
The Ontology of Tasks and Methods

B. Chandrasekaran and J. R. Josephson

Laboratory for AI Research
The Ohio State University

Columbus, OH 43210
Email: {chandra, jj } @cis.ohio-state.edu

Abstract

Much of the work on ontologies in AI has focused on
describing some aspect of reality: objects, relations,
states of affairs, events, and processes in the world. A
goal is to make knowledge sharable, by encoding
domain knowledge using a standard vocabulary based
on the ontology. A parallel attempt at identifying the
ontology of problem-solving knowledge would make
it possible .to share problem-solving methods. For
example, when one is dealing with a type of problem
known as abductive inference, the following are some
of the terms that recur in the representation of
problem-solving methods: hypotheses, explanatory
coverage, evidence, degree of confidence, plausibility,
composite hypothesis, etc. Method ontology, in good
part, is task- and method-specific. "Generic Tasks,"
"Heuristic Classification," "Task-specific
Architectures," and "Task Structures" are
representative bodies of work in the knowledge-
systems area that have focused on problem-solving
methods. However, connections have not been made
to work that is explicitly concerned with ontologies.
Making such connections is the goal of this paper.

Ontologies as Content Theories

In philosophy, ontology is the study of the kinds of
things that exist. In AI, the term has largely come to mean
one of two things:
I. a representation vocabulary, typically specialized to

some domain or subject matter. Usually, a language
based on Predicate Calculus and employing this
vocabulary is used to encode knowledge that can be
shared.

2. occasionally, a body of knowledge describing some
domain, typically a commonsense knowledge domain.
For example, CYC (Lenat and Guha 1988) often refers
to its knowledge representation of some area of
knowledge its ontology.

In this paper, we use the term ontology in the first sense,
except that we broaden the notion of knowledge to include
knowledge about problem solving.

The current interest in ontologies is really the latest
version of our field’s alternation of focus between content
theories and mechanism theories. Sometimes everyone gets
excited by some mechanisms, be they rule systems, frame
languages, connectionist systems, fuzzy logic, etc. The
mechanisms are proposed as the secret of making
intelligent machines. At other times, there is a realization
that, however great the mechanism, it cannot do much
without a good content theory of the domain on which to
set the mechanism to work. Moreover, it is often realized
that once a good content theory is available, many different
mechanisms might be used to implement effective systems,
all using essentially the same content (Chandrasekaran
1994).

In AI, there have been several attempts to characterize
the essence of what it means to have a content theory.
McCarthy and Hayes’ (McCarthy and Hayes 1969)
Epistemic versus Heuristic distinction, Marr’s three levels
(Marr 1982) - Information Processing Strategy level,
algorithms and data structures level, and physical
mechanisms level - and Newell’s Knowledge Level versus
Symbol Levels (Newell 1981) all grapple in their own
ways with characterizing content. Ontologies are
quintessentially content theories. However, it is not
entirely clear what they are a content theory of. We
identify two dimensions on which such content theories
might lie.

Dimensions for Ontology Specification in
Knowledge Systems

Knowledge systems need to have two kinds of
knowledge:
1. Knowledge about the objective realities in the domain

of interest (Objects, relations, events, states, etc. that
obtain in some domain)

2. Knowledge about problem-solving

From: AAAI Technical Report SS-97-06. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Even though the term "domain knowledge" is normally
used to include knowledge about problem-solving in some
domain, in this paper, we will use it as a short hand for
"domain factual knowledge," i.e., to describe the first type
of knowledge. The domain knowledge dimension has by
far been the focus so far of most of the AI investigations on
ontologies. The dimension of representing problem-solving
knowledge will be the focus of this paper. Identification of
ontologies for the problem-solving dimension is equally
important. It can contribute to sharing and reuse of
problem-solving knowledge just as much as ontoiogies for
domain knowledge can contribute to sharing and reuse of
domain knowledge.

We start by reviewing the conceptual basis of the work
on ontologies for domain knowledge. Then, we introduce
and discuss issues in ontology construction for the
problem-solving knowledge dimension.

