BNG(sonar) 1,000,000 1 60 2 0.53

BNG(heart-c) 1,000,000 8 6 5 0.54

BNG(heart-statlog) 1,000,000 1 13 2 0.55

BNG(vehicle) 1,000,000 1 18 4 0.25

BNG(hepatitis) 1,000,000 14 6 2 0.79

BNG(vowel) 1,000,000 4 10 11 0.09

BNG(waveform-5000) 1,000,000 1 40 3 0.33

BNG(zoo) 1,000,000 17 1 7 0.39

BNG(tic-tac-toe) 39,366 10 0 2 0.65

adult 48,842 13 2 2 0.76

IMDB.drama 120,919 1 1,001 2 0.63

123

Mach Learn (2018) 107:149–176 165

Table 2 continued

Name Instances Symbolic

features

Numeric

features

Classes Default

accuracy

BNG(solar-flare) 1,000,000 13 0 3 0.99

BNG(satimage) 1,000,000 1 36 6 0.23

BNG(wine) 1,000,000 1 13 3 0.40

airlines 539,383 5 3 2 0.55

BNG(SPECT) 1,000,000 23 0 2 0.79

BNG(JapaneseVowels) 1,000,000 1 14 9 0.16

Agrawal1 1,000,000 4 6 2 0.67

Stagger1 1,000,000 4 0 2 0.88

Stagger2 1,000,000 4 0 2 0.55

Stagger3 1,000,000 4 0 2 0.66

codrnaNorm 488,565 1 8 2 0.67

vehicleNorm 98,528 1 100 2 0.50

AirlinesCodrnaAdult 1,076,790 17 13 2 0.56

BNG(credit-g) 1,000,000 14 7 2 0.69

BNG(spambase) 1,000,000 58 0 2 0.60

BNG(optdigits) 1,000,000 65 0 10 0.10

20_newsgroups.drift 399,940 1,001 0 2 0.95

BNG(ionosphere) 1,000,000 35 0 2 0.64

BNG(segment) 1,000,000 20 0 7 0.14

BNG(anneal) 1,000,000 33 6 6 0.76

All are obtained from OpenML

Ensemble performs pretty constant, regardless of the amount of ensemble members. As the

ensemble size grows, both accuracy and run time slightly increase. We will compare BLAST

against the heterogeneous ensembles containing 128 ensemble members.

Ensemble members We evaluate an instantiation of BLAST, using a set of differing classi-

fiers. These are selected using the dendrogram from Fig. 7, setting the COD threshold to 0.2.

Using this threshold, it recommends a set of 12 classifiers. After omitting simple models such

as No Change, Majority Class and Decision Stumps, we end up with the set of

classifiers described in Table 3. One nice property is that all base-classifiers consist of dif-

ferent model types, making the resulting ensemble very heterogeneous. As for the baselines,

Majority Vote Ensemble uses the same classifiers.

5 Results

We ran all ensemble techniques on all data streams. BLAST was run both with fading factors

(α = 0.999) and Windowed (w = 1,000). For each prediction, one classifier was selected as

the active classifier (i.e., k = 1). We explore the effect of other values for both parameters in

Section 6.

Figure 9a shows violin plots and box plots of the results in terms of accuracy. An important

observation is that both versions of BLAST are competitive with state of the art ensembles.

123

166 Mach Learn (2018) 107:149–176

(a)

(b)

Fig. 8 Effect of the number of ensemble members on performance of Online Bagging and Leveraging Bagging.

a Accuracy. b Run time (in seconds)

Table 3 Classifiers used in the experiment

Classifier Model type Parameters

Naive Bayes Bayesian

Stochastic Gradient Descent SVM Loss function: Hinge

k Nearest Neighbour Lazy k = 10, w = 1,000

Hoeffding Option Tree Option Tree

Perceptron Neural Network

Random Hoeffding Tree Decision Tree

Rule Classifier Decision Rules

All as implemented in MOA 2016.04 by Bifet et al. (2010a), default parameter settings are used unless stated

otherwise

123

Mach Learn (2018) 107:149–176 167

0.25

0.50

0.75

1.00

M
aj

or
ity

 V
ot

e
Ens

em
bl

e

A
W

E(J
48

)

B
es

t S
in

gl
e
C
la

ss
ifi

er

O
nl

in
e
B
ag

gi
ng

B
LA

ST (W
in

do
w

)

B
LA

ST (F
F)

