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Abstract—We describe the Open Motion Planning Library
(OMPL), a new library for sampling-based motion planning,
which contains implementations of many state-of-the-art plan-
ning algorithms. The library is designed in a way that allows
the user to easily solve a variety of complex motion planning
problems with minimal input. OMPL facilitates the addition
of new motion planning algorithms and it can be conveniently
interfaced with other software components. A simple graphical
user interface (GUI) built on top of the library, a number
of tutorials, demos and programming assignments have been
designed to teach students about sampling-based motion plan-
ning. Finally, the library is also available for use through the
Robot Operating System (ROS).

Index Terms—motion planning, sampling-based planning,
robotics software, OMPL, ROS, open source robotics, teaching
robotics

I. INTRODUCTION

ROBOTIC devices are steadily becoming a significant

part of our daily lives. Search and rescue robots, service

robots, surgical robots and autonomous cars are examples of

robots most of us are familiar with. Being able to find paths

(motion plans) efficiently for such robots is critical for a

number of real-world applications (Figure 1). For example,

in urban search-and-rescue settings a small robot may need

to find paths through rubble and semi-collapsed buildings

to locate survivors. In domestic settings it would be useful

if a robot could, e.g., put away kids’ toys, fold the laundry,

and load the dishwasher. Motion planning also plays an

increasingly important role in robot-assisted surgery. For

example, before a flexible needle is inserted or an incision is

made, a path can be computed that minimizes the chance of

hurting vital organs. More generally, motion planning is the

problem of finding a continuous path that connects a given

start state of a robotic system to a given goal region for that

system, such that the path satisfies a set of constraints (e.g.,

collision avoidance, bounded forces, bounded acceleration).

This paper describes an open source software library for

motion planning, designed for research, educational and

industrial applications.

Although most of the work done towards the development

of algorithms that solve the motion planning problem comes

from robotics and artificial intelligence [1]–[3], the problem

can be viewed more abstractly as search in continuous spaces.

As such, the applications of motion planning extend beyond

robotics to fields such as computational biology [4]–[7] and

computer-aided verification [8], among others.
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Early results have shown the motion planning problem to

be PSPACE-complete [9], and existing complete algorithms

are difficult to implement and computationally intractable.

For this reason, more recent efforts focus on approaches with

weaker completeness guarantees. One of these approaches

is that of sampling-based motion planning, which has been

used successfully to solve difficult planning problems for

robots of practical interest. Many sampling-based algorithms

are probabilistically complete: a solution will eventually be

found with probability 1 if one exists, but the non-existence

of a solution cannot be reported (see, e.g., [10]–[13]).

Many of the core concepts in sampling-based motion

planning are relatively easy to explain, but implementing

sampling-based motion planning algorithms in a generic

way is non-trivial. This paper describes the Open Motion

Planning Library (OMPL, http://ompl.kavrakilab.org), an

open source C++ implementation of many sampling-based

algorithms (such as the Probabilistic Roadmap Method

(PRM) [14], Rapidly-expanding Random Trees (RRT) [15],

Kinodynamic Planning by Interior-Exterior Cell Exploration

(KPIECE) [16] and many more) and the core low-level data

structures that are commonly used. OMPL includes Python

bindings that expose almost all functionality to Python users.

This library is aimed at three different audiences:

• motion planning researchers,

• robotics educators, and

• end users in the robotics industry.

Below, we will characterize the needs of these different

audiences.

Within the robotics community, it is often challenging

to demonstrate that a new motion planning algorithm is

an improvement over existing methods according to some

metric. First, it is a substantial amount of work for a

researcher to implement not only the new algorithm, but also

one or more state-of-the-art motion planning algorithms to

compare against. Ideally, implementations of low-level data

structures and subroutines used by these algorithms (e.g.,

proximity data structures) are shared, so that only differences

of the high-level algorithm are measured. Second, for an

accurate comparison, one needs a known set of benchmark

problems. Finally, collecting various performance metrics for

several planners with different parameter settings, running

on several benchmark problems and storing them in a way

that facilitates easy analysis afterwards is a non-trivial task.

We as developers of planning algorithms have run into the

issues above many times. We designed OMPL to help with

all these issues, and make it easier to try out new ideas.