Domain Knowledge

We characterized domain knowledge as factual
knowledge about some domain. In the context of building
problem-solving systems, it is useful to make an additional
distinction between knowledge that is true in the domain in
general and knowledge that pertains to specific problem
instances. This is a somewhat artificial distinction when it
comes to human knowledge. However, this distinction is
useful because most problem-solving systems are
organized in such a way that information about the specific
problem instance that is being solved is kept separate from
the knowledge base. As new problems are presented, the
problem-instance database is refreshed, while the same
knowledge base is used again and again. For example, in
the case of medical knowledge-based systems, this
knowledge base would have knowledge about the relations
between diseases and symptoms. The patient database
would initially contain the patient’s initial manifestations,
and as the problem-solving proceeds, the database would
contain additional inferred knowledge about the patient,
until the hypothesis about what is wrong with the patient is
recorded in the database. From a representation point of
view, information in both the bases is knowledge. Issues in
representing both sets of facts, what is true of the specific
problem instance and what is true in the domain in general,
are quite similar.

The most common representation language in AI,
Predicate Calculus, presupposes the following theory of
existence: that there are things - objects -- in the world (the
world need not necessarily be physical), there are
properties which the objects may possess, and there may
exist various relations between the objects. (Predicates in
Predicate Calculus are used to represent the relations as

well as the properties, the latter being represented as
monadic predicates.) The language has additional
symbols, the quantifiers and connectives. We do not
discuss them here.

Additional formalisms involving time are needed to
bring in states, events and processes. With the
representational repertoire of objects, relations, states,
events and processes, and ubiquitous general relations such
as those involving part-whole, class-instance and cause-
effect a good deal of domain knowledge can be modeled.

The representational repertoire of objects, relations,
states, events and processes does not say anything about
what classes of objects, relations, states, events, and
processes exist. They are left as commitments to be made
by the person modeling the domain of interest. For
example, some one, faced with expressing his knowledge
of a certain part of the world, might assert that there are
certain categories of things called animals, minerals and
plants,; that Has-Life(x), and Contains-carbon(x) are
relevant properties for the objects; that Larger-than(x,y),
Can-eat(x,y) are two of the relations that may be true or
false between any two objects. These commitments are not
arbitrary -- any old declaration of classes and relations
won’t do. For them to be useful, such commitments should
reflect some underlying reality, i.e., should reflect real
existence, hence the term "ontology" for such
commitments.

We won’t dwell in this paper on the well-known ways in
which the development of domain-specific ontologies leads
to the development of special-purpose representation
languages for modeling domains for which the terms are
relevant.

There is no sharp division between domain-independent
and domain-specific ontologies in representing knowledge.
For example, the terms object, physical object, device,
engine, and diesel engine, all describe objects, but in an
order of increasing domain-specificity. Similarly terms for
relations between objects can span a range as well: e.g.,
connected (component1, component2) relation can be
specialized as electrically-connected, physically-attached,
magnetically-connected and so on.

There have been several recent attempts at creating
engineering frameworks in which to construct ontologies.
Neches, et al (Neches, Fikes et al. 1991) describe
enabling technology called KIF intended to facilitate
expression of domain factual knowledge using a Predicate
Calculus-like formalism. A language called Ontolingua
(Gruber 1992; Gruber 1993) has been proposed to aid
the construction of portable ontologies. In Europe, the
KADS project has take a similar approach to modeling
domain knowledge (Wielinga, Schreiber et al. 1992).

Before we leave this section, we want to make two
points about Predicate Calculus. The first point is about
the sufficiency of Predicate Calculus notions as the basis

10

for ontologies. When the idea of knowledge is extended to
include images or other sense modalities, it is possible that
we will need other basic formalisms. However, for now,
AI is using Predicate Calculus in the same spirit in which
Newell proposed it as an appropriate, but not necessarily
privileged, language in which to encode the Knowledge
Level description of some system. We do not wish to
engage in a discussion in this paper about the limitations of
this view, except to note that, in the current state of
knowledge systems technology -- whether one uses frames,
semantic nets, or rule languages -- one way or another, the
underlying semantics of knowledge representation seems to
draw on the ontological categories of predicates and
relations.

