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OME Data Model and XML file: open tools for imaging data management and analysis<p>The Open Microscopy Environment (OME) defines a data model and software implementation to serve as an informatics framework for imaging in biological microscopy experiments.</p>

Abstract

The Open Microscopy Environment (OME) defines a data model and a software implementation

to serve as an informatics framework for imaging in biological microscopy experiments, including

representation of acquisition parameters, annotations and image analysis results. OME is designed

to support high-content cell-based screening as well as traditional image analysis applications. The

OME Data Model, expressed in Extensible Markup Language (XML) and realized in a traditional

database, is both extensible and self-describing, allowing it to meet emerging imaging and analysis

needs.

Rationale
Biological microscopy has always required an 'imaging' capa-

bility: traditionally, the image of a sample was drawn on

paper, or with the advent of light-sensitive film, recorded on

media that conveniently allowed reproduction. The advent of

digital detectors in microscopy has progressively expanded

imaging capacity, transforming the biological microscope

into an assay device that linearly measures the flux of light at

different points in a cell or tissue. Almost all the vast clinical

and research applications of digital imaging microscopy treat

the recorded microscope image as a quantitative measure-

ment. This is especially true for fluorescence or biolumines-

cence, where the signal recorded at any point in the sample

gives a direct measure of the number of target molecules in

the sample [1-4]. Numerical analytic methods extract infor-

mation from quantitative image data that cannot be gleaned

by simple inspection [5-7]. Growing interest in high-through-

put cell-based screening of small molecule, RNAi, and expres-

sion libraries (high-content screening) has highlighted the

large volume of data these methods generate and the require-

ment for informatics tools for biological images [8-10].

In its most basic form, an image-informatics system must

accurately store image data obtained from microscopes with

a wide range of imaging modes and capabilities, along with

accessory information (termed metadata) that describe the

experiment, the acquisition system, and basic information

about the user, experimenter, date, and so on [11,12]. At first
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glance, it might appear that these requirements can be met by

applying some of the tools that underpin modern biology,

such as the informatics approaches developed for genomics.

However, it is worth comparing a genome-sequencing exper-

iment to a cellular imaging experiment. In genomics, knowl-

edge of the type of automated sequencer that was used to

determine the DNA sequence ATGGAC... is not necessary to

interpret the sequence. Moreover, the result ATGGAC... is

deterministic - no further analysis is required to 'know' the

sequence, and in general, the same result will be obtained

from other samples from the same organism. By contrast, an

image of a cell can only be understood if we know what type

of cell it is, how it has been grown and prepared for imaging,

which stains or fluorescent tags have been used to label sub-

cellular structures, and the imaging methodology that was

used to record it. For image processing, knowledge of the

optical transfer function, spectral properties and noise char-

acteristics of the microscope are all critical. Interpretation of

results from image analysis requires knowledge of the precise

characteristics of the algorithms used to extract quantitative

information from images. Indeed, deriving information from

images is completely dependent on contextual information

that may vary from experiment to experiment. These require-

ments are not met by traditional genomics tools and thus

demand a new kind of bioinformatics focused on experimen-

tal metadata and analytic results.

In the absence of integrated solutions to image data manage-

ment, it has become standard practice to migrate large

amounts of data through multiple file formats as different

analysis or visualization methods are employed. Moreover,

while some commercial microscope image formats record

system configuration parameters, this information is always

lost during file format conversion or data migration. Once an

analysis is carried out, the results are usually exported to a

spreadsheet program like Microsoft Excel for further calcula-

tions or graphing. The connections between the results of

image analyses, a graphical output, the original image data

and any intermediate steps are lost, so that it is impossible to

systematically dissect or query all the elements of the data

analysis chain. Finally, the data model used in any imaging

system varies from site to site, depending on the local experi-

mental and acquisition system. It can also change over time,

as new acquisition systems, imaging technologies, or even

new assays are developed. The development and application

of new imaging techniques and analytic tools will only accel-

erate, but the requirement for coherent data management

and adaptability of the data model remain unsolved. It is clear

that a new approach to data management for digital imaging

is necessary.

It might be possible to address these problems using a single

image data standard or a central data repository. However, a

single data format specified by a standards body breaks the

requirement for local extensibility and would therefore be

ignored. A central image data depository that stores sets of

images related to specific publications has been proposed

[13,14], but this cannot happen without adaptable data man-

agement systems in each lab or facility. The only viable

approach is the provision of a standardized data model that

supports local extensibility. Local instances of the data model

that store site-specific data and manage access to it must be

provided along with a mechanism for data sharing or migra-

tion between sites. These requirements are shared by other

data-intensive methodologies (for example, mass spectrome-

try and two-dimensional gel electrophoresis). Thus, a major

challenge is the design and implementation of a system for

multidimensional images, experimental metadata, and ana-

lytical results that are commonly generated in biological

microscopy that will also be generally adaptable to many dif-

ferent types of data.

