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The Onset of Turbulence in Pipe Flow
Kerstin Avila,1* David Moxey,2 Alberto de Lozar,1 Marc Avila,1 Dwight Barkley,2,3 Björn Hof1*

Shear flows undergo a sudden transition from laminar to turbulent motion as the velocity
increases, and the onset of turbulence radically changes transport efficiency and mixing
properties. Even for the well-studied case of pipe flow, it has not been possible to determine at
what Reynolds number the motion will be either persistently turbulent or ultimately laminar.
We show that in pipes, turbulence that is transient at low Reynolds numbers becomes sustained
at a distinct critical point. Through extensive experiments and computer simulations, we were able
to identify and characterize the processes ultimately responsible for sustaining turbulence. In
contrast to the classical Landau-Ruelle-Takens view that turbulence arises from an increase in
the temporal complexity of fluid motion, here, spatial proliferation of chaotic domains is the
decisive process and intrinsic to the nature of fluid turbulence.

The seemingly simple question as to when
the flow down an ordinary pipe turns tur-
bulent dates back to the pioneering study

of Osborne Reynolds in the late 19th century (1).
Reynolds proposed that below a critical velocity,
pipe flows are always laminar, whereas above
that critical velocity turbulence prevails, given
the right initial conditions. The observation that
this critical point can be expressed in a dimen-
sionless form was the basis of one of the central
concepts in fluid dynamics: the Reynolds number
(Re = UD/n, where U is the mean velocity, D is
the pipe diameter, and n is the kinematic viscos-
ity). Curiously, although Reynolds similarity has
proved to be valid throughout fluid mechanics
the value of the critical point in pipe flow has been
debated ever since. In an early attempt to deter-
mine its value (2), Reynolds rewrote the equations
of motion, separating quantities into average and
fluctuating parts—a method that is now called the
Reynolds decomposition. This contribution is gen-
erally regarded as the foundation of modern tur-
bulence research, but it has failed to clarify the
value of the critical point in pipe flow. Values
reported in contemporary textbooks and journal

papers vary widely, typically ranging from 1700 to
2300 (3–5), and occasionally even values in
excess of 3000 (6) are quoted.

One circumstance that complicates this prob-
lem is that laminar pipe flow is stable to infin-
itesimal perturbations (7, 8), and therefore in
order to trigger turbulence, a disturbance of finite
amplitude is required (1, 3, 9). What makes mat-
ters even more difficult is that at low Re, tur-
bulence is transient. Here, turbulence occurs in
the form of localized patches called puffs (10)
that are embedded in the surrounding laminar
flow and decay according to a memoryless pro-
cess (that is, independent of their previous history)
(11). The rapid increase in lifetime with Re has led
to various proposed values for a critical point at
which the lifetime would diverge and turbulence
would become sustained (4, 12, 13). However,
more detailed studies (14–18) have shown that
the lifetime of individual puffs remains finite and
only approaches infinity asymptotically with Re.
Qualitatively, this behavior is reminiscent of the
dynamics of a class of model systems called
coupled map lattices (19). Here, individual lattice
points can exhibit transient chaotic dynamics but
eventually settle to a stable laminar fixed point.
Because of the spatial coupling, these systems
exhibit a statistical phase transition as the control
parameter is increased. Below the critical point,
eventually all siteswill end up in the laminar phase,
whereas above there is always a nonzero fraction
of chaotic sites, and with increasing control pa-
rameter the fraction of laminar (nonchaotic) sites
quickly diminishes. Analogies to fluid flows have

been pointed out in a number of studies (20–23)
that indicate the potential relevance of the spatial
dynamics for the long-term behavior in fluid sys-
tems. In a numerical study of pipe flow, Moxey
and Barkley (24) observed that at Re ≈ 2300 tur-
bulent puffs delocalize, and the turbulent fraction
increases, which is in qualitative agreement with
this picture. However, the stochastic nature of the
spatial coupling was not taken into account, and
the extremely long time-scales intrinsic to the flow
could not be resolved in the simulations. In this
work, we determined the critical point in pipe flow
and quantified the relevant process sustaining tur-
bulence in linearly stable shear flows.