The second point concerns the implications for
implementation in adopting Predicate Calculus as the
formalism for describing knowledge ontologies. The use of
the language of objects and predicates for discussing
ontologies does not imply any commitment to
implementing the knowledge system in any variant of
Predicate Calculus. One is simply taking a Knowledge
Level stance in describing the knowledge system, whatever
the means of implementation. In this view, we can ask of
any intelligent system, even one implemented in, say,
neural networks, "What does the system know?" As we
shall see from the next section, we can also ask about it,
"What is its method of problem-solving?"

Knowledge of Problem-solving Methods

Terms which are exclusively internal constructs for the
problem solver will be part of the vocabulary for the
problem-solving knowledge dimension, while an agent’s
knowledge (really beliefs) about the objective facts in the
domain will be part of the domain knowledge dimension.

How fundamental is the distinction between objective
knowledge about the domain and problem-solving
knowledge? Actually, from one point of view it is not
fundamental at all. Once we have terms in which to
describe processes in the word, we have the basics for
describing the behaviors of objects, be they cognitive
behaviors or behaviors of other sorts, like that of humans
constructing houses or electronic buzzers making sound in
response to button-pushing. Behavior is a kind of process,
and can be described as a sequence of state changes in
some appropriately defined object. On the other hand it is
useful to make the distinction within a cognitive agent
between representations which model the agent’s beliefs
about objective reality and constructs intended to use these
beliefs in the service of problem-solving goals.

Let us consider a knowledge system intended to perform
diagnosis in some domain. Terms such as device, event,
component, and component connection are clearly part of

the ontology in the knowledge dimension. Additionally,
the notion of diagnosis as a task does not arise unless we
have the notion of expecting certain functions of the
device. Thus, the ontology for domain knowledge would
also include terms such as: observable event, function of
component/device, malfunction, normal/ abnormal
behavior, as well as relational knowledge such as Can-
cause(malfunction, {observation I malfunction}). The
domain knowledge might also have process knowledge in
the form of causal processes that realize the function in the
device.

Problem-solving knowledge specifies how to use factual
knowledge about the domain to solve the problem. In the
following we will take a Knowledge Level stance towards
describing this knowledge. That is, we will describe the
abstract structure of this knowledge, what types of entities
it consists of, and what relations hold between these
entities. In particular, the structure will show the relation
to the elements that comprise domain knowledge, also
described at the Knowledge Level. We will describe the
problem-solving knowledge as reasoning rules, but that is
just for descriptive convenience. This knowledge may be
encoded in different implementations in different ways.

The notion of an inference structure as developed in the
KADS methodology and summarized in (Aben 1995)
begins to capture the notion of problem solving ontology.
To take an example from (Coelho and Lapalme 1996),
Select_.parameter is an inference type that takes as input
two types of knowledge: information regarding
Input..parameters and Parameter_dependency_relations
and produces an output of the type Selected__parameter. In
the KADS literature, the information types are called
knowledge roles, to capture the idea that they can be filled
by domain knowledge. Earlier, in our discussion of
domain knowledge we made a distinction between general
domain knowledge and problem instance-specific
knowledge. General domain knowledge will include
knowledge about Parameter_dependency_relations. The
problem instance database will contain information about
the values of Input__parameters and Selected__parameter for
the problem instance. Developing a problem solving
ontology is thus identifying types of inferences and types
of entities and relations that can fill the structure of the
inference.

What is in problem-solving knowledge?

The problem-solver creates and changes a number of
internal objects during the process of problem-solving.
The problem state vector is the set of state variables
representing these internal objects. In the case of
diagnosis, examples of problem state variables are:
diagnostic hypotheses, observations explained by
hypothesis H, the best hypotheses so far. In the case of

11

design, examples of problem state variables are: partial
design, design candidate, specifications satisfied by the
design candidate, best candidate so far.

Active problem-solving goals and subgoals are part of
the problem state description. All problems start with the
specification of a problem-solving goal. The goal is
usually stated as a variable of interest whose value is
unknown. When the problem is solved, this variable is
assigned a value. As problem-solving proceeds
intermediate goals might be created and assigned values.