To make it possible to manipulate and share image data as

readily as genomic data, we are building an image-manage-

ment system geared to the specific needs of quantitative

microscopy. The major focus of the Open Microscopy Envi-

ronment (OME) [11,15] is not on creating image-analysis

algorithms, but rather on the development of software and

protocols that allow image data from any microscope to be

stored, shared and transformed without loss of image data or

information about the experimental setting, the imaging sys-

tem or the processing software. OME provides a data model

that can integrate with other efforts to define experimental,

genomic, and biological ontologies [16-19] and that is suitable

for traditional low-volume microscopy and for high-through-

put image-based screening. This data model is implemented

in a relational database and application server to import,

store, process, view and export data. The OME Data Model is

also implemented in an Extensible Markup Language (XML)

file format that makes it possible to transfer OME files

between OME databases and exchange them with other soft-

ware, including that provided by commercial vendors. OME

does not replace or compete with existing commercial soft-

ware for controlling microscopes, acquiring images or per-

forming image restoration. Instead, it serves as a neutral

broker among a multitude of otherwise incompatible soft-

ware tools.

In our previous work [11], we described the conceptual foun-

dation for an image informatics system. In this report we

describe the implementation of this system, including details

of the OME XML file format, a description of how images are

represented both in the file format and in the data model, the

application of semantic types for metadata extensibility as

well as their use in modular image analysis, and describe

recently developed software that makes use of this system and

is targeted at end-users. The current version of OME focuses

on fluorescence microscopy, but the underlying schema and

file specifications can be extended to support any type of

microscope image. The OME XML file format has already

gained acceptance within the microscopy community. At the

time of writing, two companies support the format in their
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current commercial offerings (Applied Precision, Issaquah,

WA and Bitplane, Zurich, Switzerland), and it has been pro-

posed as a standard recommendation for image data migra-

tion by the European Advanced Microscopy Network [20].

Immediate applications for OME within biomedical research

include the characterization of dynamic cell and tissue struc-

tures for basic research, high-content cell-based screening

and high-performance clinical microscopy.

Definition of an image
All imaging experiments occur within specific temporal and

spatial limits. In OME, we define an image as a five-dimen-

sional (5D) structure containing multiple two-dimensional

(2D) frames (Figure 1a). Each frame has dimensions (x, y)

that correspond to the image plane of the microscope and is

recorded from an array detector (for example a CCD camera

in a wide-field microscope) or generated by a two-dimen-

sional raster scan (for example, a laser scanning confocal

microscope). Each frame has a specified focal position z, a

wavelength, or more generally channel, c, and timepoint t.

The extent of a 5D-image is unlimited. The time and channel

dimensions may be continuous or discrete. For example, the

image may contain an entire spectrum at each pixel as in Fou-

rier Transform Infrared (FTIR) imaging, or it may consist of

a set of discrete wavelengths such as commonly seen in fluo-

rescence microscopy. Similarly, there may be a continuous

series of time points that are evenly spaced, as in a video

stream, or the image may contain unevenly spaced, discrete

time points. Images that are not continuous in space are

treated as separate images even though they may be part of

the same experiment. For example, visiting several places on

a microscope slide or a microtiter plate will result in as many

separate images. Finally, the meaning of the pixel values

recorded in each frame are determined by the imaging

method performed (Figure 1b).

The OME Data Model
To solve the problems of data interoperability and extensibil-

ity, we have developed a definition, or ontology, of the differ-

ent data types and relationships included in an imaging

experiment. The OME Data Model integrates binary image

data and all information regarding the image acquisition and

processing, and any results generated during analysis. In this

way, all aspects of the data acquisition, processing, and anal-

ysis remain linked and can be used by any analysis or visuali-

zation application. Groups of Images can be organized into

'Datasets' and 'Projects'. (Throughout this paper, when refer-

ring specifically to OME objects (such as Projects, Datasets,

Images, Pixels, and Features), they are capitalized.) Datasets

are user-defined groups of images that are always analyzed

together: an example would be images from a single immun-

ofluorescence experiment. An image may belong to one or

more datasets. Projects in turn are collections of datasets, and

any given dataset may belong to one or more projects. Each

project and dataset has its own name, description and owner.

