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Abstract. In vicw of the interesting possibilities of c,~ntrolling surface tension-driven 
convection, anticipated in space experiments involving fluid interfaces, the problem 
of the stability of a thin horizontal fluid layer subjected to rotation about a vertical 
axis, when the thermal (or concentration) gradient is not uniform is examined 
by linear stabklity analysis. Attention is focussed on the situation where the 
critical Marangoni number is greater than that for the case of uniform thermal 
gradient and the convection is not, in general, maintained. The case of adiabatic 
boundary condition is examined because it brings out the effect of surface tension 
at the free surfaces and. allows a simple application of the Galerkin technique, which 
gives useful results. Numerical results are obtained for special cases and some 
general conclusions about the destabilizing effects of various basic temperature pro- 
files and. the stabilizing effect of coriolis force are presented. The results indicate 
that the most destabilizing temperature gradient is one for which the temperature 
gradient is a step function of the depth. Increase in Taylor number and the inverted 
parabolic basic temperature profile suppress the onset of convection. 
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1. Introduction 

The determination of  the criterion for the onset of  convection under microgravity 

condition, i.e., g~avity reduced by several orders of  magnitude ranging from 10 -3 g 

to  10 -6 g, he.s considerable interest in material  science processing in space. I t  is 

usttaUy believed (see O~trach 1979~ Polezhaev t979) that natt, ral convection can. 

not  occur in a microgravity environment and heat and mass tr~.nsfer will he exer- 

cised by molecular conductivity and diffusion. This is not  always trt:e (Ostrach 

1979). Convection driven by surface tension gradients is inevitable in material  

science experimental configurations in space missions, because such configurations 

often involve fluid interfaces. Experiments on the Apollo 14 and 17 flights 

(Grodzka  and Bannister 1972 ~ Bannister et al t973) have shown that convection 

can still he induced by surface tension effects, even if  buoyancy forces are absent. 

Neglecting such ,,. convection may cause c~nsiderahle errors in setting up experi- 

ments in space and interpreting their results. Hence, fo~ material  science pro- 

cessing in space, it is important  to evaluate the critical Me.rangoni number  below 

which convection cannot  occur and to suggest the mechanisms to suppress 

convection. 
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In small scale fluid mechanics, the fact that interracial regions hetween fluid 
phases play an important part in driving as well as impeding convection, was 
observed for the first time by Blocl~ (1956). Pearson (t958) gave a detailed mathe- 
matical analysis for the onset of convection driven by surface tension gradients. 
Later, Sternling and Striven (1959) and Scriven and Sternling (1960, t964) exa- 
mined the onset of steady cellular convection driven by surface tension gradients 
as an extension of Pearson's (195g) stability analysis. Nield (1975) examined the 
onset of transient convective instability driven by surface tension using the Galer- 
l~in metlmd. But the effect ofeoriolis force on the surface tension driven convec- 
tion has not been given much attention. Recently, Sarma (t979) has investigated 
the problem of thermo~apillary stability of a thin liquid layer heated uniformly 
from below subjected to rotatiort about the transverse axis. He has illustrated 
the vital role of the different boundary conditions and the destahilising character 
of the long-wave disturbances at the fluid-fluid interface using a neutral stability 
curve based on analytical solutions of the pertinent eigenvalue problem. These 
results pertain to basic uniform temperature gradient. In a weightlessness environ- 
ment, however, it is difficult to maintain a basic uniform temperature gradient. 
There is usually sudden heating cr cooling giving rise to a non-uniform basic 
temperature gradient. The effect c,f non-uniform temperature gradient on surface 
tension driven convection with rotation about the vertical axis has not been given 
much attention. This is investigated in this paper using the single term Galerkin 
expansion and considering adiabatic temperature conditions at the boundaries. 

llefore investigating this problem, let us explain briefly the different mechanisms 
of generating convection. For practical applications, convective processes are 
suitably divided into two categories: (a)buoyancy-induced processeswwhich 

depend directly on the gravity g and (b)non-gravitational proeesseswwhieh 
depend on surface tension gradients and which are relevant to microgravity condi- 

tions. 
The basic principles underlying these processes are outlined below. 

1.1. Convection induced by buoyancy 

Usually there are two types of convection, viz., forced convections and natural or 
free convection. Here, we consider only free convection induced by the density 
gradient. The density gradient may he either parallel to the gravity but opposing 
it or normal to it. The former is usually called R, ayleigh-Beoard convection and 
the latter is called conventional convection or Chef-Beck convection (Joseph 1976) 
where the motion is spontaneous. We explain here only the physical mechanism 

of Rayleigh-Ilertard convection. 
Consider a fluid layer occupying the spare between two parallel planes, 

infinite in horizontal extent separated by a distance d apart, heated uniformly 
from below and cooled from above (/'2 > 7"1). This means that the density of 
the top layer is higher than that of the bottom layer and we expect that the 
motion starts immediately as in conventional convection and converts the internal 
energy to l~inetie energy. This is not so because, initially the temperature differ- 
enee is not suttieient to overcome the viscous and thermal dissipations. Baxt with 
increasing temperature ditlerenee, a marginal condition is reached at some point 
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in the layer at which it overcomes the ~iscous and thermal dissipations and the 

motion starts. The physical mechanism is that the cold fluid above moves down- 

wards and the hot fluid below moves upwards resulting in the release of potential 

energy which can provide kinetic energy for the motion. Thus, there is a possi- 

bility that the equilibrium is unstable. Flow thus arises not because of the absence 