Long-pipe experiments. Determining the point
at which the proliferation of turbulence outweighs
its decay and turbulence eventually becomes sus-
tained requires that the time scales of both decay
and spreading processes be captured. Because tur-
bulent puffs move downstream at approximately
the mean flow velocity, a long pipe is required to
observe long time-scales. Using a precision glass
tube with a relatively small diameter (D = 4 T
0.01 mm) and overall length of 15 m, a total di-
mensionless length of 3750D is achieved. The
pipe is composed of 14 sections joined by ma-
chined perspex connectors that provide an ac-
curate fit. A smooth inlet together with careful
alignment of the individual pipe sections allows
the flow to remain laminar up to Re = 4400. De-
viations in Re were kept below T5 throughout
each set of measurements, which extended over
periods of up to 45 hours. This precision was
achieved with stringent control of both the pres-
sure difference driving the flow and the fluid (wa-
ter) temperature (T0.05 K). A detailed description
of the experimental setup can be found in (16).

Starting from a fully developed laminar flow
allows us to induce turbulence in a controlled
manner and quantify the spreading rate at some
downstream position. The experimental proce-
dure is to create a single turbulent puff close to
the pipe inlet and to monitor any changes in the
turbulent fraction at downstream positions. It is
important that a perturbation is chosen that effi-
ciently triggers turbulence. In many earlier studies,
such as (10, 25), turbulence was induced by in-
sertion of a static obstacle close to the pipe inlet.
Such obstacles provide a continuous perturbation,
and at high Reynolds numbers the flow down-
stream is fully turbulent, whereas in the transitional
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regime (Re ≲ 3000) irregular sequences of tur-
bulent and laminar phases are created (25). How-
ever, at lower Reynolds numbers (Re ≈ 2000)
sufficiently strong continuous perturbations cause
plug-shaped velocity profiles that are unable to
sustain turbulence (26) and lead to relaminariza-
tion. Hence, for large disturbance levels contin-
uous perturbations may fail to trigger turbulence
at low Reynolds numbers. To avoid such prob-
lems, in the present study an impulsive perturba-
tion was chosen, consisting of a water jet injected
through a circular hole of 0.2D in the pipe wall
250D downstream of the inlet. The duration of
the perturbation was adjusted for each set of mea-
surements (8 to 20 ms, corresponding to advec-
tion of approximately 1 to 2.5D at the mean flow

velocity), ensuring that only one single puff was
generated from each perturbation. Different am-
plitudes were tested, and the results were found to
be independent of the perturbation strength. In
relation to the mass flow in the pipe, typical in-
jection rates were about 2.5%. To establish that
results were independent of the perturbation, ad-
ditional measurements were carried out by using
an obstacle to impulsively disturb the flow. A
thin wire (0.8 mm in diameter and 10 mm in
length) was inserted into the pipe 150D from the
inlet. The wire was held against the pipe wall and
aligned with the pipe axis by using a small mag-
net attached to the outside of the pipe. When
against the wall, the disturbance created by the
wire is too small to trigger turbulence for the Re

investigated.When the wire wasmoved azimuth-
ally along the pipe wall by approximately 0.5 to
1mm in a time interval of about 0.1 s (correspond-
ing to advection of about 10D, based on themean
flow speed), a single turbulent puff was triggered.

After triggering disturbances, the flow was
monitored by two downstream pressure sensors
(fig. S1). The first one, located 300D from the
inlet, confirmed that each perturbation results in
the creation of a single puff. The second one,
which can be positioned at various distances L
from the perturbation, was used to distinguish
cases in which multiple puffs arrive (Fig. 1A)
from those in which only the single puff arrives
(Fig. 1B) or no puff arrives. This is a direct mea-
surement of whether the turbulent fraction in the
flow has increased, remained constant, or de-
creased during downstream propagation.