The OME Data Model allows for other types of image collec-

tions. Explicit support is included for high-content assays

(HCAs) conducted on microtiter plates or other arraying for-

mats. In this case, the OME Data Model allows for an addi-

tional grouping hierarchy: 'Plates', 'Screens', 'Wells', and

'Samples'. Samples are groups of images from one well, Plates

are groups of Wells, and Screens are groups of Plates. Just like

Projects and Datasets, each level of the hierarchy has its own

set of identifiers. It is also possible for a given plate to belong

to multiple screens, thereby providing a logical mechanism

for reuse of the same collection of data for different analyses.

Similarly, a mechanism is provided for categorizing images

into arbitrary user-defined groups.

An additional level of hierarchy below images included in the

OME Data Model is 'Features'. Although there is some con-

flict of nomenclature in what is considered an image feature

between areas of machine learning and traditional image

analysis, in OME's case, image features are 'regions' in an

image (for example cells or nuclei). Numerical descriptors

used for classification content are then referred to as 'Signa-

tures' [21]. The OME Data Model allows features to contain

other features, so that, for example, the relationship between

a cell, a nucleus and a nucleolus can be expressed. At present,

we do not specify an ontology for the kinds of information an

image feature may contain. Any information obtained by seg-

mentation algorithms, or other algorithms that define Fea-

tures is stored using the data model's extensibility

mechanism (see Semantic types below).

Semantic types

All information in the OME Data Model can be reduced to

'semantic types' (STs). In most ways, this is merely a name or

label given to a piece of information, but in OME it has addi-

tional consequences. STs can describe information at four

levels in the OME hierarchy: Global, Dataset, Image and Fea-

ture. Global STs are used to describe 'Experimenters',

'Groups', 'Microscopes', and so on - items that are applicable

to all images in an OME database. Dataset STs are used to

describe information about datasets - information pertinent

to a collection of images. Image STs describe information per-

tinent to images, and feature STs describe information about

image features - objects or 'blobs' within images. In our

nomenclature, the data type is an ST, and the data itself is an

attribute. For example, the 'Pixels' data type is an Image ST,

and a particular set of Pixels is an attribute of a particular

Image. Throughout this paper XML elements defined in the

OME XML schema are placed within angle brackets (<>).

Data model extensibility

Standardizing access to data solves many problems, but could

severely limit the types of data that might be stored. Because

it is not possible to define a priori what kinds of imaging
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Figure 1 (see legend on next page)
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experiments and analyses will be performed, it is not possible

to design a data model to contain this information ahead of

time. For this reason, we have included a mechanism for

describing new types of data in the OME Data Model. As one

of our goals is to define a common ontology for light micros-

copy, the STs that make up this ontology are part of the 'core

set', whereas other STs can be locally defined to address

evolving imaging needs. Since the data model contains its

own description, it can be extended in arbitrary ways. As

these extensions become commonly used, the STs that define

them can be incorporated into the core set. The initial core set

is concerned chiefly with acquisition parameters so that

image data can be interpreted unambiguously. As the project

evolves, analytical STs will be incorporated into the core set in

order to achieve interoperability not only at the level of inter-

preting raw image data, but also at the level of interpreting

image analysis results.

Consider an example where a commercial software vendor

might specify additional metadata in the timing information

for acquisition of Z sections in an XYZ 3D stack of image

planes. As the timing information would pertain to specific

images, this new data type would be declared as an Image ST.

More specifically, since the timing information pertains to

individual planes within the 5D Image, a set of plane indexes

would be included in the definition referring to a specific

plane. The timing information itself can be expressed as a

delta-time or an absolute time (or both), and may have units

that are either implied or made explicit. Regardless of how the

timing is expressed, it is understood that any software that

uses this newly declared ST agrees on the convention adopted

and the precise meaning of the data it represents. This agree-

ment on meaning allows any software application to

exchange acquisition timing information with any other.

Using OME XML (see OME XML file below), this declaration

would be stored in the <SemanticTypeDefinitions> element

in the XML document, while the timing information itself

(the attributes) would be stored under the <CustomAttrib-

utes> element for the specific image. The names of the ele-

ments under <CustomAttributes> match the names of the

STs, and the data itself goes into the element's attributes. For

example:

<CustomAttributes>

 <AcquisitionTiming theZ='0' theC='0'

theT='0' deltaT='0.001'/>

</CustomAttributes>

Importantly, our open-source implementation of OME (see

below) will automatically expand its database schema when it

comes across an ST definition, and will populate the resulting

tables when it comes across the data in <CustomAttributes>.