Lev
er

ag
in

g
B
ag

gi
ng

P
re

d
ic

ti
v
e

A
cc

u
ra

cy

1

10

100

1000

10000

B
es

t S
in

gl
e
C
la

ss
ifi

er

A
W

E(J
48

)

M
aj

or
ity

 V
ot

e
Ens

em
bl

e

B
LA

ST (W
in

do
w

)

B
LA

ST (F
F)

O
nl

in
e
B
ag

gi
ng

Lev
er

ag
in

g
B
ag

gi
ng

R
u
n
 C

p
u
 T

im
e

(a)

(b)

Fig. 9 Performance of the proposed techniques averaged over 60 data streams. a Accuracy. b Run time (in

seconds)

The highest median score is obtained by Leveraging Bagging, which performs very

well in various empirical studies (Bifet et al. 2010b; Read et al. 2012; van Rijn 2016),

closely followed by both versions of BLAST. Both versions of BLAST have less outliers at

the bottom than Leveraging Bagging. As Leveraging Bagging solely relies on

Hoeffding Trees as base-classifier, it will perform averagely on datasets that are not

easily modelled by trees. Contrarily, BLAST easily selects an appropriate set of classifiers

for each dataset, hence the fewer number of outliers.

As expected, both the Best Single Classifier and the Majority Vote

Ensemble perform less than most other techniques. Clearly, combining heterogeneous

ensemble members by simply counting votes does not work in this setup. It seems that poor

123

168 Mach Learn (2018) 107:149–176

results from some ensemble members outweigh the diversity. A peculiar observation is that

the Accuracy Weighted Ensemble, which utilises historic performance data in a dif-

ferent way, does not manage to outperform the Best Single Classifier. Possibly,

the window of 1,000 instances on which the individual classifiers are trained is too small to

make the individual models competitive.

Figure 9b shows plots of the results in terms of run time on a log scale. The results are

as expected. The Best Single Classifier requires fewest resources, followed by

AWE(J48). Although AWE(J48) consists of 128 ensemble members, it essentially feeds

each training instance to just one ensemble member. The Majority Vote Ensemble

and both versions of BLAST also require a similar amount of resources, as these already use

the classifiers mentioned in Table 3. Finally, both Bagging ensembles require most resources,

which was also observed by Bifet et al. (2010b) and Read et al. (2012). The fact that BLAST

performs competitively with the Bagging ensemble, while it requires far fewer resources,

suggests that Online Performance Estimation is a useful technique when applied to hetero-

geneous data stream ensembles.

Figure 10 shows the accuracy of the three heterogeneous ensemble techniques per data

stream. In order to not overload the figure, we only show BLAST with fading factors (FF),

Leveraging Bagging and the Best Single Classifier.

Both BLAST (FF) and Leveraging Bagging consistently outperform the Best

Single Classifier. Especially on data streams where the performance of the Best

Single Classifier is mediocre (Fig. 10b), accuracy gains are eminent. The difference

betweenLeveraging Bagging andBLAST is harder to assess. AlthoughLeveraging

Bagging seems to be slightly better in many cases, there are some clear cases where there

is a big difference in favour of BLAST.

To assess statistical significance, we use the Friedman test with post-hoc Nemenyi test

to establish the statistical relevance of our results. These tests are considered the state of

the art when it comes to comparing multiple classifiers (Demšar 2006). The Friedman test

checks whether there is a statistical difference between the classifiers; when this is the case

the Nemenyi post-hoc test can be used to determine which classifiers are significantly better

than others.

The results of the Nemenyi test (α = 0.05) are shown in Fig. 11. It plots the average

rank of all methods and the critical difference. Classifiers that are statistically equivalent

are connected by a black line. For all other cases, there was a significant difference in

performance, in favour of the classifier with the better average rank. We performed the

test based on accuracy and run time.

Figure 11a shows that there is no statistically significant difference in terms of accuracy

between BLAST (FF) and the homogeneous ensembles (i.e., Leveraging Bagging and

Online Bagging using 128 Hoeffding Trees). BLAST (Window) does perform

significantly worse than Leveraging Bagging.2 Similar to Fig. 9a, the Best Single

Classifier, AWE(J48) and Majority Vote Ensemble are at the bottom of the

ranking. These perform significantly less than the other techniques.

Figure 11b shows the results of the Nemenyi test on run time. The results are similar to

Fig. 9b. The best single classifier (Hoeffding Option Tree) requires fewest resources.