Following usage in the field, we will use the term task to
describe a generic family of goals, such as diagnosis or
design. For example, the diagnostic task is identifying a
relation of the following type: <malfunction M> caused
<abnormal observations {...}>. The prediction task is to
construct a relation of the following type: <event I action
A> will cause <state S> at instant t. The design task is to
construct an object of the type <Connection-relation C
{object 1 On}> such that the constructed object has
certain required properties. In all these cases, the
problem-solver’s goal is to construct an internal object with
certain properties and with components which relate to the
domain knowledge elements in certain ways. In the case of
diagnosis, the goal object is called the diagnostic
conclusion. In the case of design, the goal object is called
the design solution.

The basic unit of problem-solving knowledge may be
considered to be composed of reasoning steps (or rules)
the following form:

<conditions on problem state>,
<conditions on domain knowledge>,
<conditions on data describing the problem instance>

changes to < problem state >

For example, a piece of diagnostic problem-solving
knowledge might bel:

"If the problem state includes the goal Evaluate
hypothesis H, and if domain knowledge indicates that H
can be evaluated as confirmed if the observations O~,
.... O. have the values v~ v, respectively, and ifO~,
.... O, do have values vt v, in the data describing
the problem instance, then evaluate H as confirmed ."

A primitive (sub)goal is one that can be evaluated
immediately by a reasoning rule using the domain

Our examples of diagnostic problem-solving knowledge
and ontoiogies are chosen mainly for clarity in making the
conceptual points rather than for accuracy or completeness
in describing diagnostic knowledge. In particular, the rule
for establishing hypotheses is usually substantially more
complex than the example.

12

knowledge in the knowledge base. Generally this is
possible only if the problem state description enables the
system to evaluate immediately the <conditions on the
problem-solving state> part of the reasoning rule. Subtasks
which are not primitive would need to be solved by the
application of several reasoning steps.

The problem solving steps or inferences can be formally
described at the Knowledge Level by indicating what the
step does. Coelho and Lapalme propose the following
notation:

(define-inference <inference-name>
:cond <KIF-sentence>
: body <inference-function>
:result <KIF-sentence>)

For example, they describe the Select_parameter
inference (which is part of a problem-solving strategy
called "Propose and Revise"):

(define-inference Select_parameter
:cond (parameter ?pl exists and
has no value, and ?pl depends on
another parameter ?p2 which
exists and has a value)
:body (Select ?pl)
:result (Selected_parameter ?pl)

In our notation, this will be described as the reasoning
step:

If problem state includes a parameter ?pl which has
not been assigned a value and a parameter ?p2 which
has been assigned a value, and if there is a problem
solving subgoal to assign a value to it, and if the
domain knowledge has a constraint relating the values
of ?pl and ?p2, then change the problem state such
that ?pl has the appropriate assigned value and the
problem solving subgoal is removed.
The difference in our formulation is that we separate the

domain factual knowledge from other aspects of the
reasoning step which depend on the internal state of the
problem solver.

Problem-Solving Method. There is another ontology
element that is important in describing problem-solving
knowledge. A problem-solving method is associated with a
task. A method is a collection of subtasks plus appropriate
control information about invoking the subtasks
(Chandrasekaran 1990) plus specification of any passing
information between the subtasks. If the method’s
subtasks are achieved, the task with which the method is
associated is achieved. For example, a common method
for diagnosis is to decompose the diagnostic task into the
following subtasks: generate plausible diagnostic
hypotheses, and compose hypotheses so as to give the best
explanation. A number of different control strategies for
moving between generation and composition are possible
(Josephson and Josephson 1994). A method is thus

bundling of subtasks, some of which may be primitive --
that is, achieved immediately by a reasoning step --, while
others may have further reasoning steps or methods
associated with them.