This approach allows for immense flexibility in the ontologies

OME can support.

IDs and references

OME has adopted the Life Science ID (LSID) system of data

registration [22]. Since LSIDs are universally unique, every

piece of information stored using the OME Data Model can be

traced to its source - regardless of how it was produced. Every

OME element that has an ID attribute may follow the LSID

format, but this is not a requirement. If a particular ID does

not follow the LSID format (it does not start with 'urn:lsid:'),

it must be assumed that this is a 'brand new' object. While this

is a valid assumption for data, it may not be valid for an

instrument description. For this reason actual globally

unique LSIDs are preferred whenever possible - especially for

global data (such as Experimenters, Screens, Plates, Micro-

scopes). If the object is identified with a proper LSID, it can

be referred to from other documents. In this way, a single

document can be used to describe a microscope and its com-

ponents, and subsequent documents containing images can

refer to these components by LSID. There are open-source

implementations of LSID servers (resolvers) and clients

developed by IBM Life Sciences available online [22] that

make it possible to resolve an LSID remotely. Although we

plan to incorporate LSID resolution into OME software tools,

at the time of writing, support for LSIDs are only incorpo-

rated into the OME Data Model.

The globally unique nature of LSIDs allows OME to trace

every piece of information back to its origin. Provenance and

data history will be discussed in a future report detailing the

OME analysis system, but the use of LSIDs and a representa-

tion of data history is sufficient to determine the origin of

every piece of information about an image. From precisely

The mode of acquisition defines the pixel image dataFigure 1 (see previous page)

The mode of acquisition defines the pixel image data. The meaning of a 2D-image recorded from a digital microscope imaging system varies depending on 
how it is collected. Almost all of the different modes in (a) and (b) can be combined to analyze cell structure and behavior. All of the parameters and 
configurations must be somehow recorded for the interpretation of the pixel data in an image. (a) The spatial, spectral and temporal context of an image 
is used to generate more information about the cell under study. Changing stage position, focus, spectral range or time of imaging all expand the meaning 
of an image. Modified from [33]. (b) The two aspects of the image data collection that define the pixel data. A variety of methods are used to generate 
contrast in modern biological imaging. In addition, the imaging method used to record the data also has meaning.
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where, when and how the image was acquired, through any

analysis that was done, to any structured information or

conclusions that were derived as a result of analysis. LSIDs

allow preservation of this chain of provenance regardless of

the number of intermediate documents, and proprietary or

open-source OME-compatible software systems that oper-

ated on this information.

The OME XML file
The OME Data Model serves as the foundation of two tools we

have developed to address the requirement for extensible

image data management. The first addresses the absence of a

universally recognized image data file format. We have built

an XML-based implementation of the OME Data Model that

can be used by manufacturers of acquisition hardware and

developers of image-processing and analysis software who

may not want to invent their own image format. With this def-

inition, it is possible to specify a minimal set of commonly

used parameters during image acquisition in light micros-

copy, analogous to the MIAME standard that defines a mini-

mal set of information about microarray experiments [23].

All the characteristics of the OME Data Model described

above are reproduced in the OME XML file. Along with each

5D image (that is, the binary pixels), the OME XML file con-

tains all of the associated metadata. The OME file schema

[24] and the full documentation for the schema [25] are avail-

able online. A description of how the schema is designed and

its relationship to other OME schemas is also available online

[26]. Figures 2, 3, 4 highlight some of the features of the

schema. In these figures, the highest level in the schema is on

the left side of the diagram, and the elements defined in it are

read moving from left to right.

Why XML?

The structure of the OME XML document is defined in XML

Schema, which is a standard language for defining XML doc-

ument structure [27]. The use of XML and a publicly available

schema allows OME documents to be used in several ways

that are not possible with current image formats. For exam-

ple, modern browsers incorporate XML parsers, and are able

to display the information contained in XML with the use of a

style sheet, thus allowing customized display of data in the

document using a standard browser without additional soft-

ware. The use of XML also allows us to take advantage of its

growing popularity in various unrelated fields - including a

great deal of software written for XML, including databases,

editing tools, and parsing libraries. Finally, and perhaps most

important, XML is a plain-text format. As a last resort, it can

be opened in any text editor and the information it contains

can simply be read by a person. This inherent openness is one

of its most desirable features for representing scientific data.