There is no significant difference in resources between BLAST (FF),BLAST (Window),

Majority Vote Ensemble and Online Bagging. This makes sense, as these the

2 van Rijn et al. (2015) reported statistical equivalence between the Windowed version and Leveraging

Bagging, however their experimental setup was different: BLAST contained a set of 11 base-classifiers and

Leveraged Bagging contained only 10 Hoeffding Trees. In this sense, the result of the Nemenyi

test does not contradict earlier results.

123

Mach Learn (2018) 107:149–176 169

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

Stagger3

Stagger1

Stagger2

B
N

G
(m

ushroom
)

B
N

G
(derm

atology)

B
N

G
(vote)

20_new
sgroups.drift

codrnaN
orm

B
N

G
(kr-vs-kp)

A
graw

al1

B
N

G
(ionosphere)

B
N

G
(anneal)

B
N

G
(labor)

B
N

G
(trains)

B
N

G
(w

ine)

B
N

G
(zoo)

B
N

G
(SPEC

T)

B
N

G
(hepatitis)

B
N

G
(optdigits)

B
N

G
(lym

ph)

B
N

G
(page-blocks)

B
N

G
(soybean)

H
yperplane(10;0.0001)

B
N

G
(heart-statlog)

B
N

G
(heart-c)

B
N

G
(credit-a)

B
N

G
(w

aveform
-5000)

B
N

G
(segm

ent)

covertype

SEA
(50000)

Best Single Classifier
Leveraging Bagging

BLAST (FF)

(a)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

SEA
(50)

B
N

G
(m

feat-fourier)

adult

R
andom

R
B
F(0;0)

electricity

vehicleN
orm

B
N

G
(satim

age)

B
N

G
(pendigits)

C
ovPokElec

B
N

G
(sonar)

R
andom

R
B
F(10;0.0001)

H
yperplane(10;0.001)

B
N

G
(JapaneseV

ow
els)

A
irlinesC

odrnaA
dult

B
N

G
(credit-g)

R
andom

R
B
F(10;0.001)

pokerhand

B
N

G
(tic-tac-toe)

B
N

G
(solar-flare)

B
N

G
(vow

el)

LED
(50000)

B
N

G
(bridges)

B
N

G
(spam

base)

B
N

G
(vehicle)

airlines

IM
D

B
.dram

a

R
andom

R
B
F(50;0.0001)

B
N

G
(cm

c)

B
N

G
(letter)

R
andom

R
B
F(50;0.001)

Best Single Classifier
Leveraging Bagging

BLAST (FF)

(b)

Fig. 10 Accuracy per data stream, sorted by accuracy of the best single classifier

first three operate on the same set of base-classifiers. Altogether, BLAST (FF) performs

equivalent to both Bagging schemes in terms of accuracy, while using significantly fewer

resources.

6 Parameter effect

In this section we study the effect of the various parameters of BLAST.

123

170 Mach Learn (2018) 107:149–176

(a)

(b)

Fig. 11 Results of Nemenyi test, α = 0.05. Classifiers are sorted by their average rank (lower is better).

Classifiers that are connected by a horizontal line are statistically equivalent. a Accuracy. b Run time

0.6

0.8

1.0

a
= 0

.9

w
 =

 1
0

a
= 0

.9
9

w
 =

 1
00

a
= 0

.9
99

w
 =

 1
00

0

a
= 0

.9
99

9

w
 =

 1
00

00

P
re

d
ic

ti
v
e

A
cc

u
ra

cy

BLAST (FF) BLAST (Window)

Fig. 12 Effect of the decay rate and window parameter

6.1 Window size and decay rate

First, for both versions of BLAST, there is a parameter that controls the rate of dismissal of

old observations. For BLAST (FF) this is the α parameter (the fading factor); for BLAST

(Windowed) this is the w parameter (the window size). The α parameter is always in the

range [0, 1], and has no effect on the use of resources. The window parameter can be in the

range [0, n], where n is the size of the data stream. Setting this value higher results in bigger

memory requirements, although these are typically negligible compared to the memory usage

of the base-classifiers.

123

Mach Learn (2018) 107:149–176 171

0.5

0.6

0.7

0.8

0.9

1.0

g
= 1

g
= 1

0

g
= 1

00

g
= 1

00
0

P
re

d
ic

ti
v
e

A
cc

u
ra

cy

BLAST (FF) BLAST (Window)

Fig. 13 Effect of the grace parameter on accuracy. The x-axis denotes the grace, the y-axes the performance.