Moreover, the library is designed in a way that facilitates

contributions from other motion planning researchers and

provides benchmarking capabilities to easily compare new
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Fig. 1. Real world applications of motion planning. (a) An urban search-and-rescue robot from Carnegie Mellon University’s Biorobotics Lab. (b)
The HERB robot from Carnegie Mellon University’s Personal Robotics Lab picking up a bottle. (c) A PR2 robot folding laundry in UC Berkeley’s
Robotics Learning Lab. Images used with permission from Prof. Choset, Prof. Srinivasa, and Prof. Abbeel, respectively.

planners against all other planners implemented in OMPL

(see Box 1). We have developed a streamlined process

that gives contributing researchers appropriate credit and

minimizes the burden of writing code that satisfies our

library’s application programmers interface (API). At the

same time, our aim is to make such contributions easily

available to users of OMPL. This is achieved by releasing

the code under the Berkeley Software Distribution (BSD)

license (one of the least restrictive Open Source licenses),

releasing frequent updates, and making the code available

through a public repository. To foster a community of OMPL

users and developers we have set up a mailing list, blog,

and a Facebook page.

For robotics educators, we have designed a series of

exercises/projects around OMPL aimed at undergraduate

students. These exercises help students realize what the

complexity of motion planning means in practice, develop

an understanding of how sampling-based motion planning

algorithms work, and learn to evaluate the performance of

planners. We have also designed open-ended projects for

undergraduate and graduate students. OMPL is structured to

have a clear mapping between the motion planning concepts

used in the literature and the classes that are defined in

the implementation. The separation between abstract base

classes that only specify the interface and derived classes

that implement the specified functionality also helps students

understand general concepts in motion planning before

focusing on details.

From the beginning, OMPL was intended to be useful in

practical applications. This requires that planning algorithms

can solve motion planning problems for systems with many

degrees of freedom at interactive speeds. An additional

requirement is the ability to cleanly integrate OMPL with

other software components on a robot, such as perception,

kinematics, control, etc. Through a collaboration with Willow

Garage, OMPL is integrated within ROS [17] and serves as

the motion planning back-end for the arm planning software

stack. The availability of OMPL in ROS makes it easy for

end users in the robotics industry to stay up-to-date with

advances in sampling-based motion planning.

The rest of the paper is organized as follows. Section II

gives some background on sampling-based motion plan-

ning and existing software packages for motion planning.

Sections III and IV include an overview and lower level

details about OMPL. Integration with other software systems

is described in Section V, and finally, a discussion is in

Section VI.

II. BACKGROUND

There has been much work done towards both algorithm

development and software development for motion planning.

This paper only discusses aspects pertaining to sampling-

based motion planning.

A. Sampling-based Motion Planning: Definitions

Sampling-based motion planning algorithms relaxed com-

pleteness guarantees and demonstrated that many interesting

problems can be solved efficiently in practice, despite the

the theoretically high complexity of the problem [2], [3].

The fundamental idea of sampling-based motion planning

is to approximate the connectivity of the search space with

a graph structure. The search space is sampled in a variety

of ways, and selected samples end up as the vertices of

the approximating graph. Edges in the approximating graph

denote valid path segments.

There are two key considerations in the construction of

the graph approximation: the probability distribution used

for sampling states and the strategy for generating edges. An

enormous amount of research has been performed towards

the development of efficient algorithms that account for these

issues [18].

We will not go into the details of various sampling-

based motion planning algorithms, as such details can be

found elsewhere [2], [3]. Instead, we describe the common

components sampling-based algorithms typically depend on,

as these relate to the implementations of such algorithms:

• State space Points in the state space (or configuration

space) fully describe the state of the system being

planned for. For a free-flying rigid body, the state space

consists of all translations and rotations, while for a
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Box 1: Benchmarking with OMPL

A seemingly simple but often ignored part of motion planning
software is benchmarking planning code. OMPL includes
benchmarking capabilities (through a class called Bench-
mark) that can be simply dropped in and applied to existing
planning contexts. In very simple terms, a Benchmark
object runs a number of planners multiple times on a
user specified planning context. Although simple, this code
automatically keeps track of all the used settings and takes
all the possible measurements during planning (currently,
tens of parameters are recorded for every single motion
plan). The recorded information is logged and can be post-
processed using a Python script included with OMPL. The
script can produce MySQL databases with all experiment
data so that the user can write their own queries later
on, but it can also automatically generate plots for all
of the performance metrics. For real- and integer-valued
measurements it generates box plots: plots that include
information about the median, confidence intervals and
outliers. An example is shown in the figure on the right.
For binary-valued measurements it generates bar plots.
A more elaborate example of what can be done with the
Benchmark class can be found at http://plannerarena.org,
a web site currently being developed to establish standard

benchmark problems and report performance metrics for
various planners on those problems.

(s
e
c
.)

Figure S1. A sample box plot generated by OMPL’s bench-
mark script.

manipulator with n rotational joints the state space can

be modeled by an n-dimensional torus.