Simulations. To complement experiments
and gain insights into the underlying spread of
turbulence, we have carried out extensive nu-
merical simulations. Two independent numerical
codes have been used; one is a spectral-element
Fourier code (27) that solves the Navier-Stokes
equations in Cartesian coordinates (DNS1), and
the other is a hybrid spectral finite-difference
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Fig. 1. Puff splitting in experiment and numerical simulation. (A and B) Pressure signals from the ex-
periment are used to distinguish the case of (A) a split puff from (B) a single puff. A splitting is registered if
the signal has peaks separated by 20D or more and if between peaks the signal drops by at least 30%. The
flow between the two puffs does not recover to the fully developed laminar profile. (C) Space-time
diagram from numerical simulation using the hybrid spectral finite-difference code (DNS2) at Re = 2300
showing the splitting process. The square of the cross-sectional average of streamwise vorticity is plotted
on a logarithmic scale in a co-moving reference frame (speed Up = 0.929U) and 100D of the 150D
simulation domain are shown. The upstream edge of a puff is relatively well defined, whereas the
downstream edge is fuzzy and fluctuates. After a splitting, the two puffs propagate downstream, separated
by an approximately constant distance, and generate a twin-peaked pressure signal (A). (D) Visualization
of puff splitting in a cross-sectional (x, y) plane, with red as positive and blue as negative streamwise
vorticity on a linear scale, from the same run as (C) and showing 75D. At t = 0, Re is impulsively changed
from 2200 to 2300. Snapshots (from bottom to top) were taken at t = 500, 990, 1010, 1110, and 1600.
Once the puff extends far enough and the vorticity decays in its central section, a new puff emerges.
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Fig. 2. Spreading of turbulence in numerical sim-
ulation. Space-time diagram at (A) Re = 2300 and
(B) Re = 2450 from numerical simulation (DNS2),
showing how turbulence proliferates starting from
a localized puff at Re = 2200 as initial condition.
The cross-sectional average of streamwise vorticity
squared is plotted on a logarithmic scale in a co-
moving reference frame at speed 0.947U and 0.94U,
respectively. At Re = 2300, the expansion process is
dominated by discrete steps, corresponding to puff
splits, whereas at Re = 2450, expansion is more
smooth, more rapid, and individual puffs are no
longer easily identified.
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code (28) that solves the equations in cylindrical
coordinates (DNS2). Both methods use periodic
boundary conditions in the streamwise direction
and impose constant unit mass flux, ensuring no
variation in Re during any run. The codes have
been tested both against each other, producing
statistically identical results, and by increasing
the resolution of the discretizations. Details have
been reported elsewhere (27–29).

Puff splitting. For all of the lower Re under
investigation, an increase in the turbulent fraction
manifests itself in the form of “puff splitting”
(10, 30), in which new puffs are seeded down-
stream of existing ones (Fig. 1, C and D). Di-
rectly downstream of a turbulent puff, the flow
has not recovered a parabolic profile and cannot
sustain turbulence (26). To successfully seed a
new puff, a patch of vorticity has to escape far
enough downstream from the initial puff to an
area where the velocity profile is sufficiently par-
abolic. This process can be observed in Fig. 1C,
where regions of large vorticity fluctuations re-
peatedly propagate downstream and decay. Only
during a sufficiently large excursion does a new
puff arise downstream of the old one. Starting
from a single puff, turbulence proliferates through
a sequence of splittings at Re = 2300, as illus-
trated in Fig. 2A. For Re ≤ 2300 for all of our mea-
surements (numerical as well as experimental),
spreading of turbulence and hence any increase
in turbulence fraction (fig. S5) was exclusively
observed in the form of puff splitting. Only at
Reynolds numbers somewhat larger than con-
sidered here (Re > 2400) do individual puffs start
to noticeably expand (Fig. 2B) so that the overall
spreading of turbulence becomes a complex mix-
ture of splitting, as well as growth andmerging of
individual turbulent domains.

Characteristic time of memoryless process.
Because of the stochastic nature of the splitting
process, a statistical approach must be used. To
collect splitting statistics, we performed ensem-
bles of numerical simulations starting from inde-
pendent puffs (table S3), fromwhichwe determined
the time for each to split. We let P(Re,t) denote
the probability that a puff at Reynolds number Re
splits before time t. Then 1 – P(Re,t) is the prob-
ability for a puff to remain a single turbulent
patch—not split, after time t at Reynolds number
Re. As shown in Fig. 3, 1 – P(Re, t) = exp[–(t –
t0)/t(Re)], where t is the observation time, t0 is a
formation time, and t(Re) is the Re-dependent
characteristic time for the process. The formation
time t0 includes any equilibration time for the
initial condition to evolve to the turbulence state
at the particular Re and the intrinsic time needed
for splitting. An offset time t0 arises in puff decay
distributions for analogous reasons (14, 17, 31).
In principle, t0 depends on Re, as well as on the
initial conditions used in ensemble runs, but from
the two detailed cases in Fig. 3, as well as from
the time of first splitting at other Re, we find
consistently that 100 ≤ t0 ≤ 200.