Defining the OME file using XML Schema allows other

advantages. The document structure is specified in a form

Figure 2
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that can be parsed, which allows third-party software to vali-

date XML documents against our published schema. This for-

mal specification allows other parties to implement this

format without the potential misunderstanding and incom-

patibility that is common with textual descriptions of file for-

mats. For example, several manufacturers are either

developing or have developed support for the OME file format

independently of each other and, to a large extent, independ-

ently of our group of developers. No exchange of intellectual

property or reverse engineering is necessary to accomplish

this. The XML Schema is the definitive documentation for

reading and writing OME XML files, used in the same way by

third-party developers for proprietary software, as well as by

ourselves for our own open-source implementation.

There are a few disadvantages to XML worth considering. A

commonly perceived weakness of XML is that its human-

readable design is often at odds with the storage of binary

data. Since the bulk of an image file is represented by the pix-

els in the image and not the metadata, this might be perceived

as a serious problem. A related problem is that XML is ver-

bose - XML files are often much larger than their binary

equivalents, and image files are already quite large. The pro-

posed format addresses these two concerns by storing binary

data in plain text and reducing file size using compression.

The standard approach to representing binary data in XML is

with the use of base64 encoding. A 24-digit base 2 binary

number (three bytes) is converted to a 4-digit base 64 number

(four bytes) with each digit represented as a text character

using all the numbers, upper- and lowercase letters and two

punctuation marks. This conversion inflates the size of the

binary data by 25%. To mitigate this increase in size, OME

XML specifies compression of the pixels on a per-plane basis

in either bzip2 or gzip, both patent-free compression schemes

available in open-source form online. Owing to the high com-

pressibility of image data, OME XML files are in practice

much smaller than their equivalents in other formats, usually

a half to a third the size of uncompressed binary data. Because

the compressed stream is still encoded in base64, it still

incurs the 25% overhead, but on a much smaller piece of

binary data. Of course text is itself easily compressed, and the

gzip format is a standard encoding for XML, so any XML soft-

ware library will transparently read and write these com-

pressed files even though the compressed file will no longer

be readable by standard text editors. However, this secondary

compression will only eliminate the base64 encoding over-

head - it will not further compress already compressed

planes.

There are limitations to the use of this compression scheme.

Performing the compression on a per-plane basis allows lim-

ited random access to the planes. The entire XML file need

not be kept in memory in order to access arbitrary planes by

index, but a file offset cannot be calculated for a given plane

due to their different sizes when compressed. Instead, the

entire file has to be scanned first in order to determine the file

offsets for each plane index. It is important to note that the

primary goal of the OME XML file format is not raw perform-

ance, but interoperability above all else, using widely

accepted standards and practices for information exchange.

As the OME XML file format has gained acceptance, a

demand for a high-performance variant has begun to emerge,

and we are examining several possibilities that preserve the

metadata structure that we have defined, but allow rapid

reading and writing from disc.

Schema overview
Figure 2 shows the main elements of the OME XML file

schema. As discussed above, each image is defined as being

part of a dataset and project, and when necessary, a given

plate and screen. The stored data is also related to the exper-

imenter that collected the data and his or her group. Any

additional types of global data including customized or ven-

dor-specific data can be defined at this level. Images and

Instruments are defined as discussed below. Many of the ele-

ments contain IDs that uniquely identify that data element -

Experimenter, Dataset. If these identifiers follow the LSID

format they are considered globally unique and can be used as

references between other OME XML documents or remote

OME installations.

This format allows for an arbitrary number of images to be

described and their relationships and grouping patterns spec-

ified in a single document. Conversely, the file may describe

only the imaging equipment, users, or other parameters at a

given site and not contain any images. Subsequent docu-

ments can refer to these items by LSID. Or, as is done in other

formats, the file can be used to specify a single image and its

accompanying metadata. As any information not specified in

the schema must be represented as well, a section is dedicated

to defining new types of information (<SemanticTypeDecla-

rations>). The information itself is specified at the appropri-

ate hierarchy level within the <CustomAttributes> elements

that exist in <OME>, <Dataset>, <Image> and <Feature>.