• Control space A control space represents a

parametrization of the space of controls. This is only

required for systems with dynamics. For most systems

of practical interest, one can think of the control space

for a system with m controls simply as a subset of Rm.

For geometric planning no controls are used.

• Sampler A sampler is needed to generate different

states from the state space. For control-based systems,

a separate sampler is needed for sampling different

controls. Some planning algorithms (e.g., [12], [16])

only require a control sampler and do not need a state

sampler.

• State validity checker A state validity checker is a

routine that distinguishes the valid part of the state space

from the invalid part of the state space. For example,

a state validity checker can check for collisions and

whether velocities and accelerations are within certain

bounds.

• Local planner When planning with controls, the local

planner is a means of computing the evolution of the

robotic system forward (and sometimes backward) in

time. When planning solely under geometric constraints,

the local planner often performs interpolation between

states in the state space.

B. Software Packages for Motion Planning

Several other packages for motion planning are available.

Some, such as the Motion Strategies Library (MSL, http:

//msl.cs.uiuc.edu), the Motion Planning Kit (MPK, http://

robotics.stanford.edu/∼mitul/mpk), and VIZMO++ [19] are

no longer maintained. KineoWorks (http://www.kineocam.

com) provides commercial motion planning software for

academic research and industrial applications. In 2007, our

group released the Object-Oriented Programming System

for Motion Planning (OOPSMP) [20], which is no longer

maintained.

Another software package that is complementary to

OMPL is OpenRAVE [21]. OpenRAVE is open source,

actively developed, and it is widely used. It is important

to understand the difference in design philosophy behind

OMPL and OpenRAVE. OpenRAVE is designed to be a

complete package for robotics. It includes, among other

things: geometry representation, collision checking, grasp

planning, forward and inverse kinematics for several robots,

controllers, motion planning algorithms, simulated sensors,

visualization tools, etc. OMPL, on the other hand, was

designed to focus completely on sampling-based motion

planning with a clear mapping between theoretical concepts

in the literature and abstract classes in the implementation.

This high level of abstraction makes it easy to integrate

OMPL with a variety of front-ends and other libraries. Some

integration examples are described in Section V. To some

extent, the integration with ROS [17] gives a user many of

OpenRAVE’s features that are purposefully not included in

OMPL. It may also be possible to use OMPL as a motion

planning plugin in OpenRAVE. As a result of the narrower

focus in OMPL, we have been able to spend more resources

on implementing a much broader variety of sampling-based

algorithms than what is currently available in OpenRAVE,

as well as benchmarking capabilities to facilitate a thorough

comparison of existing and future sampling-based motion

planners.
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ControlSampler StateSpace
Represents the state space in 

which planning is performed; 

implements topology-specific 

functions: distance, interpola-

tion, state (de)allocation.

StateSampler
Implements uniform and 

Gaussian sampling of states 

for a specific StateSpace

ProjectionEvaluator
Computes projections from 

states of a specific State-

Space to a low-dimensional 

Euclidean space.

SpaceInformation
Provides routines typically used 

by motion planners; combines 

the functionality of classes it 

depends on.

StateValidityChecker
Decides whether a given state 

from a specific StateSpace 

is valid.

MotionValidator
Provides the ability to check 

the validity of path segments 

using the interpolation 

provided by the StateSpace.

ValidStateSampler
Provides the ability to sample 

valid states.

Planner
Solves a motion 

planning problem.

Goal
Representation 

of a goal.

ProblemDefinition
Specifies the instance of the 

planning problem; requires 

definition of start states and a 

goal.

SimpleSetup
Provides a simple way 

of setting up all needed 

classes without limiting 

functionality.

Path
Representation of a path; 

used to represent a solution 

to a planning problem.

User code

only when planning with differential constraints 

User must instantiate this class.

User must instantiate this class unless SimpleSetup is used.

User can instantiate this class, but defaults are provided.

A is owned by B.A B

ControlSpace

StatePropagator

Represents the control 

space the planner uses to 

represent inputs to the 

system being planned for.

Implements sampling of controls 

for a specific ControlSpace.

Returns the state obtained 

by applying a control to 

some arbitrary initial state.

DirectedControlSampler
Sample controls that take the 

system towards a desired state.

Fig. 2. Overview of OMPL structure. Class names correspond to well understood concepts in sampling-based motion planning. More detailed
documentation is available at http://ompl.kavrakilab.org.

C. Relationship to Other Robotics Software

There have also been many efforts to create robot

simulators such as Player/Stage [22], Player/Gazebo [23],

Webots [24], and MORSE [25]. Microsoft Robotics Devel-

oper Studio [26] also contains a robot simulator. Typically,

such simulators do not include motion planning algorithms,

but they can provide a controlled simulated environment to

test motion planners in various environments, on various

robots with different sensing and communication capabilities.