of equilihrium but because the equilibrium is unstable. A fluid heated from 

below is less dense at the bottom and therefore unstable. However, the viscosity, 

thermal conductivity and boundaries act to, stabilise the fluid and create a threshold 

thermal gradient above which convection occurs and helow which th~ fluid is in 

a quiescent state. The point at which the quiescent state breaks down and 

the motion starts is called the critical point and the corresponding temperature 

gradient is called the critical temperature gradient. Below this critical temperature 

gradient the fluid remains at rest and above it comes into motion. The fluid 

establishes hot rising regions and cold falling regions with horizontal motion at 

the top and bottom tG maintain continuity. If there is po external constraint on 

the system to offset th~ destabilisin g nature of potential energy, the pattern of con- 

vection is uniform, i.e., the cell patterns will not he distorted and we say that the 

principle of exchange of stability is valid. This means that the velocity and 

temperature fields are in phase so that the rising fluid loses its heat by thermal 

conduction when it gets near to the cold top wall and can thus move downwards 

again. Similarly, the co.ld down-going fluid is warmed near the hot hottom wall 

and can rise again. So, when the flow is estahlished as a steady pattern the 

continuous release of potential energy is balanced by viscous dissipation of mecha- 

nical energy. The potential energy is provided by the heating from below and 

cooling from above. This is usually called the marginel state. If there is an 

additional constraint like rotation, magnetic field or salinity on the system, the 

velocity and temperature fields will he out of phase and a part of the potential 

energy is now balanced by the constraint on the system and hence in the marginal 

s~ate, the effect of additional constraint is to inhibit the onset of convection. How- 

ever, in the time-dependent motion, a part of the constraint is now balanced hy 

the local acceleration and less constrained effect is available to halance the poten- 

tial energy and oscillatory or overstable convection sets in at a lower Rayleigh 

numher than that of the marginal state. Overstahle motion will also be responsible 

for finite amplitude motion. Therefore, in the study of onset of convection, one 

has to consider (i) the marginal state, (ii) the overstable state, (iii) finite and 

large amplitude steady or overstable motions. 

The systematic study of these involves the following three aspects: 

(i) The determination of the condition for the onset of convection, which 

depends on the magnitude of the temperature difference. This is expressed in 

dimensionless form as the critical value of the Rayleigh number. The prohlem 

here is to find the critical Rayleigh number at which the quiescent state breaks 

down. This is usually the realm of linear theory based on an infinitesimal pertur- 

bation and is explained in detail by Chandrasekhar (t96t) for the case of a uni- 

form temperature gradient. The critical Rayleigh number in the case of non- 

linear theory hased on arbitrary perturhations, usually called universal stahility, 

is determined using the Liapunov direct method (toseph 1976; Rudraiah 1972; 

Rudraiah and Prahhamani 1973, 1974a, h). 
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(ii) The nature of  cell pattern 

The physically feasible cell pattern is the one which transfers maximum heet. In 
the quiescent state the transfer of heat is purely by conduction in the absence 
of radiation. If H is the rate of heat transfer per unit area, then H = kAT/d,  

where K is the thermal conductivity, AT is the temperature difference and d is 
the distance between the plates. When the quiescent state brca.ks down, the heat 
transfer is both by conduction and convection and is expressed by the dimension- 
less parameter 

Nu = 1t,/1t 

called the Nasselt number and H~ is the sum of the heat transfer by conduction 
and convection. The variation of Nu with the Rayleigh number, Ra, is called 
the heat transport curve. Nu remains equal to unity upto the critical RayMigh 
number but increases above unity with the onset of convection. In practice Nu 
is determined for two and three-dimensional plan-forms. Of these, the one which 
gives the highest value of Ha is called the physically feasible cell pattern. The 
detailed structure of the plan-form is mathematically complicated because of the 
non-linear nature of the problem. A discussion of the question of the preferred 
cell shape, however, has been given by Palm ([960) taking into, account the effects 
of noa-linearity and the variation of viscosity. This is ft, rther develol?ed by Segel 
and Stuart ([962) and Stuart (t964). The value of Nu is determined by calculat- 
ing the amplitude of motion. The linear theory cannot predict the amplitude 
and we have to resort to the nonlinear theory. The theory of stability of non- 
linear motion based on arbitrary perturbations is called universal stability (Joseph 
1976). This universal stability predicts only the critical Rayleigh number and not 
the amplitude. Therefore, to determine the amplitude af motion, one has to 
resort to the local nonlinear stability analysis which is pivoted on the linear theory. 
This local nonlinear stability is usually investigated using the Galerkin technique 
(Finalyson t972; Rudraiah and Vortmeyer 1978), l%urier's truncated represen- 
tation (Veronis 1966) and the power intcgeal technique (SWart 1958). The power 
integral technique was first proposed by Stuart (1958) and later it was applied 
to convection problems by many authors (Malleus and Veronis 1958: Rudraiah 
and Sdmani 1980). 

