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Abstract

OpenModelica is a unique large-scale integrated open-source Modelica- and FMI-based modeling, simu-
lation, optimization, model-based analysis and development environment. Moreover, the OpenModelica
environment provides a number of facilities such as debugging; optimization; visualization and 3D ani-
mation; web-based model editing and simulation; scripting from Modelica, Python, Julia, and Matlab;
efficient simulation and co-simulation of FMI-based models; compilation for embedded systems; Modelica-
UML integration; requirement verification; and generation of parallel code for multi-core architectures.
The environment is based on the equation-based object-oriented Modelica language and currently uses the
MetaModelica extended version of Modelica for its model compiler implementation. This overview paper
gives an up-to-date description of the capabilities of the system, short overviews of used open source sym-
bolic and numeric algorithms with pointers to published literature, tool integration aspects, some lessons
learned, and the main vision behind its development.
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1 Introduction

The OpenModelica environment was the first open
source Modelica environment supporting equation-
based object-oriented modeling and simulation using
the Modelica modeling language (Fritzson and Engel-
son, 1998; Modelica Association, 2017; Fritzson, 2014).
Its development started in 1997 resulting in the release
of a flattening frontend for a core subset of Model-
ica 1.0 in 1998 (Fritzson and K̊agedal, 1998). After
a pause of four years, the open source development
resumed in 2002. A very early version of OpenModel-
ica is described in (Fritzson et al., 2005). Since then
the capabilities of OpenModelica have expanded enor-
mously. The Open Source Modelica Consortium which
supports the long-term development of OpenModelica
was created in 2007, initially with seven founding orga-
nizations. The scope and intensity of the open source
development has gradually increased. At the time of
this writing the consortium has more than fifty sup-
porting organizational members. The long-term vision
for OpenModelica is an integrated and modular model-
ing, simulation, model-based development environment
with additional capabilities such as optimization, sen-
sitivity analysis, requirement verification, etc., which
are described in the rest of this paper. Fritzson et al.
(2005, 2018c) are two less detailed and now partly out
of date overview papers about OpenModelica.
The current overview paper gives an up-to-date

greatly expanded description of the capabilities of the
system, short overviews of used open source symbolic
and numeric algorithms with pointers to published sci-
entific literature, tool integration aspects, some lessons
learned, and the main vision behind its development.
This paper is organized as follows. Section 2 presents

the idea of integrated environment, Section 3 details
the goals for OpenModelica, Section 4.1 presents a de-
tailed overview of the OpenModelica environment, Sec-
tion 5 describes selected open source applications, Sec-
tion 6 presents related work, and Section 7 the conclu-
sions.

2 Integrated Interactive Modeling
and Simulation Environments

An integrated interactive modeling and simulation en-
vironment is a special case of programming environ-
ments with applications in modeling and simulation.
Thus, it should fulfill the requirements both from gen-
eral integrated interactive environments and from the
application area of modeling and simulation mentioned
in the previous section.
The main idea of an integrated programming envi-

ronment in general is that a number of programming

support functions should be available within the same
tool in a well-integrated way. This means that the
functions should operate on the same data and pro-
gram representations, exchange information when nec-
essary, resulting in an environment that is both power-
ful and easy to use. An environment is interactive and
incremental if it gives quick feedback, e.g., without re-
computing everything from scratch, and maintains a
dialogue with the user, including preserving the state
of previous interactions with the user. Interactive envi-
ronments are typically both more productive and more
fun to use than non-interactive ones.
There are many things that one wants a program-

ming environment to do for the programmer or mod-
eler, particularly if it is interactive. Comprehensive
software development environments are expected to
provide support for the major development phases,
such as:

❼ Requirements analysis

❼ Design

❼ Implementation

❼ Maintenance

A pure programming environment can be somewhat
more restrictive and need not necessarily support early
phases such as requirements analysis, but it is an ad-
vantage if such facilities are also included. The main
point is to provide as much computer support as pos-
sible for different aspects of systems development, to
free the developer from mundane tasks so that more
time and effort can be spent on the essential issues.
Our vision for an integrated interactive modeling and

simulation environment is to fulfill essentially all the re-
quirements for general integrated interactive environ-
ments combined with the specific needs for modeling
and simulation environments, e.g.:

❼ Specification of requirements, expressed as docu-
mentation and/or mathematics

❼ Design of the mathematical model

❼ Symbolic transformations of the mathematical
model

❼ A uniform general language for model design,
mathematics, and transformations

❼ Automatic generation of efficient simulation code

❼ Execution of simulations

❼ Debugging of models

❼ Design optimization and parameter studies
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❼ Export/import of models to/from other tools

❼ Evaluation and documentation of numerical ex-
periments

❼ Graphical presentation

❼ Model and system structure parameterization

❼ Variant and version handling, traceability

3 Goals for OpenModelica

❼ Providing a complete open source Modelica-based
industrial-strength implementation of the Model-
ica language, including modeling and simulation of
equation-based models, system optimization, and
additional facilities in the programming/modeling
environment.

❼ Providing an interactive computational environ-
ment for the Modelica language. It turns out that
with support of appropriate tools and libraries,
Modelica is very well suited as a computational
language for development and execution of numer-
ical algorithms, e.g. for control system design and
for solving nonlinear equation systems.