Let us consider a particular subtask of diagnosis, e.g.,
diagnostic hypothesis generation, to illustrate what is
meant by the control knowledge associated with a method.
A common method for this task is hierarchical
classification using a malfunction hierarchy. This method
requires that the malfunction hierarchy be navigated top
down, refining a malfunction hypothesis if it is judged to
be likely present, and rejecting the malfunction and all its
refinements if it is judged to be likely absent. When it is
judged to be likely present, additional determinations of its
degree of plausibility and the observations it explains are
also to be made. This method organizes the invocation of
the following subtasks (i) identify the malfunction
hierarchy, (ii)for a given malfunction in the hierarchy,
determine if that malfunction is present if it is likely
present, determining (iii) determine the plausibility of a
malfunction hypothesis and the abnormal observations it
explains.

Changing the example from diagnosis to design, a
common method for generating candidate designs is the
use of so-called design plans. Plans are, again, an
organized collection of design subtasks. Plans additionally
have control knowledge involving the order in which to
invoke the design subtasks, and they also describe how the
results of the subtasks affect the problem specification for
other subtasks. Design plans are thus problem-solving
methods that are common in the design task.

Control Vocabulary. Control determines the order of
invocation of subtasks in a method. What is the
vocabulary for control? In particular, how task-specific is
the control vocabulary? Control may be explicitly specified
using the standard vocabulary of control: sequential
control, conditional branching, iteration, recursion, etc.,
whatever is appropriate for the underlying computational
architecture. There appears to be no task-specific
vocabulary for control. Control may also emerge from an
interaction of domain knowledge and the problem state.
For example, in CSRL (Bylander and Mittal 1986),
hierarchical navigation over a hierarchy is explicitly
programmed, i.e., the entire hierarchy is explicitly declared
and the order of navigation is explicitly specified. In the
Soar implementation of classification by Johnson (Johnson
1991), on the other hand, the control is specified as simply,
"consider the successor of concept just established."
Information about successors of any concept can be added
modularly. At run time, the Soar-based classifier will string
together the appropriate sequence of concepts to consider.
Complex control behaviors may emerge as a result of the
interaction between the architecture and the contents of the

knowledge base.

Task satisfaction conditions. Associated with every
task is knowledge that describes the satisfaction conditions
for the task. Such a piece of knowledge for diagnosis, i.e.,
for accepting a hypothesis as the diagnostic conclusion,
might be:

"If a diagnostic hypothesis H explains the abnormal
observations better than other diagnostic hypotheses,
then H is to be accepted as the diagnostic
conclusion."

Generally, the initial problem state is unlikely to contain
all the diagnostic hypotheses and information about what
each of them explains. Thus, for most diagnostic problem
instances, the components of the reasoning rule describing
the satisfaction conditions typically set up reasoning
subtasks. Because of this diagnosis typically a non-
primitive task. The subtasks set up by the above reasoning
rule are: determine the diagnostic hypotheses, determine
the abnormal observations each hypothesis explains, and
determine the measure of goodness of the explanation
provided by each hypothesis. For each subtask, there is a
similar need to provide the satisfaction conditions.

The notion of problem solving methods as separate items
of knowledge that can be instantiated with domain
knowledge and reused originated with (Chandrasekaran
1985; Clancey 1985) and later extended by (Musen 1988;
Steels 1990), and, in the KADS project, by (Benjamins
1993). The literature is quite extensive by now on problem
solving methods and we will not attempt to be
comprehensive in discussing it.

Ontology for Problem-solving Knowledge

While, as we said, the idea of reusable problem solving
methods is by now quite common in the literature on
knowledge-based systems, ontologies for problem solving
knowledge have not gotten much attention. Musen and co-
authors [Musen, et al, 1995] explicitly mention method
ontologies as terms that describe the knowledge roles used
by a PSM. Coelho and Lapalme (Coelho and Lapalme
1996) have recently attempted to formalize inference
ontologies. Benjamins and associates (see for example,
(Fensel and Benjamins 1996)) have also been looking into
the structure of method representation. They use a
representational elements called "assumptions" to link the
parts of a method to the kinds of knowledge that they
expect. A method ontology should make clear the
ontological commitments of a method.