(iii) Relative stability criterion 

We l~aow that convection sets in at the critical Rayleigh numherg below which 
there exists a unique basic solution, hut above it, in addition to this, many possible 
solutions are possible depending on various possible wave numbers and cell shapes. 
The question is, of the many solutions above the critical value, which is the stable 
one ? To answer this question, a relative stability criterion, has to be investigated 
(Mallms and Veronis 1.958g gudraiah and Srimaai 1980). This is based on the 
result that when all the solutions are orthogonal to each other the fluid chooses 
that solution which has the maximum value of heat transport as the stable one. 
Although a detailed understanding of the individual solutions and their interaotioaas 
is not necessary, some integral properties of these solutions are essential to single 
out the stable one. Por this purpose, one has to obtain from the momentum and 
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energy equations, the power integrals which are nothing but the entropy and 
energy balance equations. From this, it is easy to ohtain the most general stabi- 

lity criterion for convection which in turn determines the stable solution hased 

on the following physical phenomena: 
(i) The stable solution produces more entropy per unit time from the mean 

temperature ~ l d  of any other solution than the one produced by its own 

mean field (Malkus and Veronis 1.958~ Rohini 1.979). 

(ii) The stable solution has a greater mean-square gradient than any other 

solutions (Rudraiah and grimani 1980). The degeneracy will he removed 

if there is only one solution. 
(iii) For a stable solution, the fate of dissipation of kinetic energy minus a 

quantity proportional to the rate of increase of entropy by thermal diffusion 
is maximum (Rudraiah and grime.hi 1.980; Kohini 1.979). 

(b) Convection driven by surface tension variations 

A body force is ahsolutely necessary for the buoyancy-driven convection discussed 

above. There is, however, another type of convection which does not depend 

on the presence of a body force (see ~r iven and Sternling 1960 for a review), 

This is interracial or surface tension-driven motion which obviously demands the 

presence of a liquid-liquid or liquid-gas interface in addition to a temperature- 

sensitive interracial tension. In recent years it was believed that many of the 

cellular phenomena observed by Benard were probably due not to huoyaney 

force but to variation of surface tension with temperature. This was pointed out by 
Pearson (1.958) and Block (1956), who has developed a linearsied theory, that surface 

tension forces suffice to cause convection in a liquid layer with a free surface, provi- 
ded there is a temperatu re or concentra lion gradient of the proper sense and su flieient 
magnitude. Pearson's theory agrees in many essentials with experimental 

findings. Pearson (t958) have illuminated a neglected type of surface tension- 

driven convection. Later Striven and Sternling (1964) have extended Pearson's 
small-disturbance analysis to a still idealised, yet more realistic model of the fluid 

interface, establishing the effects of finite mean sttrfaee tension and surface visco- 

sity. Their analysis is based on a Newtonian ttuid interface in which the local 
departure from equilibrium interracial stress is directly proportional to the local 

rate of interfaeial strain. By accounting for the possibilities of shape deformations 
of the free surface, Striven and Sternling (1.964) found that there is no critical 
Marangoni number for the onset of stationary instahility and that the limiting ease 
of zero-wave numher is always unstable. They have shown that the effect of 
surface viscodity of the Newtonian interface is to inhibit stationary instability. 

It is of interest to note that in a layer of ttuid heated uniformly from below 

and bounded on hoth sides by rigid boundaries, convection ~ets in only due to 

buoyancy forces. However, if a layer of liquid is bounded in one side by a free 

surface and on the other by a rigid boundary, convective motion may be induced 

by a surface tension force due to finite curvature or by the variation of surt~aee 

tension from point to point. 
When a layer of liquid, bounded below by a rigid wall and above by a free 

~urfaee, is heated uniformly from below, the hot liquid rises to the free surface 

and cools as it moves along the surface. Thus, the temperature can vary along 
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the upper surface. Since the surface tension depends on the temperature (for a 
liquid it decreases with increaging temperature), there is also a surface tension 

gradient along the free surface. This induces a surface traction which either tends 

to pull the fluid along leading to instability or restrain the fluid motion leading to 

stability. In shallow layers of the fluid, the surface tension it:stability can he pro- 

dueed at temp:rature gradients which are much small,:r than those required for 

buoyancy driven convection. In fact, Koschmieder (L974) studied a shallow layer 

of silicone-oil on a plane circular copper plate uniformly heated from below and 
experimentally found that surface-tension forces can produce an array of hexagonal 

cells of much greater regularity than that observed in buoyancy-driven convec- 
tion. The fluid moves towards the surface at the centre of each of the hexagons 
and away from it around their peripheries. Benard's original observations of 

ordered hexagonal cells are inconsistent with the buoynacy mechanism hecause 

of very law temperature gradients, but are consistent with the surface tension 

mechanism. In the surface tension-driven mechanism, the setting up of convec- 

tion is expressed hy a dimensionless number, M = %ATd/pvx, called the Maran- 

goni number where or, is the surface tension (force/length) and all other quanti- 

ties are as defined earlier. The convection sets in at the critical Marangoni 

number. 
In small scale fluid mechanics, for example, petroleum engineering, chemical 

engineering, biology and so on, an understanding of the rolls produced by the com- 
bined buoyancy and surfac: tension forces is essential. The combined effect of 
these rival theories has been recently investigated by Nield (1964) using linear per- 

turhation technique and he has concluded that, for the case of linear density 

variation, the coupling between the buoyancy and surf tee tension effects causing 

instability xeinforce one another and ate tightly coupled. Later Wu and Cheng 
(1976) extended Nield's linear stability analysis for a horizontal liquid layer 

considering surface tension and huoyancy effects for the case of water with maxi- 

mum density effect for the temperature range 0-30°C. Nield's result shows 

that the form of the relation between the Marangoni number and the Rayleigh 

number is rather a weal~ function of the Blot number (qod/tc, qo is the rate of 
change with temperature of the time rate of heat loss per unit area from the free 

upper surface). But this is not so. in the case of Wu and Cheng's investigation. 
We note that the linear theory discussed by Nield (t964) and Wu and Cheng 

(t976) is inadequate to predict the amplitude of such a steady-state solution, 

hecause it assumes explicitly that amplitudes are vanishingly small, and hence a 

nonlinear theory predicting steady amplitudes as a function of Rayleigh and wave- 

numbers should be considered. A general discussion of nonlinear theory with 

surface tension has not been given much attention and is still an open question. 