The research related goals and issues of the Open-
Modelica open source implementation of a Modelica
environment include, but are not limited to, the fol-
lowing:

❼ Development of a complete formal specification
and reference implementation of Modelica, includ-
ing both static and dynamic semantics. Such a
specification can be used to assist current and fu-
ture Modelica implementers by providing a seman-
tic reference, as a kind of reference implementa-
tion.

❼ Language design, e.g. to further extend the scope
of the language, e.g. for use in diagnosis, struc-
tural analysis, system identification, integrated
product development with requirement verifica-
tion, etc., as well as modeling problems that re-
quire partial differential equations.

❼ Language design to improve abstract properties
such as expressiveness, orthogonality, declarativ-
ity, reuse, configurability, architectural properties,
etc.

❼ Improved implementation techniques, e.g. to en-
hance the performance of compiled Modelica code
by generating code for parallel hardware.

❼ Improved debugging support for equation-based
languages such as Modelica, to make them even
easier to use.

❼ Improved optimization support, with integrated
optimization and modeling/simulation. Two
kinds: parameter-sweep optimization based on
multiple simulations; direct dynamic optimization
of a goal function without lots of simulations, e.g.,
using collocation or multiple shooting.

❼ Easy-to-use specialized high-level (graphical) user
interfaces for certain application domains.

❼ Visualization and animation techniques for inter-
pretation and presentation of results.

❼ Integrated requirement modeling and verification
support. This includes the ability to enter require-
ments formalized in a kind of Modelica style, and
to verify that the requirements are fulfilled for se-
lected models under certain usage scenarios.

❼ High-performance simulation, e.g., of large-scale
models, generating simulations to efficiently utilize
multi-core computers for high performance.

3.1 History and System Architecture

The OpenModelica effort started by developing a
rather complete formal specification of the Modelica
language. This specification was developed in Opera-
tional Semantics, which still is the most popular and
widely used semantics specification formalism in the
programming language community. It was initially
used as input for automatic generation of the Mod-
elica translator implementations which are part of the
OpenModelica environment. The RML compiler gen-
eration tool (our implementation of Operational Se-
mantics) (Fritzson et al., 2009a) was used for this task.

However, inspired by our vision of integrated inter-
active environments with self-specification of programs
and data, and integrated modeling and simulation en-
vironments), in 2005 we designed and implemented an
extension to Modelica called MetaModelica (Pop et al.,
2006; Fritzson et al., 2011, 2019), see also Section 4.1.3.
This was done in order to support language modeling
and specification (including modeling the language it-
self), in addition to the usual physical systems model-
ing applications, as well as applications requiring com-
bined symbolic-numeric capabilities. Modeling the se-
mantics in Modelica itself was also inspired by func-
tional languages such as Standard ML (Milner et al.,
1997), and OCaml (OCaml, 2018). Moreover, it was
an investment into a future Modelica becoming a com-
bined symbolic-numeric language such as Mathemat-
ica, but more efficient and statically strongly typed.
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This language extension has a backwards compatible
Modelica-style syntax but was initially implemented
on top of the RML compiler kernel. The declara-
tive specification language primitives in RML with
single-assignment pattern equations, potentially recur-
sive uniontypes of records and match expressions, fit
well into Modelica since it is a declarative equation-
based language. In 2006 our whole formal specification
of Modelica static and translational semantics, at that
time about 50 000 lines, was automatically translated
into MetaModelica. After that, all further development
of the symbolic processing parts of the OpenModelica
compiler (the run-time parts were mainly written in
C), was done in MetaModelica.
At the same time we embarked on an effort to com-

pletely integrate the MetaModelica language exten-
sion into the Modelica language and the OpenModelica
compiler. This would enable us to support both Mod-
elica and MetaModelica by the same compiler. This
would allow modeling the Modelica tool and the Open-
Modelica compiler using its own language. This would
get rid of the limitations of the RML compiler kernel
and the need to support two compilers. Moreover, ad-
ditional tools such as our Modelica debugger can be
based on a single compiler.
Such an ability of a compiler to compile itself is called

compiler bootstrapping. This development turned out
to be more difficult and time-consuming than initially
expected; moreover, developers were not available for
a few years due resource limitations and other prior-
ities. Finally, bootstrapping of the whole OpenMod-
elica compiler was achieved in 2011. Two years later,
in 2013, all our OpenModelica compiler development
was shifted to the new bootstrapped compiler (Sjölund
et al., 2014; Sjölund, 2015), after automatic memory
reclamation (garbage collection), separate compilation,
and a new efficient debugger had been achieved for our
new compiler platform.