They often simulate the dynamics of the world (including

the robots themselves) using physics engines such as Bullet

(http://bulletphysics.org) and the Open Dynamics Engine

(http://ode.org), among others.

Hardware platforms typically require complex software

configurations and use various forms of middleware to

accommodate this requirement (e.g., ROS [17], Orocos

(http://www.orocos.org), OpenRTM-aist [27], OPRoS [28],

Yarp [29]). Such software systems typically include their

own visualization system, collision checking, etc. OMPL fits

naturally and easily into such systems as it only provides

sampling-based motion planning and its abstract interface

should be able to accommodate a variety of low-level

implementations.

III. CONCEPTUAL OVERVIEW OF OMPL

OMPL is intended for use in research and education, as

well as in industry. For this reason, the main design criteria

for OMPL were:

a) Clarity of concepts: OMPL was designed to consist

of a set of components as indicated in Figure 2, such that

each component corresponds to known concepts in sampling-

based motion planning.

b) Efficiency: OMPL has been implemented entirely

in C++ and is thread-safe.

c) Simple integration with other software packages:

To facilitate the integration with other software libraries,

OMPL offers abstract interfaces that can be implemented by

the “host” software package. Furthermore, the dependencies

of OMPL are minimal: only the Boost C++ libraries are

required. Optionally, OMPL can be compiled with Python

bindings, which facilitates integration with Python modules.

d) Straightforward integration of external contributions:

We strive for minimalist API constraints for planning

algorithms, so that new contributions can be easily integrated.

As opposed to all other existing motion planning soft-

ware libraries, OMPL does not include a representation

of workspaces or of robots; as a result, it also does not

include a collision checker or any means of visualization.
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OMPL is reduced to only motion planning algorithms. The

advantage of this minimalist approach is that it allows us

to design a library that can be used for generic search

in high-dimensional continuous spaces subject to complex

constraints. Instead of defining valid states as collision-free,

which would require a specific geometric representation

of the environment and robot as well as support for a

specific collision checker, OMPL leaves the definition of

state validity completely up to the user (or the software

package in which OMPL is integrated; see Section II-C).

This gives the user enormous design freedom: the user can

defer collision checking to a physics engine, write a state

sampler that constructs only valid states, or define state

validity in completely arbitrary ways that may or may not

depend on geometry.

To make OMPL as easy to use as possible, various param-

eters needed for tuning sampling-based motion planners are

automatically computed. The user has the option to override

defaults, but that is not a requirement.

IV. IMPLEMENTATION OF CORE CONCEPTS

Below we will give an overview of the implementation

of the core motion planning concepts in OMPL. Figure 2

gives a high-level overview of the main classes and their

relationships. We will use the following notation. Classes

are written in a sans-serif font (e.g., StateSpace), while

methods and functions are written in a monospaced font

(e.g., isSatisfied()). For conciseness, the arguments to

methods and functions are omitted.

A. States, Controls, and Spaces

To maximize the range of application for the included

planning algorithms, OMPL represents the search spaces, i.e.,

the state spaces (StateSpace), in a generic way. State spaces

include operations on states such as distance evaluation, test

for equality, interpolation, as well as memory management

for states: (de)allocation and copying. Additionally, each state

space has its own storage format for states, which is not

exposed outside the implementation of the state space itself.

To operate on states, the planning algorithms implemented in

OMPL rely only on the generic functionality offered by state

spaces. This approach enables planning algorithms in OMPL

to be applicable to any state spaces that may be defined, as

long as the expected generic functionality is provided.

Furthermore, OMPL includes a means of combining state

spaces using the class CompoundStateSpace. A combined

state space implements the functionality of a regular state

space on top of the corresponding functionality from the

maintained set of state spaces. This allows trivial construction

of more complex state spaces from simpler ones. For example

SE3StateSpace (the space of rigid body transformations

in 3D) is just a combination of SO3StateSpace (the

space of rotations) and RealVectorStateSpace (the space

of translations). Instances of CompoundStateSpace can be

constructed at run time, which is necessary for constructing

a state space from an input file specification, as is done,

for example, in ROS. For a mobile manipulator one could

construct a CompoundStateSpace with the two arms and

the mobile base as sub-state spaces. An arm typically has a

number of rotational joints and can be modeled by either

a RealVectorStateSpace (if the joints have limits) or a

CompoundStateSpace with copies of SO(2). The state space

for the base can simply be SE(2) (the space rigid body

transformations in the plane).