High-level view of the elements in the OME file schemaFigure 2

High-level view of the elements in the OME file schema. This figure (and 
Figures 3 and 4) should be read from left to right. A data type (for 
example, OME) is defined by a number of elements. In this case, OME is 
defined by Project, Dataset, Experiment, Image, and so on. Each of these 
elements can be defined by their own individual elements. The Image and 
Instrument elements are expanded in Figures 3 and 4. The full XML 
schema is available [24]. The full documentation for the schema is also 
available [25]. +, One or more elements of this type; ?, optional element 
or attribute; *, zero or more elements of this type; 1, choose one from a 
list of elements; D, the value of this element/attribute is constrained to 
one of several values, a range, or a text pattern (see the online 
documentation for more details [25]).
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Figure 3 (see legend on next page)
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The least developed aspect of the OME schema is the Experi-

ment description. Although clearly a critical part of the meta-

data, the design of this ontology is under development by

many other groups (for example, MIAME/MAGE, Gene

Ontology (GO), Proteomics Standards Initiative (PSI), and

minimum information specification for in situ hybridization

and immunohistochemistry experiments (MISFISHIE)) [16-

19] and we are experimenting with several scenarios for

merging these efforts with OME. At present, several of these

projects including OME are evaluating the new Web Ontology

Language (OWL) recommendation from the World Wide

Web consortium (W3C) to standardize ontology specification

for the Semantic Web initiative [28]. At the moment, Experi-

ment is defined in simple unstructured text entered by the

user. This situation reflects our goals of not only defining a

data model or ontology, but also building the tools for using

that model in demanding, experimentally relevant, data-

intensive applications. However, it is worth noting that a sep-

arate group has represented the OME Data Model within the

Resource Description Framework (RDF), and has begun

using this implementation [29]. We are currently studying an

implementation of OME in OWL, and whether an RDF-based

system provides the performance required for large-scale

imaging applications.

The OME Instrument type

The OME Instrument type (Figure 3) provides a description

of the data-acquisition instrument and defines the actual

instrument as well as available configuration choices such as

the objective lens, detector, and filter sets. Instrument also

defines the use and configuration of lasers or arc lamps and

includes a specification for a secondary illumination source

(for example, a photoablation laser). Once defined in the

Instrument, the specific components used to acquire an

image (or a channel within an image) are referenced from

within the Image or its ChannelInfo elements. The <Instru-

ment> element is meant to define a static instrument com-

posed of several components: one or more light sources, one

or more detectors, filters, objectives, and so on. Because it

does not change from image to image and has a globally

unique LSID, it does not need to be defined in every OME file

with images collected from it. The Image elements within the

OME File contain references to the instrument's components

along with any necessary parameters for their use (that is

detector gain). The Instrument may also contain several

optical transfer functions (OTFs), which can be referred to

from the ChannelInfo element, allowing each channel within

a set of pixels to specify its own OTF.

The OME Image type

The OME Image type (Figure 4) provides a description of the

structure, format, and display of the image data. There are

references to the light source, spectral filtering, imaging

method, and display settings used for each channel. The

actual binary data, referred to as 'Pixels' are also stored in this

part of the schema. A set of Pixels is a 5D-structure containing

multiple 2D-frames collected across focus (z), wavelength or

channel (c), and time (t), as described above. Sets of Pixels

that are not continuous in space are treated as separate

images even though they may be part of the same experiment.

The Image's binary pixels are compressed and encoded in

base-64 as described above, with one plane per <BinData>

element. The schema allows for more than one set of Pixels in

an Image. A given image may consist of the original 'raw' pix-

els and a set of processed pixels as is often done for deconvo-

lution or restoration microscopy. Because these two sets of

pixels share the same acquisition metadata, they are grouped

together in the same image.

A critical feature in this specification is a definition of what

the data stored in 'Pixels' actually mean. The meaning of the

pixels is stored as three attributes in <ChannelInfo>: Mode,

ContrastMethod, and IlluminationType. Mode describes the

microscopy method used to generate the pixels, and can take

on values such as 'Wide-field', 'Laser-scanning confocal', and

so on. ContrastMethod describes how contrast is developed in

the type of microscopy used and can contain terms such as

'BrightField', 'DIC', or 'Fluorescence'. The IlluminationType

attribute describes how the sample was illuminated and can

contain values of 'Transmitted', 'Epifluorescence', and

'Oblique'. Together these terms and their controlled vocabu-

lary describe how the pixels were acquired. Each <Chan-

nelInfo> has several internal elements that allow further

refinement of the acquisition parameters by referring to com-

ponents defined in the <Instrument>, such as filters and light

sources. Each channel in the image has its own <Chan-

nelInfo>, allowing the description of multimode images.