(e) Convection with internal heat generation 

~to far., we have discussed convection due to buoyancy or surface tension or com- 
bined huoyancy and surface tension forces in which the fluid temperature decreases 
linearly with height. In other words, the heat transport in the quiescent state is 
purely hy conduction. However, in marry practical sitvations like the extraction 
and utilisation of geothermal energy, nuclear reactors, suhterranian porous layers 

and in the applications of matelial sciences in space, it is of interest to determine 
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in what way the instability would be af[ected if the quiescent state was eharacte- 

rised hy a nonlinear temperature profile. Such a nonlinear profile could arise 

(Sparrow et al t964; Tritton and Zarraga 1967; Roberts 1967;. Nield 1975; 
Rudraiah et al 1979, 1980) if there is internal heat generation within the fluid due 

to heat sources or due to rapid heating, or cooling, at the boundaries. In such 

situations, instead af heating just from below, we have to consider heat genera- 

tion throughout the body of the fluid and that the heat leaves the fluid layer 
through the upper surface, so that the stratification is again unstable. Tritton and 

Zarraga (1967) investigated experimentally the effect of internal heat generation 
on convection where the motion is due to instability rather than due to the 

absence of an equilibrium configuration. Two striking results emerged from their 
experiments. First, the cell structure was, fo~ moderate Rayleigh number, pre- 

dominantly hexagonal with motion downwards at the centre of each cell. Secondly, 

the horizontal scale of the convection pattern grew larger as the Rayleigh number 

was increased above its critical value. Roberts (t967) answered these experimental 

challenges using the nonlinear theory and has thrown more light on the advantages 

and limitations cf his approximate theoIy of finite-amplitude convection. 

A nonlinear temperature distribution also arises due to rapid heating or cool- 
ing at a boundary. Theoretical studies of instability with such a nanlinear basic 

temperature profile were made hy Sutton (t950), Morton (t957), Goldstein (1[959), 

Lick (t965), Carrie (t967) and Nield (t975). The effect of nonlinear basic tempe 
rature distribution an surface tension driven convection was analysed by Vida 

and Acrivos (t96g) and by Nield (t975). 
Little work has heen dane on the combined etfeet of Coriolis force and non- 

linear basic temperature distribution on surface tension driven convection. This 

is analysed in the present paper. Since the ~oriolis force and the non-uniform 

hasic temperature g~adient arising from sudden heating or cooling are inherent 
in all spacecraft environments, the results ohtained in this paper will be useful 

for material science processing in space. 

2. Fornmlatiou of the problem 

In this section, we consider the basic equations and the corresponding houndary 
conditions. For this, we consider an intinite homogeneous liquid layer of uni- 
form thiel~ness d extending to infinity in the x-direction and rotating with a 

constant angular velocity t2 about the 2-axis which is transverse to the layer. The 

lowel surface z = 0 is in contact with a fixed rigid plane and the upper surface 

z = d is free. The only physical quantities that are assumed to, vary within the 
fluid are the temperature, the surface tension, which are regarded as functions of 

temperature only, and the rate of heat loss from the surface, which is also a func- 

tion of temperature only. The basic temperature profile is nonlinear due to 

sudden heating (or cooling) at a boundary. 

2.1. Basic equations 

The basic eqt,.~.tions of motion are: 

-9, 

Oq ~ ~ _ l ' _ v p +  vV"  ~q - - 1 2  x , (l) 
~i + (q" V) q = p e 



304 N Rudraia:l 

...> 

V • q = 0 ,  (2 

O) + (q" V) f =  r '7 0- 7" (3) 

where q = (u, v, w) is the velocity field, 

p = the total pressure 

~' = the temperature, 

p = the density o.f the fluid, 

v =#/p  the kirtcmatic viscosity of the fluid, 

It = the viscosity of the fluid, 

tc = kip the thermal diffasivity, 

k = the thermal eortdttetivity, 

£2 = (0,0, 12) is the uniform angular speed of the system, 

0-.  0- .  OTc ' 
V ; ~ +b) j  +bz 

0" 0 2 0 2 
V2 -- bx -~" + ~9) q + b ? '  (4) 

(i,j, k) = unit vectors in the direction of the space variables (x ,y ,  z). 

2.2.  Boundary conditions 

The boundary conditions on velocity are obtained from mass balance, the no- 

slip condition and the stress principle cf  Cauehy, depending on whether the 
fluid layer is bounded by either rigid or free surfaces. 

2.2a. Rigid surfaces. If the layer is hounded above and below by rigid 

surfaces, the no-slip condition is valid and we have 

u = v  = w = O  at z = O  and d (5) 

where d is the thickness of the layer. 