State spaces optionally include specifications of pro-

jections to Euclidean spaces (ProjectionEvaluator). Low-

dimensional Euclidean projections are used by several

sampling-based planning algorithms (e.g., KPIECE [16],

SBL [30], EST [12]) to guide their search for a feasible

path, as it is much easier to keep track of coverage (i.e.,

which areas have been sufficiently explored and which areas

should be explored further) in such low-dimensional spaces.

In addition to states and state spaces, some algorithms

in OMPL require a means to represent controls. Control

spaces (ControlSpace) mirror the structure of state spaces

and provide functionality specific to controls, so that planning

algorithms can be implemented in a generic way. The only

available implementations of control spaces are the Euclidean

space and a space for discrete modes, because so far there

has not been a need for control spaces with more complex

topologies. However, the API allows one to define such

control spaces.

B. State Validation and Propagation

Whether a state is valid or not depends on the planning

context. In many cases state validity simply means that a

robot is not in collision with any obstacles, but in general

any condition on a state can be used. In OMPL.app (see

section V-A) we have predefined a state validity checker for

rigid body motion planning. We have also implemented

a state validity checker that uses the Open Dynamics

Engine (see Box 2). If these built-in state validity checkers

cannot be used for the system of interest, a user needs to

implement their own. Based on a given state validity checker,

a default MotionValidator is constructed that checks whether

the interpolation between two states at a certain resolution

produces states that are all valid. However, it possible to plug

in a different MotionValidator. For example, one might want

to add support for continuous collision checking, which can

adaptively check for collisions and provide exact guarantees

for state validity [31].

For planning with controls a user needs to specify how

the system evolves when certain controls are applied for

some period of time starting from a given state. This is

called state propagation in OMPL. In the simplest case, a

state propagator is essentially a lightweight wrapper around

a numerical integrator for systems of the form q̇ = f (q,u),
where q is a state vector and u a vector of controls. To

facilitate planning for such systems, we have implemented

generic support for ODE solvers and we have integrated

Boost.Odeint [32], a new library for solving ODEs. Given a

user-provided function that implements f (q,u) for the system

of interest, OMPL can plan for such systems. Alternatively,

one can use variational integrators [33], or a physics engine

to perform state propagation.
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Box 2: Motion Planning Using a Physics Engine

OMPL has built-in support for using the Open Dynamics
Engine (ODE) physics engine. Support for other physics
engines such as Bullet is planned for a future release. We
expect that the approach described below can be followed
for these physics engines (and others) as well.

The ODE state space consists of the state spaces of
the robot and any movable objects in the environment. The
user specifies which joints are controlled by the planner and
maps those to a ControlSpace. The user can also specify
which collisions are allowed (e.g., contact with the support
plane) and which ones are not (such as driving into a wall).
This simple setup allows one to plan for systems that are
difficult to describe with differential equations. The user does
not need to worry about all the different possible contact
modes that occur when a car drives off a ramp (Figure S2)
or when a robot pushes one or more obstacles (Figure S3).

Figure S2. A car-like robot driving off a ramp.

Figure S3. A yellow car needs to push obstacles to get to its goal.

C. Samplers

The fundamental operation that sampling-based planners

perform is sampling the space that is explored. Additionally,

when considering controls in the planning process, sampling

controls may be performed as well.

To support sampling functionality, OMPL includes four

types of samplers: state space samplers (StateSampler),

valid state samplers (ValidStateSampler), control sam-

plers (ControlSampler), and directed control samplers

(DirectedControlSampler).

State space samplers are implemented as part of the

StateSpace they can sample, since they need to be aware

of the structure of the states in that space. For instance,

uniformly sampling 3D orientations is dependent on their

parametrization. Three sampling distributions are imple-

mented by every state space sampler: uniform, Gaussian

and uniform in the vicinity of a specified point. This first

sampler is necessary to sample over the entire space, while

the latter two are used for sampling states near a previously

generated state. This is the most basic level of sampling.

Previous work has shown that the strategy used for

sampling valid states in the state space significantly influ-

ences runtime of many planning algorithms [34]. Valid state

samplers provide the interface for implementing different

sampling strategies. The probability distribution of these

samplers depends on the algorithm used and is not imposed

as part of the API. The implementation of valid state samplers

relies on the existence of a state space sampler and a state

validator (StateValidityChecker). A common approach to

constructing valid state samplers is to repeatedly call a state

space sampler until the state validator returns true. Several

valid state samplers have been implemented in OMPL: e.g.,

a uniform valid state sampler (UniformValidStateSampler),

two samplers (GaussianValidStateSampler, ObstacleBased-

ValidStateSampler) that generate valid samples near invalid

ones (which is often helpful in finding paths through narrow

passages [35], [36]).