4 The OpenModelica Environment

At the time of this writing, the OpenModelica environ-
ment primarily consists of the following functionalities
and subsystems:

❼ OMC – The OpenModelica Model Compiler

❼ The new OpenModelica Compiler frontend

❼ Symbolic Programming and Meta Modeling with
MetaModelica

❼ Numeric-symbolic solver modules

❼ OMEdit – the OpenModelica Graphic Model Ed-
itor and Simulator GUI

❼ 3D Animation and Visualization

❼ Debugging and Performance Optimization

❼ Interactive Electronic Notebooks

❼ Interactive Scripting using Modelica, Python, Ju-
lia, and Matlab

❼ Audio-Video Tutorials

❼ FMI – Functional Mockup Interface

❼ Multi-Parameter Sensitivity Analysis

❼ Parameter System Identification

❼ Embedded System Support

❼ Model-based Control Design with Dynamic Opti-
mization

❼ Model-based Fault and Dependability Analysis

❼ Data Reconciliation for Enhanced Sensor Data

❼ Using Artificial Neural Networks for Model Cali-
bration

❼ Embedded System Support

❼ MDT Eclipse Plug-in

❼ ModelicaML UML Profile and Eclipse Plug-in

❼ Requirement Verification

❼ Design Optimization

❼ Parallelization and Multi-Core

The relationships between the main OpenModelica
subsystems are briefly depicted above in Figure 1.
Their functionality and selected applications are de-
scribed in the rest of this article. An example of us-
ing OpenModelica to perform simulations and plot-
ting simulation results is depicted in Figure 2 for the
V6Engine model.

4.1 OMC – The OpenModelica Model
Compiler

OMC is the OpenModelica compiler which translates
Modelica models into simulation code, which is com-
piled and executed to perform simulations. The Open-
Modelica compiler is generated from formal specifica-
tions in RML (earlier) or MetaModelica (currently).
At the time of this writing the OpenModelica compiler
(OMC) is generated from a specification of about three
hundred thousand lines of MetaModelica. Moreover,
OMC is able to compile itself, i.e., it is bootstrapped
(Sjölund et al., 2014). There is also a compilation mode
to generate low-footprint code for embedded systems
(Section 4.20).
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Figure 1: The architecture of the OpenModelica environment. Arrows denote data and control flow.

Figure 2: OpenModelica simulation of the V6Engine model with 11000 equations. Plotting simulation results
using OMEdit. Left : Model browser. Right : Plot variable browser. Bottom: message browser window.
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1. Lexical Analysis

Keywords, operators and identifiers are ex-
tracted from the model.

2. Parsing

An abstract syntax tree represented in Meta-
Modelica is created from the operators and
identifiers.

3. Semantic Analysis

The abstract syntax tree gets tested for se-
mantic errors.

4. Intermediate Representation

Translation of the abstract syntax tree to an
intermediate representation (IR) called SCode
in MetaModelica. This is further processed by
the frontend (Section 4.1.2) producing DAE
IR code.

5. Symbolic Optimization Backend

The intermediate representation gets opti-
mized and preprocessed (Section 4.2).

6. Code Generation

Executable code gets generated from the low
level intermediate representation.

Figure 3: OpenModelica compiler workflow – from model to executable simulation code.

4.1.1 OMC Compiler Structure

The compilation of Modelica models with the Open-
Modelica Compiler (OMC) can be divided into six
phases (Figure 3) to get an executable simulation. In
a nutshell the Frontend performs lexical and seman-
tic analysis and the Backend performs symbolic opti-
mization on the provided DAE-model-representation.
From the optimized MetaModelica intermediate repre-
sentation an executable simulation program in a target
language (C, C++ and some others) is generated and
compiled.

4.1.2 New Compiler Frontend

As previously mentioned in Section 3.1, a new Open-
Modelica compiler frontend has been developed. This
large effort has been made in order to provide complete
language coverage as well as much faster compilation
including efficient support for compilation of very large
models. The first usable version was released in Open-
Modelica 1.14.0, in December 2019. The new fron-
tend (Pop et al., 2019) uses model-centric and multiple
phases design principles and is about 10 to 100 times
faster than the old frontend. A few highlights:

❼ The new front-end was carefully designed with
performance and scalability in mind.

❼ References (pointers) are used to link component
references to their definition scope via lookup and
usage scope via application.

❼ Constant evaluation and expression simplification
are more restricted compared to the old frontend.

❼ Arrays of basic types and arrays of models are not
expanded until the scalarization phase.

❼ Expansion of arrays is currently needed because
the backend currently cannot handle all the cases
of non-expanded arrays, but will be eliminated in
the future (Section 4.2.8) to give increased perfor-
mance for array computations.

One of the design principles of the new frontend has
been to find ways to break dependencies between the
various frontend phases. Instead of being component-
focused like the old compiler frontend it has been de-
signed to be model-focused, meaning that each fron-
tend phase processes the whole model before the model
is passed on to the next phase. The result is the design
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seen in Figure 4, which shows the flow of the model
through the different phases of the new frontend.
The symbolic instantiation phase builds the instance

tree and constructs all the nodes, and the expression
instantiation phase instantiates all expressions in that
instance tree. This involves looking up the names used
in expressions and associating them with the correct
nodes in the instance tree. The lookup tree for a class is
only constructed once and then reused for all instances
of that particular class, unlike the old frontend where
a new lookup tree is constructed for each instance.
The typing phase traverses the instance tree and de-

termines the type of all variables and expressions. The
flattening phase of the new frontend traverses the in-
stance tree and flattens the tree into a flat model that
consists of a list of variables, a list of equations, and
a list of algorithms. It also expands connect-equations
and for-equations into basic equations.
The new frontend is implemented in modern Meta-

Modelica 3.0 which combines Modelica features with
functional languages features. The implementation
currently consists of 65 MetaModelica packages or
uniontypes defining encapsulated data structures and
functions that operate on the defined data.