In the. study of the o.nset of convection, it is customary to assume the solution 
in the farm 

(u, v,  w) = f ( z ,  t) exp i (Ix + my). (6) 

In that case the equation cf  continuity (2) using (5) and (6), gives 

Ow 
0z = 0  at z = 0  and d. (7) 

Thus in the case of rigid boundaries, the boundary conditions on velocity are 

Ow 
w = ~  =o .  (8) 
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2.2b. Free surfaces. If the layer is bounded by flee surfaces, the boundary condi- 

tions on velocity can be obtained, by equalising the ch,,.nge af surface-tensian due 

to the temperature variation across the surface to the shear stress experienced 

hy the liquid at the free st:trace (Pe~.rson 1958). By balancing the surface-tensio,n 

gradient with shear strem at the surface, we have 

_ Ov &r~ &t OG~ _/t 

where a, is the surface-tension, ~',, and ru, are the shear stresses. 

By proper differentiation and using (2), we get 

02o'~ 02o'~ 0 °" w 
~gx or + Oy" - P -0~'-' " (9) 

Following Pearson (t958), we can assume that or, can be expanded as the first 

order in powers of the temperature variations at the surface, in the form 

o', --'-- cr o -- a'rT, (1,0) 

where is o'o the unpertt:rbed vah:e of or, avd 

-- ~r \OTIT=T~ " 

For most liquias a'r is positive, for as the temperature rises, the difference 

between the liquid and its vapour pl~.se decreases. Hence, the suitable boundary 

candition at the free surface in the presenee ~f surface tension is 

w = 0  and p - ~  = a r k ~ i  + Oy~j (t l)  

which in the non-dimensional c,~.se t,~.kes the form 

, =~ \ ox'- + ~ J (t2) 

where M. - a r A T d  
pb: 

is the Marangoni number. 

In the absence of variation of surface-tension with temperature the boundary 

conditions on velocity at the free-surface are 

O z w 
w = Oz" 0 .,.t Z 0 ,"a~d d. ( t3 )  

2.2e Thermal boundary conditions. In the study of  convection, the thermal 

conditions applied at the upper and lower surfaces of the fluid are based on the 

supposition th,~.t these surfaces ,~.re in contact with the materials of infinite thermal 

conductivity and heat capacity. For, the temperature at the surface is not per- 

turbed when the qtdescent state bre,~.ks down. A more general thermal boundary 

condition is 

0T 
T = 2 0 z '  (14) 
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where 2 is a constant depending on the thermal properties of the houndary and 

the liquid. The extreme cases 2 = 0 and ~-1 = 0 are limiting approximations 

for temperature perturbations to a very good and bad conductor respectively. 

In practice, these are referred to as the isothermal and adiabatic cases. In the 

case of free surfaces, however, the actual physical situation, viz., the heat exchange 

between the surface and environment, suggests that the standard thermal boundary 

condition of fixed temperature (i.e., isothermal) may be too restrictive. In that 

case, adiabatic boundary conditions 

OT 
0Z = 0 at z = 0 and d, (15) 

are more realistic. 

2.3. Dimensionless parameters 

Considerable insight into the qualitative nature of the problem cart be obtained 

from dimensional analysis. The dimensionless parameters determined from the 

basic equations and boundary conditions help to understand very complex pheno- 

menon. The following non-dimensional parameters are used in the study of 

convection problems. 

(i) The Rayleigh number 

Ra = 7gP#/ w: 

where fl is the adverse temperature gradient maintained between the upper and 

lower boundaries, 7 is the volumetric expansion coefficient, d is the depth of  

the layer, x is the thermal diffusivity and the other quantities are as defined 

b~fore. Physically, the Rayleigh number represents the balance of energy released 

by buoyancy force to the energy dissipation by viscous friction and thermal dissipa- 

tion. The Rayleigh number appears in the energy equation, so that the heat 

transfer is related to it. 

(ii) The Marangoni number 

¢ r A T d  
e a  ~ - - - -  

px 

where aT = On/aT is the rate of decrease of surface tension with increasing 

temperature, and other quantities are as defined earlier. This Marangoni number 

is independent of gravity and physically it represents the ratio of surface tension 

force to dissipative forces. 

(iii) The Prandtl number 

v(pc), 
K 

which is a measure of diffusion of vortieity to heat. In convection problems 

although the mechanism of the release of thermal energy driving convection is 

basically simple, a rich variety of phenomena is exhibited by nonlinear convective 

motions. This variety stems particularly from the dependence of the motion on 
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the Prandtl number. At high Prandtl numbers, the nonlinear terms in tbe equa- 

tions of motion are of minor importance and the properties of convection are domi- 

nated by thermal boundaries. At Prandtl numhers of the order of unity and lower, 
the momentum terms cause a transition from steady eonvettive rolls to time- 

dependent oscillatory convection. 

(iv) The Grashof number 

7gild ~ Ro 
t 1 , =  

measures the ratio of buoyancy force to viscous force. Since the Grashof 

number appears in the basic equation of motion, the fluid velocities are directly 

related to it. For large Grashof numbers (G, > 1), the fluid velocities v can be 

estimated from 

- v a / 9 , g A T d  v = 

whereas for small Grashof numbers (G, < 1) 

v ~,gATd ~ 
v = G," ~/= v 

(v) The Taylor number 

S 2 = 4t22 d4/v', 

which represents the ratio of coriolis force to viscous force. 

(vi) The Nvsselt number 

Nu = H/tcfl., 

where H is the vertical heat flux, tim is the vertical average of the adverse tempe- 

ratvre gradient and ~: is the thermal diffusivity. 