When considering controls in the planning process, a

means to generate controls is also necessary. This functional-

ity is attained using control samplers, which are implemented

as part of the control spaces (ControlSpace) they represent.

Additionally, a notion of direction is also important in some

planners: controls that take the system towards a particular

state are desired, rather than simply random controls. This

functionality is achieved through the use of directed control

samplers (derived from the DirectedControlSampler class).

D. Goal Representations

OMPL uses a hierarchical representation of goals. In

the most general case, a Goal can be defined by an

isSatisfied() function that when given a state, reports

whether that state is a goal state or not. While this very

general implicit representation is possible, it offers planners

no indication of how to reach the goal region. For this reason,

isSatisfied() optionally reports a heuristic distance to

the goal region, which is not required to be a metric.

GoalRegion is a refinement of the general Goal representa-

tion, one that explicitly specifies the distance to the goal using

a distanceGoal() function. The isSatisfied() func-

tion is then defined to return true when distanceGoal()

reports distances smaller than a user set threshold. Goal-

Region is still a very general representation but allows

planners to bias their search towards the goal. A refine-

ment of GoalRegion is GoalSampleableRegion, one which

additionally allows drawing samples from the goal region.

GoalState and GoalStates are concrete implementations of

GoalSampleableRegion.

For practical applications it is often possible to sample

the goal region, but the sampling process may be relatively

slow (e.g., when using numerical inverse kinematics solvers).

For this reason a refinement of GoalStates is defined as

well: GoalLazySamples. This refinement continuously draws

samples in a separate sampling thread, and allows planners

to draw samples from the goal region without waiting, after

at least one sample has been produced by the sampling

thread.
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E. Planning Algorithms

OMPL includes two types of motion planners: ones that

do not consider controls when planning and ones that do.

If a planning algorithm can be used to plan both types of

motions, with and without controls (e.g., RRT [15]), two

separate implementations are provided for that algorithm,

one for each type of computed motion. This choice was made

for efficiency reasons. With additional levels of abstraction

in the implementation it would have been possible to avoid

separate implementations [20]. The downside would have

been that the implementation of planners would have had to

follow a strict structure, which makes the implementation

of new algorithms more difficult and possibly less efficient.

For purely geometric planning (i.e., controls are not

considered), the solution path is constructed from a finite set

of segments, and each segment is computed by interpolation

between a pair of sampled states (PathGeometric). Several

geometric planning algorithms are implemented in OMPL,

including KPIECE [16], bidirectional KPIECE, bidirectional

lazy KPIECE, RRT [15], RRT-connect [37], lazy RRT,

SBL [30], EST [12], and PRM [14]. The “lazy” variants listed

above defer state validity checking in the manner described

in [38]. In addition, there are multi-threaded versions of

RRT and SBL.

When controls are considered, the solution path is con-

structed from a sequence of controls (PathControl). Control-

based planners are typically used when motion plans need

to respect differential constraints as well. Several algorithms

for planning with differential constraints are implemented

in OMPL as well, including KPIECE, SyCLoP [39], EST,

and RRT.

F. An Example

Figure 3 shows the complete code necessary for planning

the motion of a rigid body between two states in Python.

The corresponding C++ code would look almost identical.

The steps taken in the code are: instantiate the space to plan

in (SE(3), line 6), create a simple planning context (using

SimpleSetup, line 13), specify a function that distinguishes

valid states (lines 15–16), specify the input start and goal

states (lines 18–26), and finally, compute the solution (line

27). The SimpleSetup class initializes instantiations of the

core motion planning classes shown in Figure 2 with

reasonable defaults, which can be overridden by the user if

desired.

Essentially, the execution of the code can be reduced to

three simple steps: (1) specify the space in which planning

is to be performed, (2) specify what constitutes a valid

state, and (3) specify the input start and goal states. Such

simple specifications are desirable for many users who simply

want motion planning to work, without having to select

problem specific parameters, or different sampling strategies,

different planners, etc. This capability is made possible by

OMPL’s automatic computation of planning parameters. In

the example above, a planner is automatically selected based

on the specification of the goal and the space to plan in.

The selected planner is then automatically configured by

computing reasonable default settings that depend on the

planning context. If a user decides to choose their own

planner, or set their own parameters, OMPL allows the user

to do so completely—no parameters are hidden.

V. INTEGRATION WITH OTHER ROBOTICS SOFTWARE

It is straightforward to integrate OMPL with other robotics

software. Below we will present two case studies that

highlight different use cases.