BLAST (Window) was run with w = 1,000; BLAST (FF) was run with α = 0.999

Figure 12 shows violin plots and box plots of the effect of varying these parameters. The

effect of the α (a) value on BLAST (FF) is displayed in the left (red) violin plots; the effect

of the window (w) value on BLAST (Window) is displayed in the right (blue) violin plots.

The trend over 60 data streams seems to be that setting this parameter too low results in

sub-optimal accuracy. This is especially clear with BLAST (FF) with α = 0.9 and BLAST

(Window) with w = 10: there are more outliers at the bottom and the third quartile of the

box plot is slightly larger. Arguably, this value performs well in highly volatile streams when

concepts change rapidly, but in general we do not want to dismiss old information too quickly.

In the other cases, the higher values seem to be slightly preferred, but it is hard to draw general

conclusions from this. Altogether, BLAST (FF) seems to be slightly more robust, as the

investigated values of the α parameter do not perceptibly influence performance.

6.2 Grace parameter

Prior work by Rossi et al. (2014) and van Rijn et al. (2015) introduced a grace parameter that

controls the number of observations for which the active classifier was not changed. This

potentially saves resources, especially when the algorithm selection process involves time

consuming operations such as the calculation of meta-features. On the other hand, it can be

seen that in a data stream setting where concept drift occurs, in terms of performance it is

always optimal to act on changed behaviour as fast as possible. Although we have omitted this

parameter from the formal definition of BLAST in Sect. 3, similar behaviour can be obtained

by updating the active classifier only at certain intervals. Formally, a grace period can be

enforced by only executing Eq. 4 when c mod g = 0, where (following earlier definitions)

c is the index of the current observation, and g is a grace period defined by the user.

Figure 13 shows the effect of the (hypothetical) grace parameter on performance, averaged

over 60 data streams. We observe two things from this plot. First, the difference in performance

for various values of this parameter is quite small. Second, although this difference is very

small, it seems that lower values are preferred.

The fact that the differences are small is supported by intuition. Although the performance

ranking of the classifiers varies over the stream, it only happens occasionally that a new best

classifier is selected. Even when BLAST is too slow in selecting the new active classifier,

123

172 Mach Learn (2018) 107:149–176

it is still the case that the old active classifier will probably not be entirely outdated. It will

still predict with reasonable accuracy, until it is replaced. The fact that smaller values are

preferable also makes sense. In data streams that contain concept drift, it is desirable to

immediately act on the observed changes. Therefore, having a grace parameter can only

affect performance in a negative way. Moreover, the algorithm selection phase of BLAST

simply depends on finding the maximum element in an array. For these reasons, the grace

period would not have any measurable influence on the required resources, and its default

value can be fixed to 1.

6.3 Number of active classifiers

Rather than selecting one active classifier, multiple active classifiers can be selected that all

vote for a class label. The votes of these classifiers can either contribute equally to the final

vote, or be weighted according to their estimated performance. We used BLAST (FF) to

explore the effect of this parameter. We varied the number of active classifiers k from one to

five, and measured the performance according to both voting schemas. Figure 14 shows the

results.

Figure 14a shows how the various strategies perform when evaluated using predictive

accuracy. We can make several observations to verify the correctness of the results. First, the

results of both strategies are equal when k = 1, as the algorithm selects only one classifier,

weights are obsolete. Second, the result of the Majority weighting schema for k = 7 is equal

to the score of the Majority Weight Ensemble (from Fig. 9a), which is also correct,

as these are the same by definition. Finally, when using the weighted strategy, setting k = 2

yields exactly the same scores for accuracy as setting k = 1. This also makes sense, as

it is guaranteed that the second best base-classifier always has a lower weight as the best

base-classifier, and thus it is incapable of changing any prediction.

In all, it seems that increasing the number of active classifiers is not beneficial for accuracy.

Note that this is different from adding more classifiers in general, which clearly would

not decrease performance results. This behaviour is different from the classical approach,

where adding more classifiers (which inherently are all active) yield better results up to a

certain point (Caruana et al. 2004). However, in the data stream setting we deal with a time

component, and we can actually measure which classifiers performed well on recent intervals.

By increasing the number of active classifiers, we would add classifiers to the vote of which

we have empirical evidence that they performed worse on recent observations.