The metadata associated with a channel have an additional

important feature made possible with the nested <Channel-

Component> element. In a fluorescence experiment, each

fluorescence channel would be described by a <Chan-

nelInfo>, and each of these would contain a single

<ChannelComponent> referring to an index in the c dimen-

sion of the Pixels. However, in several imaging modes, each

channel may contain several components. For example, in

fluorescence-lifetime imaging, each fluorescence channel

may contain 128 bins of fluorescence-lifetime data. The image

may consist of lifetime measurements for several fluores-

The Instrument element in the OME file schemaFigure 3 (see previous page)

The Instrument element in the OME file schema. The data elements that define the acquisition system parameters are shown. For these descriptions, we 
have incorporated suggestions from many colleagues and commercial partners [32]. Symbols are as in Figure 2.
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cence channels. In this case, each fluorescence channel would

still be represented by a single <ChannelInfo>, but each of

those would have 128 <ChannelComponent>s. This allows

the channel dimension to effectively represent two dimen-

sions - a logical channel containing all of the metadata and

one or more components representing the actual data. The

same mechanism can be used to represent data from FTIR

imaging.

Updating the OME file specification

The OME XML file has been developed with input from the

OME consortium and a number of commercial partners (see

Figure 3 legend). However, the specification for this format is

incomplete and doubtless will be updated to accommodate

unanticipated requirements. Moreover, as new data acquisi-

tions methods develop, new data semantics and elements will

be required. However, modifications to the specification for

this file must occur in stages, preceded by announcements, if

it is to be used as an export format. The OME file allows mod-

ifications to the schema to be implemented and tested

through the Custom Attributes type. Proposed new types and

elements can be tested and modified there, and then when

fully worked out and agreed upon by the OME community,

can then be merged into the main schema.

The OME database
It is formally possible to use a library of OME XML files as a

data warehouse. A true image informatics system however,

must also maintain a record of all transactions with the data

warehouse, including all data transformations and analyses.

Storing and recording image data is a first step; a defined set

of interfaces and access methods to the data must be also be

provided. For this reason, we have developed a second imple-

mentation of the OME Data Model as a relational database

that is accessed using a series of services and interfaces. All of

these tools are open source and licensed under the GNU

Lesser General Public License (LGPL) [30]. The initial design

has been described previously [11] and a description of more

recent updates is available [15]. Image metadata are captured

by the OME database when it imports a recognized file for-

mat, and are then available either by accessing the database

directly or through a variety of interfaces into the OME data-

base. These will be the subject of a future publication, but

source code and documentation are available [31]. An impor-

tant consequence is that all commonly available types of

metadata are stored in common tables. It is not necessary to

know the format of the underlying file in order to access this

information. For example, to find the exposure time for a par-

ticular image, one would look in the same table regardless of

the commercial imaging system used to record the data.

The use of an OME database as a record of all data transfor-

mations contrasts with the standard approach to image

processing. In a stand-alone analysis program, data relation-

ships are specified by the programmer and are therefore

'hard-coded'. The results, while useful, do not usually link to

the original data or other analyses. In an OME database, an

identical algorithm can be used, but the resulting data are

The Image element in the OME file schemaFigure 4

The Image element in the OME file schema. The data elements that define 
the an image in the OME file are shown. These include the image itself 
(Pixels), and a variety of characteristics of the image data and display 
parameters. Symbols are as in Figure 2.
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returned to the database, and are linked to the algorithm that

produced them. A subsequent analysis can gather its inputs

from the database as well, without having to link directly to

the previous algorithm directly. The links between measure-

ments, results and the image data can be incorporated into

other analyses defined by the user. Trends and relationships

between these can easily be tested. Most important, the com-

plete transactional record of data elements is known and is

available, in effect creating a transfer function for data analy-

sis. This kind of data provenance for biological microscopy

has sometimes resided in lab notebooks, sometimes coded in

filenames, or sometimes simply retained only in experiment-

ers' memories. With OME, it is finally stored, managed, and

available in a generally accessible form.

To function as planned, OME must ensure that requirements

of different processing and analysis tools are satisfied before

execution. To accomplish this, STs are used to govern what

kinds of information can flow between analysis modules. In

OME, analysis modules can exchange information only if the

output of one has the same ST as the input of the next. This

principle means that information can flow only between logi-

cally and semantically similar data types, not simply between

numerically similar data types. This ensures that users

employ algorithms in a logically consistent manner without

necessarily an intimate knowledge of the algorithm itself. We

have used this concept to implement a user tool called 'Chain

Builder' (Figure 5a). This Java tool accesses the STs in an

OME database and allows a user to 'chain' analysis modules

together, linking of separate modules by matching the output

STs of one module with the input STs of the next. Thus OME

uses 'strong semantic typing', not only to store and maintain

data and metadata, but also to define permitted workflows

and potential data relationships.

Figure 5b shows a second example of the use of STs. In this

example, a data manager (Figure 5b, left) displays the

Projects, Datasets, and Images belonging to one OME user.