Experimental measurements (Fig. 3, circles
and squares) also reveal exponential distribu-

tions. Observations were carried out at different
distances L, which were translated into observa-
tion time by t = L/Up, whereUp = 1.482 × 10−4 –
2.416 × 10−4 Re is an approximation to the mean
puff speed in this Re range, as obtained through
numerical simulation (fig. S2). Beyond the initial
formation time, distributions are exponential and
hence memoryless, reflecting that the probability
of splitting does not depend on the age of the puff
under investigation. The splitting probability is
constant in time and characterized solely by t,
which after the initial formation time gives the
mean time for a puff to split and the turbulence
fraction to increase.

Experimentally, it is far easier to keep the ob-
servation point fixed during one series of measure-
ment and vary Re in order to determine P(Re, t),
fromwhich t(Re) can be obtained. The results for
five distances L are shown in Fig. 4. For each data

point, typically 2000 measurements were per-
formed, but for the lowest Re, up to 60,000 mea-
surements were used. As expected, at large Re
the splitting probability is high and decreases
asRe is reduced. Curves for fixed L are S-shaped,
indicating that P → 0 only asymptotically as Re
decreases. All measurements were well approxi-
mated by a single superexponential fit with only
two parameters, t = exp[exp(aRe + b)], where a =
–0.003115 and b = 9.161 (Fig. 4, solid lines). In
contrast to earlier studies (10, 24, 30), our data
indicate that there is no critical point at which the
spatial proliferation of turbulence abruptly sets
in. The tendency to split appears to be intrinsic to
turbulence even at low Reynolds numbers, and
turbulent patches are not in an equilibrium state
(32). It is hence the stochastic details of this pro-
cess that decide whether turbulence will either
spread or recede and eventually decay.

Fig. 4. Probability of puff
splitting after traveling a
fixed distance. The five data
sets correspond todistances
L in the experiments, as in-
dicated in the legend. Here,
the splitting probability P is
computed as P= r/n, where
r is the number of events
that split and n is the total
number of realizations. The
error bars in the vertical
direction are 95% confi-
dence intervals for the pa-
rameter P of a binomial
distribution as a function
of (n, r) obtained with the
Wilsonmethod(40),whereas
in the horizontal direction
they show the uncertainty
in Re during a set of measurements. The solid lines correspond to the superexponential fit from Fig. 5
without additional fitting parameters.

Fig. 3. Probability dis-
tributions for a puff to
remain in equilibrium. P
is the probability that a
puff will split before time
t. Hence, the plotted quan-
tity 1 − P is the proba-
bility that a puff remains
a single localized puff up
to time t. The numerical
distributions at Re = 2300
and Re = 2350 are ob-
tained fromall first-splitting
times in ensembles of sim-
ulations by using both the
spectral-element Fourier
code (DNS1)and thehybrid
spectral finite-difference
code (DNS2). Experimental distributions at Re = 2195 and Re = 2255 are obtained from statistics
collected from fixed downstream locations L converted to time by the Re-dependent mean puff
propagation speed Up. All distributions are of the form exp[−(t − t0)/t], as illustrated by the dashed lines,
where t0 is a development time for splitting to take place (t0≈ 150 for DNS, whereas for the experiment, t0
is nearer to 100 and has greater uncertainty). The exponential form of the distributions indicates that
splitting is a memoryless process with characteristic time t.
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Critical point. To determine the critical point
for the onset of sustained turbulence, we com-
pared the time scale for turbulence to spread with
the time scale for turbulence to decay. The de-
pendence of the mean splitting time on Re is
plotted in Fig. 5. From each experimental data
point in Fig. 4, the mean time t was obtained and
plotted (Fig. 5, right branch, colored symbols),
together with the single superexponential fit
(Fig. 5, solid line). In order to obtain t from the
experimental probabilities, a formation time of t0 =
100 was considered [uncertainties in t0 = (50,150)
are included in the error bars]. Because in exper-
iments observation times are generally large, the
uncertainties in t0 are negligible compared with
statistical errors.