(vii) The Bond number 

The relative importance of buoyz~ncy or surfi;ce tension in setting up of convec- 

tive motion can be estimated by the dimensionless number 

Bo = pgd2/ar, 

called the Bond number, which is the measure of the ratio of gravitational to 

surface tension forces. 

2.4.  Simplification of nonlinear forces 

The equatians of motion (1) to (4) are highly nonlinear and hence the determina- 

tian of solution either analytically or numerically is very complicated. Ta under- 

stand the physical insight with reasonable mathematics, usually some assump- 

tions are made. Oae of the assumptions is that the maximum temperature flttotu. 

ations from the mean must be small. In terms of the dimensionless parameters 

this amounts to saying that the deviation of the critical Marangoni number M,, 



308 N Rudraiah 

from the Marangoni number is small (i.e., M, - Mo~ < t). This assumption 
• '¢ '  "9. --~ 

implies that the nonlinear terms (q • S7) q and (q • ~7) T in equations (1) and 

(3) can be divided into terms which are finite when averaged over a horizontal 

plane and into terms o.f zero average. To achieve this, we let 

T*  = T ( z )  + T ( x ,  y,  z, t )  ([6) 

If the bar over a quantity denotes the average over a lmrizoxttal plane 

--~ --Irb 

then we have 

T* = T ( z ) ,  T ( x ,  y,  z, t)  = O, 

substituting (t6) into (3) and dividing by (pc); we get 

. +  

[:9 2 r ( z__~) = fl w - ( q . V ) T, aTat r~7 2 T -  r OzO: 

(17) 

(ts)  

-, aT(z) 
where w = q ./~, fl = az 

is the negative vertical gradient of mean temperature. 
platxe average of (tg), we get 

0 ~ T ( z )  
- ~ , - - & ~  = - (w:r(z ) ) ,  

Taking the tmrizontal 

(19) 

which on integration yields 

x/~+ ge t  = H, 

where H is the vertical heat flux in the tluid. 

Thus, taking the vertical average 

a 

t 

O 

of (20) we get 

K/J. + (wT).  = H, 

where the suffix m denotes the vertical average. 

/~. 

Equation (18) using (t9) and (22) becomes 

a T  V ~  ( ( w T ) .  - ( w T ) )  w 
a--i- - x T -  fl, n w =  r; - M h  

(20) 

(20 

From (20)and (21), we get 

(22) 

(23) 
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where 

is the zero-avcrage heat convection term. 

Eliminating pres~rc p in (0, we get 

(V ~w) + 2 Q  ~ = v w + L, 

;" t where L = ~  ~ ( q ' V )  u+ (q'V) v -V," 

8v Ou 
and 

is the vertical component of vorticity. 

q" Vw, 

(24) 

From the first two equations of (1), we 

can get art equation relating w and ~ in the form 

,9~ &v 
0-7 - v V ~  ~ - 2 o  aZ = - z ,  (25) 

(q xT) v - V)  u, where Z = 0x  " ~gy ( q "  

is a zero-average nonlinear term. 

The local nonlinear stability is usually investigated using the solutions of the 

form 

w ~ £w 0 + 6 2 w  1 + caw,,  + . . . ,  

V = £V 0 + £~V 1 + £zV~ + . . . .  , 

t4 ~-- £1~ 0 "~- 6 2 IlL + £a/4,,, + . . . ,  

T = 6To+ £2T x + ,~ T.~ + " " ,  

M~ = M~o + eM,  t + e 2 M~2 + " " ,  (26) 

where , is a constant parameter satisfying the suitable houndary conditiGns. The 

first term in each (26) corresponds to the linear stahility analysis which is studied 

in the next section. 

3.  C o n d i t i o n  for the onset  o f  surface  tens ion driven convect ion 

The condition for the onset of convection can he determined using the linear 

stability analysis. This is connected with the solutions of the first-order equations 

in (26) where the amplitude varies exponentially with time. In other words, for 

first order solutions to be complete, it is necessary that the parameter , in (26) 

must he proportional to the amplitude of the disturbance and this amplitude must 
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he infinitesimal. Neglecting the non-linear torms in (23) to (25) and making the 

equations dimensionless using d as the length scale, d2/x as the time scale, x[d as 

the velocity scale and ltx/ardas the temperature scale, we get 

(O/Ot - V 2) T - M~ 12 a f ( z )  w = 0, (27) 

([/G O/Ot - V ~-) ~ - S oz = 0, (28) 

0 2 W 
([/~O/Ot - V") V z w + S: Oz ~ = 0. (29) 

The dimensional telapcrature gradient f (z) must satisfy 

1 

j" f ( z )  az = 1. 
o 

The scales for w and T have been chosen such that Ma appears symmetrically 

in (27) and in the boundary conditions (see below) rather than in just the energy 

equation or the hot;ndary condition. This choice enables us to establish a varia- 

tional principle for the present set of eqttations and as Finlayson (1972) shows, 

this leads to the conclusion that the eigenvalue Mo is stationary irt the Galerkin 

method which we shall apply below. 

We now apply the Galerkin method as described by Nield ([975). It is shown 

that the consideration of even a single term in the expansions of w and T would 

give an accurate estimate for the critical value of M, in certain eases. In other 

words, we set w = AWl  and T = BTI where W1 and 2"1 are suitably chosen trial 

funetioaas and A and B are arbitrary constants. The presence of rotation, as 

explained in § t, sets up overstahle motions only for small v~lues of the Prandtl 

number a (see Verords 1966; Rudraiah and Robin[ 1975). For other values of 
Prandtl numbers, however, overstable motion is not possible and the principle 

of exchange of stability is valid, i.e., marginal stability is valid. The present ana- 

lysis deals with the marginal stability. The marginal stability solution is the one 

for which the time derivatives in the differential equations (27) to (29) are zero. 