4.1.3 MetaModelica for Symbolic Programming
and Meta-Programming

The need for integrating system modeling with ad-
vanced tool capabilities is becoming increasingly pro-
nounced. For example, a set of simulation experiments
may give rise to new data that is used to systemati-
cally construct a series of new models, e.g. for further
simulation and design optimization.
Such combined symbolic-numeric capabilities have

been pioneered by dynamically typed interpreted lan-
guages such as Lisp (Teitelman, 1974) and Mathemat-
ica (Wolfram, 2003). Such capabilities are also relevant
for advanced modeling and simulation applications but
lacking in the standard Modelica language. Therefore,
this is a topic of long-running design discussions in the
Modelica Design group.
One contribution in this direction is the MetaModel-

ica language extension (Pop and Fritzson, 2006; Fritz-
son et al., 2011, 2019) that has been developed to ex-
tend Modelica with symbolic operations and advanced
data structures in a backwards-compatible way, while
preserving safe engineering practices through static
type checking and a compilation-based efficient imple-
mentation.
The MetaModelica language is an efficiently com-

piled language that provides symbolic programming us-
ing tree and list data structures. This is similar to what
is provided by the rather young language Julia (Bezan-
son et al., 2017; Julialang, 2018) which has recently ap-

Figure 4: The OMC new frontend phases.

peared, Julia 1.0 was released in August 2018. A com-
parison between MetaModelica and Julia is presented
by Fritzson et al. (2019). MetaModelica is also used
for modeling/specification of languages (including the
Modelica language) and for Modelica-style program-
ming of model transformations, where the OpenMod-
elica compiler itself is the currently largest application.
The research contributions of MetaModelica are not

about inventing new language constructs since they
have already been well proven in several other lan-
guages. However, in the context of Modelica there are
contributions on integrating such constructs into the
Modelica language including the Modelica type system
in a backwards compatible way. The following is a very
brief overview of the most important language exten-
sions:

❼ Overloading of user-defined operators and func-
tions. Note: overloading is called multiple dis-
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patch in Julia.

❼ Uniontype construct to define unions of possibly
recursive record types. This is used to create tree
data structures. Syntax example:

uniontype Exp

record RCONST

Real rval;

end RCONST;

record INTconst

Integer exp1;

end INTconst;

end Exp;

Uniontypes are also present in Julia.

❼ The predefined type Any is a supertype of any
other MetaModelica type, i.e., all other MetaMod-
elica types are subtypes of Any. Used e.g. in re-
placeable,

replaceable type TypeParam =

Any constrainedby Any;

❼ The predefined Option uniontype provides a type
safe way of representing optional values.

❼ Built-in list and tuple data types. List of inte-
gers: list(2,3,4) is a list of integers. A tuple:
(a,b,"cc")

❼ Match-expressions for traversing and transform-
ing complex data structures. This supports pat-
tern matching specified by pattern expressions,
and building data structures such as trees, lists,
etc.

❼ Exception handling using

try

// ...

else

// ...

end try;

Also a fail() function to cause an exception.

The following recent enhancements available in
MetaModelica 3.0 were found to be quite useful in the
implementation of the new frontend:

❼ Flexible pattern matching specified by (), that
does not require verbose listing of all record fields
(or named field access) of the record in the pattern
matching, e.g., UNTYPED BINDING().

❼ Record field access via dot notation inside the case,
e.g., binding.bindingExp.

❼ Definition of functions inside uniontypes.

❼ Definition and usage of parameterized union
datatypes such as trees using redeclare/replace-
able types.

4.1.4 Experimental Just-in-Time Compilation

Just-in-Time Compilation (JIT) allows compilation
and executing code during runtime. Such a facility
opens up new flexible strategies for handling the com-
pilation and execution of Modelica code and even go-
ing beyond Modelica to general variable structure sys-
tems. The following work is currently ongoing related
to OpenModelica.

The OpenModelica LLVM backend (OMLB)
The OpenModelica LLVM backend (OMLB) is an ex-
perimental OpenModelica prototype backend to inves-
tigate just-in-time compilation using the LLVM com-
piler framework (Tinnerholm, 2019). The goal was to
investigate the advantages and disadvantages of hav-
ing OMC target LLVM instead of C. The investiga-
tion was also performed to examine if targeting LLVM
would be a viable option to achieve efficient Just-in-
time compilation (JIT). Another approach with similar
goals was conducted by (Agosta et al., 2019). While
OMLB currently is not complete enough for bootstrap-
ping, it demonstrates the benefits of having an LLVM
based backend and JIT. OMLB is presently able to
compile the algorithmic subsets of MetaModelica and
Modelica interactively. Inspired by the design goals
of the Julia programming language and the successful
use of Julia for equation-based modeling as done by
Elmqvist et al. (2017), an investigation was conducted
in 2018 comparing MetaModelica and Julia (Fritzson
et al., 2019).
This investigation highlighted the similarities and

differences between the two languages, both in terms of
design goals and programming paradigm. The conclu-
sions were that there are similarities both with regards
to the indented audience and the design goals of the
two. These similarities prompted another investigation
(Tinnerholm et al., 2019) regarding the possibility of
automatically translating the existing OpenModelica
frontend into Julia. Such an OpenModelica frontend
in Julia could provide a framework for experimenta-
tion with variable structured systems while at the same
time adhering to the Modelica standard.