A. OMPL.app: A Graphical User Interface for OMPL

We have created a graphical front-end for OMPL called

OMPL.app. This front-end was created for three reasons:

1) to provide novice users (such as students in a robotics

class) with an easy-to-use interface to play with several

motion planning algorithms and apply them to several

example rigid body motion planning problems,

2) to demonstrate the integration of OMPL with third-

party libraries for collision checking and loading of

3D meshes, and a GUI toolkit, and

3) to allow for easy benchmarking of new and existing

planners on rigid body motion planning problems using

a command line tool (see Box 1).

We will elaborate on these reasons below.

The graphical interface of OMPL.app is shown in Figure 4.

A user can load meshes that represent the environment and

a robot, define start and goal states, and click on the “Solve”

button to obtain a solution. If a solution is found, it is

played back by animating the robot along the found path.

Fig. 3. Solving a motion planning problem with OMPL in Python. A C++
implementation would look almost identical.

1 def isStateValid(state):

2 # Some arbitrary condition on the state

3 # (typically collision checking)

4 return state.getX() < .6

5

6 space = SE3StateSpace()

7 # set the state space bounds

8 bounds = ob.RealVectorBounds(3)

9 bounds.setLow(-1)

10 bounds.setHigh(1)

11 space.setBounds(bounds)

12

13 ss = SimpleSetup(space)

14 # specify user-defined callback function

15 ss.setStateValidityChecker(

16 ob.StateValidityCheckerFn(isStateValid))

17

18 start = State(space)

19 goal = State(space)

20 # we can pick random start states...

21 start.random()

22 goal.random

23 # ... or set specific values

24 start().setX(.5)

25

26 ss.setStartAndGoalStates(start, goal)

27 solved = ss.solve(1.0)

28 if solved:

29 print ss.getSolutionPath()
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Fig. 4. The OMPL.app graphical interface. A solution path for a free-flying
UFO robot is shown. The red dots indicate the positions of sampled states.

By unchecking the “Animate” button, several states along

the path are shown simultaneously. It is also possible to

show the states that were explored by the planner, which

can be helpful in tuning planner parameters or selecting the

appropriate planning algorithm for a particular problem. By

default, the program assumes that a user wants to plan for

a free-flying 3D rigid body (i.e., the state space is SE(3)),

but one can also plan in SE(2). We have also predefined

a number of common robot types that require controls: a

blimp, a quadrotor, a simple kinematic car, a Reeds-Shepp

car, a Dubins car, and a second-order car. For each robot

type the appropriate planners can be selected in the “Planner”

tab (otherwise a default one will be automatically selected).

Once a planner is chosen, its parameters can be tuned, if

desired. Finally, the user can adjust the bounding box for the

robot’s position. By default this is the bounding box of the

environment mesh. We have included a number of common

benchmark problems, which allow users to develop a basic

understanding of which types of problems are hard to solve.

The OMPL.app program is also an illustrative example

for software developers who want to integrate with third-

party libraries or their own code. OMPL.app consists of

three parts: (1) a C++ library that contains the bindings

to third-party libraries, (2) a set of command line demos

that highlight significant features of this library, and (3) the

GUI itself. The library adds functionality to load meshes in

a wide variety of formats using the Open Asset Importer

Library (Assimp, http://assimp.sf.net). Users can thus create

models of environments and robots in programs such as

SolidWorks, 3ds Max, Blender, and SketchUp, and use them

in OMPL.app. A large collection of models is also available

through the Google 3D Warehouse. The OMPL.app library

also adds collision checking support using the PQP library

[40] and FCL library [41]. The internal representation of

geometry is decoupled from the graphical rendering, so that

the collision checking can also be used in non-graphical

applications. The user interface is written completely in

Python. The code consists almost completely of creating the

user interface elements, connecting them with the appropriate

library function calls, and displaying the results.

The GUI is also a useful tool to prepare motion planning

problems for benchmarking. The GUI can save the complete

specification of a problem to a simple text file. The user

can then add a list of planner names to this file, planner

parameter settings, as well as the number of runs per planner,

a time limit for each run, etc. This configuration file can be

given as input to a simple command line program that can

perform the actual benchmarking. Usually, the total time

required to get statistically significant benchmark results is

too long for interactive use for all but the simplest problems,

which is why the benchmarking is not directly accessible

from the GUI.

It should be relatively straightforward for an experienced

programmer to use a different input file parser, a different

collision checking library, or different GUI toolkit by

mimicking the structure of the OMPL.app library.