Let us review what we have done so far. We have
identified the following kinds of entities that are required
for representing problem solving knowledge: goals (and
tasks), other components of the problem solving state,
reasoning rules, and methods. Just as ontologies in the

13

domain objective knowledge dimension were types of
predicates, relations, states, events and processes, the
ontologies for the problem solving dimension will be types
of goals, types of other problem solving state components,
reasoning rules and methods.

To repeat from the examples that we considered during
the development of the ideas, we can see some example
ontologies for various tasks.

Task: Diagnosis
Components of the problem solving states: diagnostic

hypotheses, compound hypothesis, observations explained
by a hypothesis, plausibility of a hypothesis

Methods: Hierarchical classification, abductive
assembly

Subtasks: Establish hypothesis, refine hypothesis,.

Task: Design
Components of the problem solving states: design

candidate, component design, expected behavior of design
candidate, specification met by design candidate, ..

Methods: Design plan, plan refinement, qualitative
simulation of design candidate, ..

Subtasks: Evaluate design, modify design, ..

Neither the tasks, nor the ontologies listed above for the
tasks, are complete. The main point here is to
communicate the idea of problem solving ontologies as
constructions parallel to domain factual knowledge
ontologies.

Note that the required ontology is closely connected to
the task. The problem-solving knowledge for the
diagnostic task typically has a somewhat different ontology
than the one for design. We say somewhat, since, both
tasks can share some subtasks. For example, both can use
simulation, diagnosis to decide on what observations may
result from a malfunction, and design to verify if the design
specifications are satisfied.

The dependence of a method on a task comes in two
ways. First of all, clearly, associated with a method is an
indication of what the function of the method is. Without
it, we would not know what the method does, or what it is
good for. Many method descriptions involve a method in
another way as well, in the way its knowledge roles are
specific to some other task. Let us consider an example.
Classification is a method which is often used for the
subtask of generating diagnostic hypotheses in the
diagnostic task. One way to represent this task is to specify
that the knowledge type for the classification hierarchy is
the hierarchy of malfunctions, and that the knowledge type
for the observations is the behavioral symptom of the
object under diagnosis. However, this makes classification
only useful as a subtask in diagnosis. As we know,
however, it can be useful as a method for any problem

involving a selection from a set of hierarchically organized
selection choices. In order to make the classification
method more generally useful, in the method ontology for
classification, we may indicate that the knowledge type for
the classification hierarchy is the set of hierarchically
organized selection choices, and the knowledge type for
observation is any observable feature of the problem. This
increases the reusability of the method, but at the cost of
some additional binding at run time: for the diagnostic
problem, the set of hierarchically organized selection
choices needs to be identified with the malfunction
hierarchy and the observations with the behavioral features
of the object under diagnosis. Beys, et al, (Beys,
Benjamins et al. 1996) have investigated the representation
of what they call task-neutral methods.

Task Structures Provide Problem-solving
Knowledge Ontology

For the last decade or so, an area of research within
knowledge-based systems has focused on the
representation of problem-solving knowledge. In this
stream of research, the major insight has been the focus on
identifying generic tasks and studying the methods that are
especially appropriate for them. Thus Clancey’s Heuristic
Classification (Clancey 1985) and Chandrasekaran’s
Generic Tasks (Chandrasekaran 1986) identified a number
of such generically useful problem-solving tasks and
particularly appropriate problem-solving methods for them.
Heuristic Classification was a method with the subtasks of
data abstraction, heuristic match, and class refinement.
The Generic Task paradigm identified hierarchical
classification, abductive assembly, hypothesis assessment,
design-plan selection and refinement, and data abstraction
as some of the most ubiquitous tasks in knowledge
systems. This framework also proposed how complex
problems might be solved by the composition of several
different generic tasks. For example, a diagnostic system
might be built out of the methods for abductive assembly,
classification, hypothesis assessment and data abstraction.
This architecture is really for the generic problem of best-
explanation finding, a task discussed in detail in
(Josephson and Josephson 1994) - this task is very
important, since perception, natural language
understanding, diagnostic problem-solving and scientific
discovery can all be viewed as instances of best-
explanation finding.