Assuming the solutions for w and Tin  the form 

F(z) exp ( i ( lx  + my)) 

equatiorts (27) and (29) take the form 

(O ~-a~) aw+ S 2D ° ' W = 0 ,  (30) 

(D" - a  ~) T + aM~ I~ f (z) w = O  (31) 

d aO: 1 ~ S'- 4d~22 
where D = ~lz' = + m'~ and = ~ is the Taylor number. 

The bound~.ry conditions for a rigid bottom and a free upper surface with 

temperature-dependent surface tension, each subject to a constant heat flux, are 

W = D W = D T = O  at z = 0  (32) 

W = D2W + M] r2 aT = D T  = 0 at z = 1. (33) 
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Multiplication of (30) by W and (3D by T and integration of the Iesulting 

equation by parts with respect to z (frem 0 to t) yields, after making use of the 

boundary conditions, the following: 

3a3 M~'Z D W ( I )  T(t) = - (D "~ W )  ~ + 3a~(D ~ W)". +(3a 4 + S J)(DW) 2 

+ (a 6 w~), (34) 

Mt~ 'z a (f(z) WT) = ((DT) 2 + a 2 T~-), (35) 

where the angle bracket ( ) denotes the integration with respect to z in the limit 
0 t o  1. 

Substituting W = A W1 and T = BT~ into (34) and (35), eliminating A and B 
and dropping the suffixes, we get 

( D3W)~+3a ~ (O" W)o-+(3a 4 S '~) (DWI~ +(  a6W z ) ( (OT)~+a ~ T'Z ) 
Mo= 

3a 4 DW(I) T([) ( f ( z ) - W T )  

(36) 

We select the trial functions as W = (I - z) zo- and T = t so that they satisfy 

all the boundary conditions except the one given by D °- W + Ma~ ~ aT = 0 at z = I 

and a residual from this equation is included in a residual from the differential 

equation. The term on the left-lw.nd side of (34) represents this residual. 

Substituting these trial ft:nctions into (36) we get 

x a + 42x ~ + t260 x + t4S'  + 3780 
M, = 315x ( f ( z )  ( z ~" - z a) ) ' (37) 

where x = a ~. 

For any given f ( z ) ,  M~ attains its minimum when a¢ = n~, where x, satisfies 
the equation 

x 3 + 2 t x  2 - (7So- + 189'0) = 0. (38) 

3.1. Onset o f  convection for various temperature profiles 

Case 1 : Uniform temperature gradient 

For uniform temperature gradient, that is for the linear basic temperature profile 
f ( z )  = I and (37) takes the form 

12 
M~ = 315~[x  z + 42x"- + i260~ + 14S' + 3780]. (39) 

The critical wavenumbcr and the corresponding Marangoni numl:er denoted 

by (Mac)l vary with the Taylor number as shown in table 1 o,f §4. 

Case 2 : Piece-wise basic temperature profile for heating from below 

When the layer of liquid is heated from below at a constant rate, we know cNield, 

1975) that the non-uniform basic temperature gradientf(z) is not only non-negative 

but also decreases monotonically. Thus, we are interested in knowing which 
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temperature profile gives the least Man subject to f (z)  >I O. Recently, Nield (1975) 

has demonstrated that the piece-wise linear profile with f ( z )  given by 

f ( z ) =  (10/e for 0 < z <  e (40) 
fore  < z < l  

is the appropriate one, in the absence of Coriolis force. Even in the presence of 

Coriolis force, we can demonstrate that this piece-wise linear profile given by 

(40), with e suitably chosen, is the appropriate one, at least for disturbances of  

small wavenu tubers. 

Thus, for the bottom heating piece-wise linear profile, substituting (40) into (37), 

we get 

12 (x :3 + 42x ~ + t260 x + 14S" + 3780) 
Ma = 315  x ( 4 e  a - 3 O) ( 4 l )  

Then the critical Marangoni number is given by 

A 
M,. = max (4£ ~ - 3e 3) (42) 

where A - - ( M s 3 1  for linear l~ofile discussed above. But 

max (4e ~ - 3c 3) = 1.0534977. 

Thus, as c increases from 0 to I, M,o dczrcascs from + co to a minimum value of  

A (43) 
(M~,)2 = 1.0534977 

at ~ = 0'8889, and then increases to A at ~ = 1. 

Case 3 : Pieeewise basic temperature profile for cooling from above 

When the layer of liquid is cooled from above at a constant rate, the temperature 

gradient is not only non-negative but also monotonically decreasing. In this case, 

the pioce-wise linear profile is 

f ( z )  = { 0  0 < z <  t - e (44) 
e -I t - e < z ~ < t "  

Substituting this in (37), we get 

M, 12 (x 3 + 42x 2 + t260x + L4S "~ + 3780) (45) 
= 315x(3E 3 - 8e ~ + 6E) 

and the corresponding critical Marangoni number is 

A (46)  
Moo = Max(3E 3 - 8 d  + 6 0 "  

As ~ increases from 0 to 1, M~o decreases front + co to a minimum value of 

A at ~ = 0.5375 (47) 
(M.o)z  - l .380 
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and then increases to A at E = t.  Comparing (47) with (43), we find that 

cooling from above is mare effective, as expected, in reducing eigenvalue, than 
heating from below. 