Right-clicking a Dataset opens a Dataset browser (Figure 5b,

middle) and displays image thumbnails obtained from the

OME database. The browser accesses data associated with

specific STs to define how an array of thumbnails should be

presented to the user. In this case, the cell-cycle position of

the cell in each image is used to define the layout (a more in-

depth description of this tool is in preparation). Finally, a 5D-

image viewer (Figure 5b, right) allows viewing of the individ-

ual images, with display parameters based on data obtained

from an OME database associated with appropriate STs (sig-

nal min, max, mean, and so on).

Data migration

Under most circumstances, the contents of a single OME

database will be available only to the local lab or facility. How-

ever, data sharing and migration is often critical for collabo-

rations or when investigators move to a new site. In OME,

database export is achieved using the OME XML file. OME

Images can be exported, along with their metadata, and ana-

lytic results and exposed to external software tools or

imported to a second OME database. This strategy solves the

file-format problem that has so far plagued digital

microscopy.

OME database extensibility

It is clear the OME Data Model, and its representation in a

specific instance of an OME database will be adapted to

support local experimental requirements. We have imple-

mented this within the OME server code simply by loading an

OME XML containing new STs and updating the existing

database on the fly. However, an inherent problem in sup-

porting schema extension is a potential for incompatibility

between different schemas. If an OME database exports an

OME XML file with a locally modified data model, how can

that file be accessed by another OME site? Since OME defines

what are considered core STs, all other STs must be defined

within the same document that contains data pertaining to

them. During import, local STs and imported STs are consid-

ered equal if their names, elements and element types are

equal. In this way, if the structure of an ST can be agreed

upon, the information it describes can be seamlessly inte-

grated across different OME installations. If the structure of

an extended ST is not agreed upon beforehand, then the STs

are considered incompatible and their data are kept separate.

If however, two STs have the same name, but different ele-

ments or element types, a name collision will result, and the

import will be rejected until the discrepancy is resolved.

Because the agreed on meaning and structure of STs is essen-

tially a social contract and are not defined more formally,

these name collisions must be resolved manually. A common

approach to resolve name collisions is the use of namespaces

- essentially a prefix to differentiate similar names from dif-

ferent schemas. While namespaces solve the immediate prob-

lem of collision, they do not address the underlying problem

- that ST names and their meanings have not been agreed on.

The disadvantage of using namespaces is they would not

allow the information in these STs to be used interchangea-

bly, and it is this interoperability rather than mere coexist-

ence that is the desired result.

Discussion
We have designed and built OME as a data storage, manage-

ment and analysis system for biological microscopy. The data

model used by OME is represented in two distinct ways: a set

of open-source software tools that use a relational database

for information storage, and an XML-based file format used

for transmission of this information and storage outside of

databases. The OME XML file format allows the exchange of

highly structured information between independently devel-

oped imaging systems, which we believe is a major hurdle in

microscopy today. The XML schema provides support for

image data, experimental and image metadata, and any gen-

erated analytic results. The use of a self-describing XML
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schema allows this format to satisfy local requirements and

enables a strategy for updating schemas to satisfy new,

incoming data types. This approach provides the infrastruc-

ture to support systematic quantitative image analysis, and

satisfies an indispensable need as high-throughput imaging

gains wider acceptance as an assay system for functional

genomic assays.

Our implementation of a relational database for digital micro-

scopy satisfies the absolute requirement for local extensibility

of data models. We acknowledge the impossibility of defining

a single standard that encompasses all biological microscope

image data. However, using the self-describing OME XML

file, we can mediate between different data models, and when

necessary, update a local model so that it can send or receive

data from a different model. In this way, OME considers data

Using STs for visualization in OMEFigure 5

Using STs for visualization in OME. Examples of the use of STs for visualization of data within an OME database are shown. These tools are Java 
applications that access OME via the OME remote framework [34]. All OME code is available [31]. (a) The Chain Builder, a tool that enables a user to 
build analysis chains by ensuring that the input requirements of a given module are satisfied by outputs from previous modules. This is achieved by 
accessing the STs for the inputs and outputs within an OME database. (b) The DataManager, DatasetBrowser and 5DViewer. The DataManager shows the 
relationships between Projects, Datasets and Images within an OME database. The DatasetBrowser modifies the display method for images within a given 
dataset depending on the values of data stored as STs within an OME database. The 5Dviewer allows visualization of individual images based on STs in an 
OME database.
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dialects as a compromise between a universal data language

and a universe of separate languages. In general, although the

current OME system is focused on biological microscopy, its

concepts, and much of its architecture, can be adapted to any

data-intensive activity.
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