An Experimental Julia-based Modelica Compiler Pro-
totype
To empirically investigate the advantages, disadvan-
tages, and challenges of providing a Modelica com-
piler in Julia, an OpenModelica to Julia translator
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was developed together with an extension of the Meta-
Modelica runtime initially described in (Fritzson et al.,
2019). From our preliminary experiments in (Tinner-
holm et al., 2019) we observed that automatically gen-
erated Julia code may outperform hand-written Meta-
Modelica code in some cases. However, the compilation
time was overall slower compared to OMLB, due to
OMLB making use of precompiled runtime functions
in contrast with the overhead imposed by the Julia
compiler due to type specialization.

Prototyping a Standards Compliant Modelica Compiler
with Run-time Just-in-Time Compilation
Regarding just-in-time compilation (JIT), the status
in the fall of 2019 was that there are still two op-
tions to provide a JIT in the OpenModelica compiler
environment. One is via OMCompiler.jl – an experi-
mental standards compliant prototype subset Model-
ica compiler in Julia, the other is to increase the scope
of OMLB with its associated JIT. However, since the
MetaModelica to Julia translator is capable of trans-
lating the existing OMC frontend, it is also capable of
converting the OMLB code-generator into Julia. Thus,
further development of OMCompiler.jl will not invali-
date the possibility of having LLVM as a final backend
target for OMC.

4.1.5 Template-Based Code Generation

The OMC code generation uses a text-template based
approach. The Susan text template language (Fritzson
et al., 2009b) based on MetaModelica was developed
for this purpose. It facilitates generation of code for
multiple target platforms from the low-level intermedi-
ate code in and enables writing concise code generation
specifications. Several alternative regular code genera-
tors are available to produce the simulation code as C
or C++ code (or Java or C# code using experimental
code generators), which is compiled and executed to
perform simulations or to export FMUs.

4.2 OMC Backend with Numeric-Symbolic
Solver Modules

In the following we briefly present four of the most
important numeric-symbolic modules inside the OMC
Backend that perform symbolic optimization (Fig-
ure 3).

4.2.1 Removal of Simple Equations

Some variables in the equation system correlate, be-
cause they are connected by so-called simple equations.
The most elementary equation is equality, e.g.: x = y.
In this equation it is possible to declare either x or y

as an alias variable and replace it in every equation
it occurs with the corresponding other variable. The
equation can be removed from the system and is later
used to reconstruct the value of the removed alias vari-
able if necessary. Even more complex, but still simple
equations can be extracted such that the resulting sys-
tem will be much smaller (e.g. any linear equation
connecting two variables). More information for this
process regarding a specific model can be gained using
the compiler flag -d=debugAlias.

4.2.2 BLT-Transformation (Matching/Sorting)

The transformation of a system of differential-algebraic
equations to Block-Lower-Triangular form is funda-
mental to the simulation. The first step is to assign
every variable to an equation such that the equation
can be solved (explicitly or implicitly) for the assigned
variable. This step is called Matching and is unique if
there are no algebraic loops in the system. Afterwards
the equations are sorted into blocks, such that an evalu-
ation sequence is achieved (Sorting). If a block contains
more than one equation, it forms an algebraic loop,
where all variables assigned to those equations have to
be solved simultaneously. Further information on BLT-
Transformation can be found in Duff et al. (2017, chap-
ter 6). More information regarding a specific model can
be gained using the compiler flag -d=backenddaeinfo.

4.2.3 Index Reduction

The differential index of a system of differential-
algebraic equations is defined as the maximum num-
ber of differentiations of all equations such that all
unknowns of the system can be solved by integrat-
ing an ordinary differential equation. Most solvers are
designed to work with systems of index zero or one,
so an efficient reduction is necessary. The equations
that have to be differentiated and the corresponding
number of differentiations can be obtained with Pan-
telides (1988) algorithm. The index reduction algo-
rithm with dummy-states, described in Söderlind and
Mattsson (1993), reduces the system to index one,
so that it can be simulated with common solvers.
Alternative methods to handle index reduction have
been proposed in Qin et al. (2016, 2018). Simula-
tion without index reduction is also possible, but less
reliable. The process of index reduction identifies
a set of state variables which are algebraically con-
nected. Some of those states will be treated as reg-
ular algebraic variables (dummy states) to simulate
the system correctly. One can influence this process
of state selection by providing stateSelect attributes
for states, e.g., x(stateSelect=StateSelect.avoid),
see Table 1. More information for this process regard-
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Table 1: StateSelect Attributes

Attribute Description Strictness

always Always pick as continuous state (never pick as dummy state) Forced

prefer Prefer to pick as continuous state Suggestion

default Default value, no special treatment No Influence

avoid Try to avoid picking this as a continuous state Suggestion

never Never pick as continuous state (always pick as dummy state) Mostly Forced

Table 2: TearingSelect Annotation

Attribute Description Strictness

always Always pick as tearing variable Mostly Forced

prefer Prefer to pick as tearing variable Suggestion

default Default value, no special treatment No Influence

avoid Try to avoid picking this as a tearing variable Suggestion

never Never pick as tearing variable Forced

ing a specific model can be gained using the compiler
flags {d=bltdump or {d=stateselection (extends {d=
backenddaeinfo).