Additionally, t values from simulations are
included in Fig. 5 (black solid triangles), showing
that results from both numerical codes are in
excellent agreement with the experimental data.
From ensemble simulations, we can obtain di-
rectly the times for each split and a maximum
likelihood estimate of t from the memoryless
character of the splitting process (17, 33). The
rapid increase in splitting times makes it in-
feasible to obtain t numerically at low Re.

The left branch in Fig. 5 summarizes pre-
viously measured mean lifetimes for turbulent
decay (15, 17, 18), together with a single super-
exponential fit for mean lifetimes. The intersec-
tion at Re ≈ 2040 marks where the mean lifetime
is equal to themean splitting time, and to the right
of the intersection, splittings outweigh the decay
of puffs. Analyzing the data in terms of the tur-
bulent fraction results in the same critical point
(fig. S5), confirming the procedure applied here.

Typically in statistical phase transitions, crit-
ical points are not identical to the exact balance

point of two competing processes because of
correlations. For example, in the standard contact
process (34, 35) the spreading (contamination)
rate of an active phase has to outweigh its decay
(recovery) rate by a ratio of about 3 before the
active phase becomes sustained. Although in the
present case the long time scales make it im-
possible to measure other signatures of criticality
such as scale invariance, the superexponential
scaling of the two processes ensures that the crit-
ical point will be almost indistinguishable from
the intersection point. For an increase in Re of 10
(or 0.5%) above the critical point, the splitting
rate already outweighs the decay rate by a factor
of 4. Therefore, the difference between the inter-
section point and the critical point is of the same
order as the experimental uncertainty in Re, and
2040 T 10 provides a close estimate of the critical
point for the onset of sustained turbulence.

Conclusion. The complexity of the transition
process encountered in pipe flow is common to
many shear flows, including Couette, channel,
duct, and boundary layer flows. In all of these
flows, turbulence is found despite the stability of
the base flow and first takes the form of localized
patches, which are transient. The key to the ap-
proach here to determine the onset and sustain-
ment of turbulence has been to separate the
analysis of decay and proliferation mechanisms,
and this approach should be equally applicable
even though details of these mechanisms may dif-
fer from case to case. In all of these flows (analo-
gous to our findings for pipe flow), the spatial
coupling of transiently chaotic domains may give
rise to the sustainment of turbulence (23), breaking
with the classical view that turbulence arises through
an increase in temporal complexity (36, 37). The
intermittently alternating laminar and turbulent re-

gions encountered in pipe flow just above criti-
cality are intrinsic to the problem and place pipe
flow in the larger theoretical framework of spatio-
temporal intermittency (19, 38) and nonequilibrium
phase transitions in which universal scaling prop-
erties may be expected (20, 35, 39). Although in
the present study the spatial interaction is relatively
simple because of the clear separation of adjacent
puffs, further above the critical point (Re ≳ 2400)
the dynamics quickly become increasingly com-
plicated, with domains merging and annihilating.
To comprehend this increasing spatial complexity
is a challenge for future studies and is key to our
understanding the onset and nature of turbulence.
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Frequency Metrology in Quantum
Degenerate Helium: DirectMeasurement
of the 2 3S1 —> 2 1S0 Transition
R. van Rooij,1 J. S. Borbely,1 J. Simonet,2 M. D. Hoogerland,3 K. S. E. Eikema,1

R. A. Rozendaal,1 W. Vassen1*

Precision spectroscopy of simple atomic systems has refined our understanding of the fundamental
laws of quantum physics. In particular, helium spectroscopy has played a crucial role in describing
two-electron interactions, determining the fine-structure constant and extracting the size of the helium
nucleus. Here we present a measurement of the doubly forbidden 1557-nanometer transition connecting
the two metastable states of helium (the lowest energy triplet state 2 3S1 and first excited singlet state
2 1S0), for which quantum electrodynamic and nuclear size effects are very strong. This transition is
weaker by 14 orders of magnitude than the most predominantly measured transition in helium. Ultracold,
submicrokelvin, fermionic 3He and bosonic 4He atoms are used to obtain a precision of 8 × 10−12,
providing a stringent test of two-electron quantum electrodynamic theory and of nuclear few-body theory.