Similarly, Fig. 14b shows the Root Mean Squared Error (RMSE). RSME is typically used

as an evaluation measure for regression, but can be used in classification problems to assess the

quality of class confidences. For every prediction, the error is considered to be the difference

between the class confidence for the correct label and 1. This means that if the classifier had

a confidence close to 1 for the particular class label, a low error is recorded, and vice versa.

The box plots indicate that adding more active classifiers can lead to a lower median error.

This also makes sense, as the Root Mean Squared Error tends to punish classification errors

harder when these are made with a high confidence. We observe this effect until k = 3, after

which adding more active classifiers starts to lead to a higher RMSE. It is unclear why this

effect holds until this particular value.

Altogether, from this experiment we conclude that adding more active classifiers in the

context of Online Performance Estimation does not necessarily yields better results beyond

selecting the expected best classifier at that point in the stream. This might be different when

using more base-classifiers, as we would expect to have more similarly performing classifiers

on each interval. As we expect to measure this effect when using orders of magnitude more

123

Mach Learn (2018) 107:149–176 173

0.4

0.6

0.8

1.0

k
= 1

k
= 2

k
= 3

k
= 4

k
= 5

k
= 6

k
= 7

P
re

d
ic

ti
v
e

A
cc

u
ra

cy

0.0

0.2

0.4

0.6

k
= 1

k
= 2

k
= 3

k
= 4

k
= 5

k
= 6

k
= 7

R
o
o
t

M
ea

n
 S

q
u
ar

ed
 E

rr
o
r

Majority Weighted

Majority Weighted

(a)

(b)

Fig. 14 Performance for various values of k, weighted votes versus unweighted votes. a Accuracy. b Root

Mean Squared Error

classifiers, this is considered future work. Clearly, when using multiple active classifiers,

weighting their votes using online performance estimation seems beneficial.

7 Conclusions

We introduced the Online Performance Estimation framework, which can be used in data

stream ensembles to weight the votes of ensemble members, in particular when using funda-

mentally different model types. Online Performance Estimation measures the performance of

all base-classifiers on recent training examples. We introduced two performance estimation

functions. The first function is based on a window, and counts the number of incorrect pre-

dictions over this window. All are weighted equally. The second function is based on fading

123

174 Mach Learn (2018) 107:149–176

factors, which considers all predictions from the whole stream, but gives a higher weight to

recent predictions.

BLAST is an heterogeneous ensemble technique based on Online Performance Estimation

that selects the single best classifier on recent predictions to classify new observations. We

have integrated both performance estimation functions into BLAST. Empirical evaluation

shows that BLAST with fading factors performs better than BLAST using the windowed

approach. This is most likely because Fading Factors are better able to capture typical data

stream properties, such as changes of concepts. When this occurs, there will also be changes

in the performances of ensemble members, and the fading factors adapt to this relatively fast.

We compared BLAST against state of the art ensembles over 60 data streams from

OpenML. To the best of our knowledge, this is the largest data stream study to date. We

observe that there is no statistical significant difference between the accuracy of the ensem-

bles, although BLAST uses significantly fewer resources. Furthermore, we evaluated the

effect of the method’s parameters on the performance. The most important parameter proves

to be the one controlling the performance estimation function: α for the fading factor, con-

trolling the decay rate, and w for the windowed approach, determining the window size. Our

results show that the optimal value for these parameters is dependent on the given dataset,

although setting this too low turns out to have a worse effect on accuracy than setting it too

high.

To select the classifiers included in the heterogeneous ensemble, we created a hierarchical

clustering of 25 commonly used data stream classifiers, based on Classifier Output Difference.

We used this clustering to gain methodological justification for which classifiers to use,

although the clustering is mainly a guideline. A human expert can still determine to deviate

from the resulting set of algorithms, in order to save resources. The resulting dendrogram

has also scientific value in itself. It confirms some well-established assumptions regarding

the typically used classifier taxonomy in data streams, that have never been tested before.

Many of the classifiers that were suspected to be similar were also clustered together, for

example the various decision trees, support vector machines and gradient descent models

all formed their own clusters. Moreover, some interesting observations were made that can

be investigated in future work. For instance, the Rule Classifier used turns out to perform

averagely, and was rather far removed from the decision trees, whereas we would expect it

to perform better and be clustered closer to the decision trees.