4.2.4 Tearing

For every algebraic loop some of the assigned variables
are chosen as tearing-variables, such that all other vari-
ables can be evaluated explicitly on the basis of those
variables. The goal is to efficiently find small sets of
tearing-variables. Many algorithms are already imple-
mented in the OpenModelica Compiler and published
in Cellier and Kofman (2006). One can influence this
process by providing tearingSelect annotations, sim-
ilar to the stateSelect attribute. Since this is not
part of the Modelica language and specific to Open-
Modelica, it must be provided as an annotation (e.g. x
annotation(tearingSelect = prefer); see Table 2.
Discrete variables can never be tearing variables. More
information for this process regarding a specific model
can be gained using the compiler flags -d=dumpLoops
or -d=iterationVars.

4.2.5 Simulation using Numeric Solvers

After code generation for specified target language
and linking with the OpenModelica Simulation Run-
time, the model can be simulated. For the simu-
lation OpenModelica offers multiple numeric integra-
tion/solver methods for ODE systems as well as DAE-
mode (Section 4.2.6) for direct solution of DAE sys-
tems. Mostly DASSL (Petzold, 1982) respectively IDA
(Hindmarsh et al., 2005) are used to integrate the sys-
tems, but there are more solvers for specific problems

(Table 3). For models containing algebraic loops there
are multiple linear (Table 4) and non-linear (Table 5)
algebraic solvers to choose from. There are general
purpose solvers like LAPACK for linear problems and
a combination of a Newton method with the total pivot
method as fallback.

4.2.6 DAEMode

A recent extension of the numeric solver module is the
DAEMode which is used for solving very large mod-
els. DAE-mode can be accessed using the compiler flag
{daeMode. This is part of an emerging trend in Model-
ica tools of handling large-scale models, with hundreds
of thousands or possibly millions of equations, (Casella,
2015). OpenModelica has pioneered this field by in-
troducing sparse solvers in the solution chain: KLU
for linear algebraic equations, Kinsol for nonlinear al-
gebraic equations, and IDA for causalized differential
equations. It also introduced the direct use of IDA as
differential-algebraic equation solver, skipping the tra-
ditional causalization step, which is computationally
more efficient for certain classes of systems. The largest
system handled so far is an electro-mechanical power
system model with about 600 000 differential-algebraic
equations (Braun et al., 2017).

4.2.7 Homotopy-based Initialization

In many cases, solving the initialization problem of
Modelica models requires solving nonlinear system by
means of iterative methods, whose convergence may
be critical if the provided initial guesses are not close
enough to the solution. To mitigate this problem,
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Table 3: Available numeric solver methods

Integrator Method Explicit or Implicit Step Size Order

euler Forward Euler method Explicit Fixed 1

impeuler Backward Euler method Implicit Fixed 1

irksco Own developed Runge-Kutta solver Implicit Variable 1-2

heun Heun’s method Explicit Fixed 2

trapezoid Trapezoid rule Implicit Fixed 2

rungekutta Classic Runge-Kutta method Explicit Fixed 4

imprungekutta Runge-Kutta methods based on Radau and
Lobatto IIA-method

Implicit Variable 1-6

rungekuttaSsc Runge-Kutta based on Novikov Explicit Variable 4-5

Dassl (default) BDF method Implicit Variable 1-5

ida BDF method with sparse linear solver Implicit Variable 1-5

symSolver Symbolic inline solver - Fixed 1

symSolverSsc Symbolic implicit Euler - Variable 1

qss Quantized state systems method (Migoni
et al., 2011)

Implicit Variable 1

dassl + daeMode Solves the DAE system instead of ODE sys-
tem

Implicit Variable 1-5

ida + daeMode Solves the DAE system instead of ODE sys-
tem

Implicit Variable 1-5

optimization Special solver for dynamic optimization - - -

Table 4: Available linear solvers for algebraic loops

Solver Method

default Lapack with totalpivot as fallback (Anderson et al., 1999)

lapack Non-Sparse LU factorization using LAPACK (Anderson et al., 1999)

lis Iterative linear solver (Nishida, 2010)

klu Sparse LU factorization (Natarajan, 2005)

umfpack Sparse unsymmetric multifrontal LU factorization (Davis, 2004)

totalpivot Total pivoting LU factorization for underdetermined systems

Table 5: Available non-linear solvers for algebraic loops

Solver Method

hybrid Modified Powell hybrid method from MINPACK (Dennis Jr. and Schnabel, 1996)

kinsol Combination of Newton-Krylov, Picard and fixed-point
solver

(Taylor and Hindmarsh, 1998)

newton Newton-Raphson method (Cellier and Kofman, 2006)

mixed Homotopy with hybrid as fallback (Keller, 1978; Bachmann et al., 2015)

homotopy Damped Newton solver with fixed-point solver and
Newton homotopy solver as fallbacks
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OpenModelica implements the homotopy() operator of
the language, which allows to replace some key expres-
sions in model equations with simplified counterparts,
to make the initialization problem less sensitive to an
accurate choice of initial guesses. Once the solution
of the simplified problem has been found, a homotopy
transformation is performed from the simplified to the
actual formulation of the expression in the homotopy
operators. If the simplified expression is chosen appro-
priately, the homotopy path followed by the solution
is continuous and allows to reliably reach the solution
of the actual initialization problem (Sielemann et al.,
2011; Bachmann et al., 2015; Keller, 1978). See also
Casella et al. (2011b) for an application.