Case 4 : Parabolic basic temperature profile 

In the absence of rotation Dehler and Wolf (1970) have considered the problem 
with a parabolic distribution in which the basic temperature graditnt is zero at 

the lower houndary, for whiehf(z)  = 2z. Even in the presence of Coriolis farce, 

the parabolic hasie temperature distribution leads t a r ( z )  = 2z. In this ease (37) 

takes the form 

Mo = t0 (x '  + 42x 2 + t260x + t4S ~ + 3780) (48) 
315x 

Then the critical Marangoni number is 

A (49) 
( M , . ) ,  = t 

Comparing (39), (43), (47) and (49) we find that 

(M,,)a < (M,o), < (M~o)2 < (M,,)~. 

Case 5 : 1averted parabolic temperature profile 

For inverted paraboli¢ profile f ( z )  = 2 (1 - z) (see Nield, 1975, pp. 448), (37) 
takes the farm 

t5 (x 3 + 42x~ + 1260x + 14 S ~ + 3780), 
M, - 315x 

and the corresponding critical Marangoni number is 

(Mo0)5 = 1.25A. (50) 

Comparing this with the earlier results we find that as expected on physical 

grounds, inverted parabolic hasio temperature profile is more stahilising. Thus, 
this profile is suitable far suppressing the onset of convection driven by surface 

tension. This result is of immense utility in material science experimental 

configurations in space. 

Case 6 : Step-function basic temperature profile 

We consider the step-function profile in which the hasic temperature drops sud- 

denly by an amount  A T a t  z = E, but is otherwise uniform, and is of the form 

f ( z )  = ( z  - ,), (st) 

where c is the value of z at which wT has a maximum and 5 denotes the Dirae 

delta function. In this ease (37) takes the form 

x 3 + 42x 2 + 1260x + 3780 + 14S z 
M~ = 315x ( ~  - E3) - (52) 

M.$.--9 
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Then the critical Marangoni number is 

A (53) 
Ms, = 12 Max (~z _ ,a) 

which has a mirfimum value 

A (54) (M,,)o = l'-:ff77ff8 attained a t ,  = 0.6667. 

Thus, the most unste.hle basic temperature profile, for which f (z)  >i 0 everywhere, 

is the step-function profile for which the step occurs at the level at which w is 

maximum, since T is constant in our approximation. 

4. Conclusions 

The single-term Galerkin method provides a quick means for obtaining the above 

results in the presence of Coriolis foroe with different basic temperature profiles. 

The results (39), (43), (47), (49), (50) and (54) give the critical wavenumbers and 

the corresponding Marangoni numbers which vary with the Taylor number. 

These are numerically evaluated for different values of  S a and the results are 

tabulated in table t .  

When the hasic temperature gradient is uniform, the condition for the on.~et of  

convection driven hy surface tension in the presence of  Coriolis force was investi- 

gated lay Sarma (1979). He obtained exact analytical solutions which are mathe- 

matieaUy cumbersome and the critical Marangoni number for diilerent values 

of  Sure obtained from them. The results of  table 1, for (Mao)l are compared with 

those of S~rma (t979, tigare 4) and  a good agreement is found. Thus, even a 

singte term Galerkin expansion employed here gives accurate results. This table 

also reveals that 

(Ma,)~ < (M~°)a < (Ms,)2 < (M~,)I < (M,,)5. 

Table I, Values of the Ctttical Maraagoni and wavenumbers for various values 
of Taylor number. 

S 2 a, (Ms,)1 (Ms,)2 (Ms,) 8 ( M s , ) 4  (Ms,)5 (M,e), 

0 0.0000 48.00 45'56 34.79 40.00 60'00 27"00 

10 ol 2"8399 81"24 77"12 58"89 67"70 101"55 45"70 

10 ° 2" 8420 81" 30 77-17 58" 93 67" 75 101' 63 45" 73 

101 2.8625 81-89 77.13 59.36 68.24 102.37 46.06 

10~ 3.0418 87-39 82.95 63.35 72.83 109.24 49.16 

10 s 3.9482 125.65  119.27 91.05 104.71 157.06 70.68 

10 ~ 5.9691 307 .10  291-50 222. $97 255.91 3 8 3 . 8 7  172.74 

10 ~ 13.5853 4531.45 4301.34 3284.58 3776.21 5664.31 2548.94 
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Thus, the most unstable basic temperature profile is the one for which the 

temperature gradient is a Direct delta function and the most st~.ble basic tempe- 

ratule profile is the one for which the temperature profile is an inverted parabola. 

In the absence of Corialis force, however, Nield (1975) has calculated the critical 

Marango.ui number for the inverted parabolic profile and found that (Ma0)s = 60 

at the critical wavenumber a° = 0. Comparing this value with the values of (Moo)5 

in table l ,  we conclude that inclease of the Taylor number suppresses convection. 

This conclusion is also true for other temperature grz.dients. These findings sub- 

stantiate our objective that rotation and a particule.r choice of basic temperature 

gradient suppress the onset of convection driven by surface tension. 

Experimental worl~ to. confirm the present results is needed. We suggest that 

using a solution, such as sugar solution, whose concentration acts e.s the diffusing 

quantity, rather th~.n heat, would be convenient to carry out the analysis, since 

the condition of constant mass flux could then be satisfied without any effort. 
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