Utilizing the Online Performance Estimation framework opens up a whole new line of

data stream research. Rather than creating more data stream classifiers, combining them

in a suitable way can elegantly lead to highly improved results that effortlessly adapt to

changes in the data stream. More than in the classical batch setting, memory and time are

of crucial importance. Experiments suggest that the selected set of base classifiers has a

substantial influence on the performance of the ensemble. Research should be conducted to

explore what model types best complement each other, and which work well together given a

constraint on resources. We believe that by exploring these possibilities we can further push

the state of the art in data stream ensembles.

Acknowledgements This work is supported by Grant 612.001.206 from the Netherlands Organisation for

Scientific Research (NWO) and by the Emmy Noether Grant HU 1900/2-1 from the German Research Foun-

dation (DFG).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/

Mach Learn (2018) 107:149–176 175

References

Apté, C., & Weiss, S. (1997). Data mining with decision trees and decision rules. Future Generation Computer

Systems, 13(2), 197–210.

Beringer, J., & Hüllermeier, E. (2007). Efficient instance-based learning on data streams. Intelligent Data

Analysis, 11(6), 627–650.

Bifet, A., Frank, E., Holmes, G., & Pfahringer, B. (2012). Ensembles of restricted hoeffding trees. ACM

Transactions on Intelligent Systems and Technology (TIST), 3(2), 30.

Bifet, A., & Gavalda, R. (2007). Learning from time-changing data with adaptive windowing. SDM, SIAM, 7,

139–148.

Bifet, A., & Gavaldà, R. (2009). Adaptive learning from evolving data streams. In Advances in intelligent data

analysis VIII (pp. 249–260). Springer.

Bifet, A., Holmes, G., Kirkby, R., & Pfahringer, B. (2010a). MOA: Massive online analysis. Journal of Machine

Learning Research, 11, 1601–1604.

Bifet, A., Holmes, G., & Pfahringer, B. (2010b). Leveraging bagging for evolving data streams. In Machine

learning and knowledge discovery in databases, Lecture Notes in Computer Science (Vol. 6321, pp.

135–150). Springer.

Bottou, L. (2004). Stochastic learning. In Advanced lectures on machine learning (pp. 146–168). Springer.

Brazdil, P., Gama, J., & Henery, B. (1994). Characterizing the applicability of classification algorithms using

meta-level learning. In Machine learning: ECML-94 (pp. 83–102). Springer.

Brazdil, P., Soares, C., & Da Costa, J. P. (2003). Ranking learning algorithms: Using IBL and meta-learning

on accuracy and time results. Machine Learning, 50(3), 251–277.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.

Caruana, R., Niculescu-Mizil, A., Crew, G., & Ksikes, A. (2004). Ensemble selection from libraries of models.

In Proceedings of the twenty-first international conference on Machine learning (p. 18). ACM.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine

Learning Research, 7, 1–30.

Domingos, P., & Hulten, G. (2000). Mining high-speed data streams. In Proceedings of the sixth ACM SIGKDD

international conference on knowledge discovery and data mining (pp. 71–80).

Domingos, P., & Hulten, G. (2003). A general framework for mining massive data streams. Journal of Com-

putational and Graphical Statistics, 12(4), 945–949.

Gama, J., & Brazdil, P. (2000). Cascade generalization. Machine Learning, 41(3), 315–343.

Gama, J., & Kosina, P. (2014). Recurrent concepts in data streams classification. Knowledge and Information

Systems, 40(3), 489–507.

Gama, J., Medas, P., Castillo, G., & Rodrigues, P. (2004a). Learning with drift detection. In SBIA Brazilian

symposium on artificial intelligence, Lecture Notes in Computer Science (Vol. 3171, pp. 286–295).

Springer.

Gama, J., Medas, P., & Rocha, R. (2004b). Forest trees for on-line data. In Proceedings of the 2004 ACM

symposium on applied computing (pp. 632–636). ACM.

Gama, J., Sebastião, R., & Rodrigues, P. P. (2009). Issues in evaluation of stream learning algorithms. In

Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data

mining (pp. 329–338). ACM.

Gama, J., Sebastião, R., & Rodrigues, P. P. (2013). On evaluating stream learning algorithms. Machine Learn-

ing, 90(3), 317–346.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining

software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18.

Hansen, L., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 12(10), 993–1001.

Hintze, J. L., & Nelson, R. D. (1998). Violin plots: A box plot-density trace synergism. The American Statis-

tician, 52(2), 181–184.

Kolter, J. Z., & Maloof, M. A. (2007). Dynamic weighted majority: An ensemble method for drifting concepts.