4.2.8 New OMC Backend

The current OMC backend is lacking in modularity,
efficiency, and does not support non-expanded arrays
in a general way. The latter functionality is needed
to support compilation and simulation of large-scale
models with large arrays. Therefore an effort has
been started spring of 2020 of re-designing and re-
implementing the backend to improve modularization
and enable efficient handling of general non-expanded
arrays.

4.3 OMEdit – the OpenModelica Graphic
Model Editor and Simulator GUI

OMedit is the OpenModelica graphical model edi-
tor (Asghar et al., 2011) for component-based model
design by connecting instances of Modelica classes.
The editor also provides text editing. Moreover, the
OMEdit GUI provides a graphical user interface to
simulation and plotting (Figure 2). Also, it also pro-
vides browsing, parameter update, 3D animation (Sec-
tion 4.4), debugging and performance analysis (Sec-
tion 4.5), and FMI composite editing (Section 4.10).

Figure 5 depicts the connection editing view of
OMEdit in the center. The model browsing window
is to the left and a model documentation window is
shown at the upper right.
A typical usage of OMEdit is to first create a model

using the connection editor, then simulate, and finally
plot by selecting which variables should be plotted in
the variable plot selection window (Figure 5, lower
right).
A model can be created by opening a new empty

model and dragging/dropping model components from
the model browsing window to the left into the central
connection editing area and creating a new model by
connecting those components. Alternatively an exist-
ing model can be opened by double clicking the model
in the model browser window to the left. A model can

also be created textually by clicking the text button
and typing in Modelica text.
A simulation is performed by clicking on the green

right-arrow at the top. After a successful simulation
the plot selection window will appear at the right. One
rather unusual example of how a plot can appear is vis-
ible in Figure 2). There are also variants of the simu-
lation green arrows at the top that combine simulation
with debugging or 3D visualization.

4.4 3D Animation and Visualization

The OpenModelica 3D animation and visualization is
a built-in feature of OMEdit to animate based on 3D
shapes defined by the MSL Multi-Body library. It pro-
vides visualization of simulation results and animation
of geometric primitives and CAD-files. OpenModel-
ica generates a scene description XML-file which as-
signs model variables to visualization shape attributes.
The scene description file can also be used to gen-
erate a visualization controlled by an FMU either in
OMEdit or in an external visualization tool as Unity
3D (Waurich and Weber, 2017). In combination with
the Modelica DeviceDrivers Library, interactive simu-
lations with visual feedback and 3D-interactions can
be implemented for training, development and testing
purposes.

4.5 Debugging and Performance Analysis

4.5.1 The Algorithm Debugger

The OpenModelica algorithm debugger (Figure 7),
(Pop, 2008; Sjölund, 2015) is available for use either
from OMEdit or from the MDT Eclipse plug-in. The
debugger provides traditional debugging of the algo-
rithmic part of Modelica, such as setting breakpoints,
starting and stopping execution, single-stepping, in-
specting and changing variables, inspecting all kinds
of standard Modelica data structures as well as Meta-
Modelica data structures such as trees and lists.

4.5.2 The Equation Model Debugger

The OpenModelica equation model debugger (Fig-
ure 8) (Pop et al., 2014; Sjölund, 2015) is available
for use from OMEdit. It provides capabilities for de-
bugging equation-based models, such as showing and
explaining the symbolic transformations performed on
selected equations on the way to executable simulation
code. It can locate the source code position of an equa-
tion causing a problem such as a run-time error, traced
backwards via the symbolic transformations.
In February 2020, new functionality was demon-

strated to perform “backward” trace of which variables
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Figure 5: OMEdit on the Modelica.Electrical.Analog.Examples.ChuaCircuit model.
Center : Model connection diagram. Upper right : Information window. Lower right : Plot variable
browser with a small popup re-simulate menu on top.

Figure 6: OpenModelica 3D animation of a simulated excavator in OMEdit and in unity 3D.
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Figure 7: The OpenModelica algorithmic code debugger viewed from the MDT Eclipse plug-in. The OMEdit
version of the debugger looks about the same. A breakpoint has been set in the function which is
called from the small model called SimulationModel.

Figure 8: The OpenModelica equation model debugger. Left : Equations view where equations and symbolic
transformations can be viewed. Right : Source view where the erroneous equation is pointed out.
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(a) Left : Turn on the menu choice.

(b) Right : List of variables directly influencing the
chosen variable.

Figure 9: Debugger tracing variables or equations influence of a variable.

or equations that directly influence a chosen variable
(Figure 9). This can be useful to understand the de-
pendencies causing a faulty variable value.

4.5.3 The Performance Profiler/Analyzer

By using performance profiling analysis it is possible
to detect which equations or functions cause low per-
formance during a simulation.
The OpenModelica profiler (Sjölund, 2015) uses

compiler-assisted source code instrumentation. There
is one call to a real-time clock before executing the
equation block or function call and one call to the clock
after execution of the block. Associated with each call
is a counter that keeps track of how many times this
function was triggered for the given time step. Simi-
larly, each call is associated with clock data – one vari-
able for the total time spent in the block for all time
steps and one variable for the total time spent in the
block for the current time step. The time measurement
uses the best real-time clock available on the used plat-
form.
With profiling enabled only for equation blocks

(strongly connected equation sets) and functions, the
overhead cost is low compared to the cost of solving
most nonlinear systems of equations. The profiler is
integrated with the equation debugger, which enables

Figure 10: The OpenModelica performance profiler
showing which sets of equations use the
biggest fraction of the simulation time.

the tool to directly point out the equations using a
large fraction of the simulation time (Figure 10).