In later work, instead of identifying a unique preferred
method with a task, Chandrasekaran developed the notion
of a task structure (Chandrasekaran 1990). The task
structure identifies a number of alternative methods for a
task. Each of the methods sets up subtasks in its turn. This
kind of task-method-subtask analysis can be carried on to a
level of detail until the tasks are primitive tasks with

14

respect to the knowledge in the knowledge base.
This is not the place to give the details of the task

analysis. The main points to be made here are the
following. As a result of the GT and Task Structure work,
we now have a good repertoire of tasks and methods. The
descriptions of the tasks and methods is a rich source of
ontologies for problem solving. The examples we gave in
the earlier section for diagnosis and design are but a small
subset of the ontologies that can be constructed for
problem solving knowledge from the work on GTs and
Task Structures. The fact that the GT and Task Structure
work focuses on tasks of certain generality makes the
ontologies that arise from them of potential general interest
as well.

The earlier generation of Generic Task languages can be
viewed in the light of knowledge reuse. To take a simple
example, a Generic Task language called CSRL (Bylander
and Mittai 1986) was widely used to build classification
problem-solving systems. CSRL can be viewed as giving
the user an ability to:

1. synthesize a classification method using a method-
specific ontology consisting of terms such as
"establish concept" and "refine concept," within a
control vocabulary that allowed variations on top-
down navigation of the classification hierarchy, and

2. represent domain factual knowledge for
classification in the chosen domain.

Thus, the method ontology for classification directly
resulted in a number of system builders reusing the
problem-solving knowledge for classification embedded in
CSRL. The Prot6g6 family of planning tolls of Musen and
his associates has a similar connection to the method
ontology idea we have been discussing in this paper.

Concluding Remarks

We have argued for ontology engineering efforts to
move in two parallel tracks, one with the current focus on
representing domain knowledge, and the other a new focus
on representing problem-solving methods. One of the
major benefits of identifying and standardizing ontologies
is the potential for knowledge sharing. We should be able
to share knowledge of problem solving just as easily as
factual knowledge about specific domains.

We have provided in this paper what we believe is a
clearer analysis of the components of the problem solving
knowledge and related it to domain factual knowledge
ontology. We thus build on previous work in this area,
some our own.

An important consideration in reusability of ontologies,
whether of domain factual knowledge or of problem
solving knowledge, is the challenge to reusability made by
the Situated Cognition (SC) movement (Winograd

Flores 1987; Menzies 1996). The relevance of SC for us
is the idea that the way in which knowledge is needed is
highly dependent on the situation. For one situation, "A
causes B" might be the relevant knowledge, while for
another, "A causes B after a delay of 1 sec" is the relevant
knowledge, while for yet a third situation, "A causes B as
long as D and E are not true" becomes the appropriate form
in which the knowledge is needed. Note that we are
talking about the same knowledge, but represented in
different ways for different situations. SC proponents hold
that these kinds of additional conditions may be added
indefinitely, thus making the prospect of representing the
essence of that item of knowledge, once and for all at the
Knowledge Level, rather slim. Similar comments may be
made about the representation of problem solving methods
as well.

In our view, this issue needs to be approached
empirically. For one thing, in the above examples, what
changes radically from situation to situation is not the
ontology itself, but assertions made using the ontology.
Thus, it is very likely that in general the rate of changes
needed in ontologies from situation to situation is likely to
be mush less than the changes needed to a specifi~
knowledge base. We feel that reuse issues should be
investigated by varying the situations and task
specifications around a starting situation in such a way that
we can track the needed changes to ontology and the
knowledge base. This also implies that, in order truly to
investigate reuse, we need systems that support the changes
needed for knowledge and method ontologies as situations
are changed. This appears to be an important new
direction of research.

Acknowledgment

This material is based upon work supported by The
Office of Naval Research, grant number N00014-96-1-
0701, DARPA order number D594.

References

Aben, M. (1995). Formal Methods in Knowledge
Engineering. SWI, University of Amsterdam.

Benjamins, R. (1993). Problem-Solving Methods for
Diagnosis. SW1, University of Amsterdam.