B. Integration with ROS

We expect that many end users in industry and robotics

research will use OMPL through its ROS interface. This

interface was created by Sachin Chitta and Ioan Şucan and

provides ROS specific implementations for the abstract base

classes OMPL defines. We describe the steps an end-user

would need to take to plan motions for a given robot that

runs ROS. The PR2 from Willow Garage will be used in

the scenario described below, but the steps are in fact not

specific to the PR2, and apply to any robot that can run

ROS.

If a user wants to plan motions for a PR2, they first

need to create a model of the geometry and kinematics

of the PR2. Within ROS there is a standard for storing

such a model called the Unified Robot Description Format

(URDF, see http://ros.org/wiki/urdf). This XML-based format

combines kinematic information with references to files

containing meshes of the different robot components. For the

PR2 and many other robots URDF files already exist (see

http://www.ros.org/wiki/Robots). It is often not desirable,

nor necessary, to plan for all degrees of freedom listed

in a URDF file simultaneously. The second step therefore

consists of defining one or more groups of joints. Information

about the joints to plan for is taken from the URDF and

a StateSpace representation for OMPL is constructed. The

meshes indicated by the URDF document are used to

construct a StateValidityChecker class. On top of these

classes, a SimpleSetup class can also be defined, thus making

it possible to solve planning problems. The user can also

define parameters specific to different planning algorithms,

but there is no requirement to do so. A configuration wizard

included in ROS can make the setup easier. The third step

is to define motion planning problems for the PR2. This

can be done in a variety of ways: directly calling planning

functions, using ROS-specific APIs or through visualization

tools such as shown in Figure 5.

Above we have described a very basic workflow of

planning paths using OMPL in ROS. The ROS-OMPL

interface has many more advanced features. First, motion

planning problems do not necessarily need to be specified
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Fig. 5. With the ROS rviz visualizer robot poses can be easily configured,
using OMPL to find feasible paths between poses.

by the user, but can be specified programmatically (e.g.,

as part of a sense-plan-act loop in conjunction with other

components in ROS). Second, different types of state space

parameterizations are possible: (a) joint-space representations

of the robot, where the robot’s degrees of freedom are

compounded into different state spaces: Rn for sequences

of single degree of freedom joints with joint limits, SO(2)
for continuous joints, SE(2) for robots moving in plane

and SE(3) for robots moving in space; (b) work-space

representations of the robot, where for example, the pose

of an arm’s end-effector is represented as an SE(3) state,

and the interpolation capability of the SE(3) state space

is overridden to use inverse kinematics. Third, the ROS

interface allows the user to specify complex constraints such

as keeping transported objects upright or keeping them within

view. Generating states that are in the desired goal region is

done in parallel with the execution of the rest of the planning

algorithm. The interface also automatically incorporates the

geometry of attached objects during planning by attaching

carried objects to the kinematic model of the robot.

The ROS interface to OMPL allows users to interact with

motion planners in a simple manner. Only the set of joints

the user wants to plan for (usually grouped and referred to

by the name of the group) and a specification of the goal

are needed. The goal can be specified, e.g., as a bounding

box in the joint space, or a desired link pose. We believe

that this functionality will allow for the widespread use of

OMPL in a broad variety of settings.

VI. DISCUSSION

We have described OMPL, an open source general-purpose

library for sampling-based motion planning. Thanks to its

integration with ROS it can be used on a wide variety

of hardware platforms, and currently serves as the motion

planning backend for the ROS manipulation software stack

(also known as MoveIt! in future releases of ROS [42]).

However, OMPL does not depend on ROS, and can be used

independently. OMPL.app includes a graphical front-end for

OMPL and serves as an example of how OMPL can be

integrated with third-party libraries.

One of the target applications of OMPL is in robotics edu-

cation. The graphical front-end provides a gentle introduction

to the complexity of motion planning: without writing any

code students can solve motion planning problems using

different planners, vary the parameters used for planning,

and perform extensive benchmarking experiments. Through

many demo programs and tutorials students should be able

to get quickly up to speed, and be able to develop, e.g., new

planning algorithms or alternate implementations of abstract

APIs.

We encourage contributions from other researchers. In

fact, we are already working with other research groups

on incorporating their algorithms into OMPL. Within our

own group OMPL has proven to be useful for performing

conformational search for macromolecular ensembles. Here,

its generality has paid off significantly. We are able to use

Rosetta—a standard molecular modeling package—to create

a new state space for molecules, and use Rosetta’s sampling

capabilities while performing a search for biophysically

plausible configurations of molecules using OMPL.

The long-term success depends on adoption and support by

the robotics community. Through the continued development

in our group and contributions from others, we expect OMPL

to become a very useful tool for motion planning researchers,

users in the robotics industry, and students who want to learn

more about sampling-based motion planning.
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