The first observations of helium emission
spectra at the end of the 19th century
revealed two separate series of lines, asso-

ciated with orthohelium and parahelium, respec-
tively. In 1926, Heisenberg explained the distinction
between these two spectra on the basis of wave
mechanics, electron spin, and the Pauli exclusion
principle (1). The spectrum of orthohelium arises
from triplet states for which the electron spins are
parallel, whereas in parahelium the electron spins
are antiparallel, forming singlet states (Fig. 1).
From the lowest state of orthohelium, the 1s2s
3S1 state (denoted 2

3S1), only excitations to triplet
states have been observed. Orthohelium transi-
tions from the 2 3S1 state and associated studies
of the n 3P0,1,2 (n = 2,3) fine-structure splittings
(2–7) have enabled tests of quantum electrody-
namics (QED) (8, 9), as well as a determination
of the fine-structure constant (5, 10). In the singlet
spectrum of helium (parahelium), electric-dipole

transitions from the 1 1S0 ground state (11) and
from the metastable 2 1S0 state (12, 13) have also
provided tests of high-precision QED calcula-
tions. All these frequencymetrology studies have
been performed using either atomic beams or gas
discharges. However, helium in the metastable
2 3S1 state (He*, lifetime 8 × 103 s) can be laser-
cooled and trapped, which allows much longer
interaction times for excitation of weak transitions.
He* atoms have been cooled to mK temperatures,

which revealed quantum statistical effects of
bunching and antibunching (14) and allowed
quantum degeneracy to be achieved for both the
bosonic isotope 4He (15, 16) and the fermionic
isotope 3He (17).

Here we observe an orthohelium-parahelium
transition, specifically, the 1557-nm transition
between the metastable 2 3S1 and 2 1S0 states
(Fig. 1), both in 4He and 3He. This transition is an
excellent testing ground for fundamental theory
of atomic structure. Because of a large electron
density at the nucleus, the energy of S states is the
most sensitive to QED and to nuclear size effects
(8). For the 2 3S1 and 2

1S0metastable states, QED
terms contribute 4 and 3 GHz respectively, to a
total binding energy of 106 GHz (8, 9). The pres-
ent accuracy in the QED calculations is 2 MHz,
based on an estimate of non-evaluated higher-
order terms. Many of these terms are common be-
tween the isotopes. Therefore, in the calculation of
the isotope shift (i.e., the difference between the
transition frequencies for 4He and 3He), mass-
independent terms cancel, and the uncertainty is
reduced to the sub-kHz level (18). As the finite
nuclear charge radius shifts the 2 3S1 state by
2.6 MHz and the 2 1S0 state by 2.0 MHz, an ac-
curate isotope-shift measurement allows a sensi-
tive determination of the difference in the mean
charge radius of the a particle and of the 3He
nucleus, which provides a stringent test of nuclear
charge radius calculations and experiments (19).

1LaserLaB Vrije Universiteit, De Boelelaan 1081, 1081 HV Am-
sterdam, Netherlands. 2École Normale Supérieure, Laboratoire
Kastler-Brossel, 24 rue Lhomond, 75005 Paris, France. 3De-
partment of Physics, University of Auckland, Private Bag 92019,
Auckland, New Zealand.

*To whom correspondence should be addressed. E-mail:
w.vassen@vu.nl

Fig. 1. Relevant energy lev-
els, transition wavelengths,
and state lifetimes of helium.
The magnetic-dipole transi-
tion connecting the 2 3S1
state and the 2 1S0 state has
a wavelength of 1557 nm
and an Einstein A coefficient
of 9.1 × 10−8 s−1. A focused
1557-nm laser also consti-
tutes a trap for ultracold at-

2 1S0

2 1P1

1 1S0

parahelium

2x~120 nm

1557 nm

2059 nm

A=9.1 x 10-8 s-1 2 3S1

2 3P0,1,2

1083 nm

orthohelium

=8000 s

=98 ns

=20 ms

oms in the 2 3S1 state because it is red detuned from the 2 3S1→ 2 3PJ transitions. As the
1557-nm laser light is blue detuned from the 2 1S0→ 2 1P1 transition, atoms in the 2

1S0
state are antitrapped.
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