Beys, P., R. Benjamins, et al. (1996). Remedying the
Reusability - Usability Tradeoff for Problem-Solving
Methods. 10th Banff Knowledge Acquisition for
Knowledge-Based Systems Workshop, Banff, Alberta,
Canada, Department of Computer Science, University of
Calgary.

Bylander, T. and S. Mittal (1986). CSRL: A language
for classificatory problem solving and uncertainty

15

handling. AI Magazine. 7: 66-67.
Chandrasekaran, B. (1985). Generic Tasks in Expert

System Design and Their Role In Explanation of Problem
solving. Proceedings of the National Academy of
Science/Office of Naval Research Workshop on AI and
Distributed Problem Solving, National Academy of
Sciences. Washington, DC.

Chandrasekaran, B. (1986). Generic Tasks
Knowledge-Based Reasoning: High-level building blocks
for expert system design. IEEE Expert. 1: 23-30.

Chandrasekaran, B. (1990). Design Problem Solving:
task analysis. AI Magazine. 11: 59-71.

Chandrasekaran, B. (1994). "AI, knowledge and the
quest for smart systems." IEEE Expert 9(6): 2-6.

Clancey, W. J. (1985). Heuristic Classification. Artificial
Intelligence. 27: 289-350.

Coelho, E. and G. Lapalme (1996). Describing reusable
problem-solving methods with a method ontology. 10th
Banff Knowledge Acquisition for Knowledge-Based
Systems Workshop, Banff, Alberta, Canada, Department of
Computer Science, University of Calgary.

Fensel, D. and R. Benjamins (1996). Assumptions in
model-based diagnosis. 10th Banff Knowledge Acquisition
for Knowledge-Based Systems Workshop, Banff, Alberta,
Canada, Department of Computer Science, University of
Calgary.

Gruber, T. (1992). Ontolingua: A mechanism to support
portable ontologies. Stanford, CA, Stanford University
Knowledge Systems Laboratory.

Gruber, T. (1993). "A translation approach to portable
ontology specifications." Knowledge Acquisition 2(5):
199:220.

Johnson, T. R. (1991). Generic Tasks in the Problem-
Space Paradigm: Building flexible knowledge systems
while using task-level constraints, The Ohio State
University. Ph.D. thesis, Department of Computer and
Information Science.

Josephson, J. R. and S. G. Josephson, Eds. (1994).
Abductive Inference: Computation, Philosophy,
Technology, Cambridge University Press.

Lenat, D. B. and R. Guha (1988). The World According
to Cyc. Austin, TX, MCC.

Marr, D. (1982). Vision. San Francisco, CA, W. H.
Freeman.

McCarthy, J. and P. Hayes, J. (1969). "Some
philosophical problems from the standpoint of artificial
intelligence." Machine Intelligence 6:133-153.

Menzies, T. (1996). Assessing responses to Situated
Cognition. 10th Banff Knowledge Acquisition for
Knowledge-Based Systems Workshop, Banff, Alberta,
Canada, Department of Computer Science, University of
Calgary.

Musen, M. A. (1988). Generation of Model-Based
Knowledge-Acquisition Tools for Clinical-Trial Advice
Systems, Stanford University.

Musen, M. A., Gennari, J. H., Eriksson, H., Tu, S. W.,
Puerta, A. R. (1995). "PROTEGE-II: Computer support for
development of intelligent systems from libraries of
components," Proceedings of MEDINFO ’95, Eighth
World Congress on Medical Informatics, 766:770.

Neches, R., R. Fikes, et al. (1991). "Enabling technology
for knowledge-sharing." AI Magazine 12(3): 16:36.

Neweli, A. (1981). The Knowledge Level. AI Magazine.
Summer: 1-19.

Steels, L. (1990). Components of Expertise. AI
Magazine. 11: 28-49.

Wielinga, B. J., A. T. Schreiber, et al. (1992). "KADS:
A modeling approach to knowledge engineering."
Knowledge Acquisition 4: 5-53.

Winograd, T. and F. Flores (1987). "On understanding
computers and cognition: A new foundation for design: A
response to the Reviews." Artificial Intelligence 31: 250-
261.

16