Journal of Machine Learning Research, 8, 2755–2790.

Ladha, K. K. (1993). Condorcet’s jury theorem in light of de Finetti’s theorem. Social Choice and Welfare,

10(1), 69–85.

Lee, J. W., & Giraud-Carrier, C. (2011). A metric for unsupervised metalearning. Intelligent Data Analysis,

15(6), 827–841.

Littlestone, N., & Warmuth, M. (1994). The weighted majority algorithm. Information and Computation,

108(2), 212–261.

Nguyen, H. L., Woon, Y. K., Ng, W. K., & Wan, L. (2012). Heterogeneous ensemble for feature drifts in data

streams. In Advances in knowledge discovery and data mining (pp. 1–12). Springer.

123

176 Mach Learn (2018) 107:149–176

Oza, N. C. (2005). Online bagging and boosting. In 2005 IEEE international conference on systems, man and

cybernetics (Vol. 3, pp. 2340–2345). IEEE.

Peterson, A. H., & Martinez, T. (2005). Estimating the potential for combining learning models. In Proceedings

of the ICML workshop on meta-learning (pp. 68–75).

Pfahringer, B., Bensusan, H., & Giraud-Carrier, C. (2000). Tell me who can learn you and I can tell you who

you are: Landmarking Various learning algorithms. In Proceedings of the 17th international conference

on machine learning (pp. 743–750).

Pfahringer, B., Holmes, G., & Kirkby, R. (2007). New options for hoeffding trees. In AI 2007: Advances in

artificial intelligence (pp. 90–99). Springer.

Read, J., Bifet, A., Pfahringer, B., & Holmes, G. (2012) Batch-incremental versus instance-incremental learning

in dynamic and evolving data. In Advances in intelligent data analysis XI (pp. 313–323). Springer.

Rice, J. R. (1976). The algorithm selection problem. Advances in Computers, 15, 65–118.

Rokach, L., & Maimon, O. (2005). Clustering methods. In Data mining and knowledge discovery handbook

(pp. 321–352). Springer.

Rossi, A. L. D., de Leon Ferreira, A. C. P., Soares, C., & De Souza, B. F. (2014). MetaStream: A meta-learning

based method for periodic algorithm selection in time-changing data. Neurocomputing, 127, 52–64.

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197–227.

Shaker, A., & Hüllermeier, E. (2015). Recovery analysis for adaptive learning from non-stationary data streams:

Experimental design and case study. Neurocomputing, 150, 250–264.

Shalev-Shwartz, S., Singer, Y., Srebro, N., & Cotter, A. (2011). Pegasos: Primal estimated sub-gradient solver

for SVM. Mathematical Programming, 127(1), 3–30.

van Rijn, J. N. (2016). Massively collaborative machine learning. PhD thesis, Leiden University.

van Rijn, J. N., Holmes, G., Pfahringer, B., & Vanschoren, J. (2014). Algorithm selection on data streams. In

Discovery Science, Lecture Notes in Computer Science (Vol. 8777, pp. 325–336). Springer.

van Rijn, J. N., Holmes, G., Pfahringer, B., & Vanschoren, J. (2015). Having a blast: Meta-learning and

heterogeneous ensembles for data streams. In 2015 IEEE international conference on data mining (ICDM)

(pp. 1003–1008). IEEE.

Vanschoren, J., van Rijn, J. N., Bischl, B., & Torgo, L. (2014). OpenML: Networked science in machine

learning. ACM SIGKDD Explorations Newsletter, 15(2), 49–60.

Wang, H., Fan, W., Yu, P. S., & Han, J. (2003). Mining concept-drifting data streams using ensemble classifiers.

In KDD (pp. 226–235).

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259.

Zhang, P., Gao, B. J., Zhu, X., & Guo, L. (2011) Enabling fast lazy learning for data streams. In 2011 IEEE

11th International conference on data mining (ICDM) (pp. 932–941). IEEE.

123

	The online performance estimation framework: heterogeneous ensemble learning for data streams
	Abstract
	1 Introduction
	2 Related work
	3 Methods
	3.1 Online performance estimation
	3.2 Ensemble composition
	3.3 BLAST

	4 Experimental setup
	5 Results
	6 Parameter effect
	6.1 Window size and decay rate
	6.2 Grace parameter
	6.3 Number of active classifiers

	7 Conclusions
	Acknowledgements
	References