4.6 Teaching with Interactive Electronic
Notebooks

Electronic notebooks provide an executable electronic
book facility supporting chapters, sections, execution
of simulation models, plotting. The first versions of
OpenModelica used the proprietary Mathematica note-
book facility. Later versions include a simple open
source implementation called OMNotebook described
below. More recently, a web-based notebook has been
developed as well as a plug-in to the Jupyter notebook
facility.
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(a) Left : The DrModelica document start page. (b) Right : The VanDerPol sub-document showing a
cell with a Modelica model, simulation commands,
and plot results.

Figure 11: The OMNotebook electronic notebook showing part of the DrModelica document (course-material)
for learning Modelica.

4.6.1 OMNotebook and DrModelica

OMNotebook (Figure 11) (Fernström et al., 2006) is
a book-like interactive user interface to OpenModelica
primarily intended for teaching and course material. It
supports sections and subsections to any level, hiding
and showing sections and cells, interactive evaluation
and simulation of Modelica models as well as plotting
results. The user can define his/her own books. This
tool is useful for developing interactive course mate-
rial. The DrModelica (Sandelin et al., 2003) interac-
tive Modelica teaching course was the first main appli-
cation, at that time based on Mathematica notebooks,
later translated to use interactive Modelica scripting in
OMNotebook.

4.6.2 OMWebbook – Interactive Web-based
Editable and Executable Book

OMWebbook (Figure 12) (Moudgalya et al., 2017;
Fritzson et al., 2018b) is an interactive web-based elec-
tronic book. This is similar to OMNotebook, but tex-
tual model editing and simulation is performed in a
web-browser. Simulation is performed by a dedicated
simulation server. Thus, the user need not install
OpenModelica on a computer. Editing and simulation
can even be done from smartphones or tablets.

Figure 12: OMWebbook with editable models, simula-
tions, and plots, here simulating the bounc-
ing ball.

4.6.3 Jupyter Notebook for OpenModelica

More recently, the Python-based Jupyter notebook
software (Project Jupyter, 2016) has appeared, sup-
porting a number of scripting languages. Therefore,
based on user demand, we have also developed a
Jupyter notebook plug-in for OpenModelica (2020)
supporting Modelica scripting. However, Python
scripting together with the OMPython package was
already available and used in the Jupyter notebooks
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presented in Lie et al. (2016).

4.7 Self-Learning Audio-Video Tutorials

A number of interactive audio-video tutorials, called
spoken tutorials, have been developed to provide step-
by-step teaching about how to use OpenModelica and
develop simple Modelica models (Moudgalya et al.,
2017; FOSSEE-Modelica, 2020). The audio parts of
the tutorials are dubbed in many languages and are
suitable for on-line usage (Moudgalya et al., 2017). A
total of 14 short Spoken Tutorials of 10 minutes each
are available, and a total of 10,000 students have been
trained using these tutorials at the time of writing this
article.

4.8 Text-book Companions for Teaching
and Prototyping

Most open source software projects rely on contribu-
tions from the user community. Students form a sub-
stantial fraction of this community. One of the short-
comings of Free and Open Source Software is inade-
quate documentation, and the lack of contributions to
it by students aggravate this problem: Students of-
ten lack motivation to document or are not capable of
creating good documents. The converse is often true:
Students are much better coders and they often enjoy
coding. We addressed the above mentioned problem
by solving the inverse problem: Ask students to write
code for existing documents. For students, documents
are textbooks.

A textbook companion comprises a collection of
code for all relevant solved problems in a textbook
(Moudgalya, 2018). A student who has understood
the concepts in a textbook may be motivated to learn
an appropriate open source software and code the
solved examples, verifying the correctness at every
step. There is no document containing the code and
hence there is very little chance of copyright violations.

The student community has already created a large
number of textbook companions for OpenModelica
(Moudgalya, 2018; FOSSEE-OM-Textbook, 2020). At
the time of this writing, we have OpenModelica text-
book companions for 56 books. Textbook companions
are extremely useful as documents. Anyone who needs
to know the syntax and semantics for a command could
locate a solved example that has the underlying calcu-
lation and the corresponding code. A textbook com-
panion can also be used by course instructors to carry
out what-if studies on solved examples. Finally, if a
large number of textbook companions are created, a
course instructor can use a database of such documents
to set problems.

4.9 Interactive Scripting APIs using
Modelica, Python, Julia, and Matlab

Interactive scripting APIs (Application Programming
Interfaces) are provided for several scripting languages
using interactive read-eval-print loops.
There is an interactive session handler, OMShell,

that parses and interactively interprets commands and
expressions in Modelica for evaluation, thus providing
Modelica scripting. The session handler also contains
simple history facilities, and completion of file names
and certain identifiers in commands.
Interactive sessions handlers with scripting APIs

to OpenModelica are also provided for the languages
Python (Python Software Foundation, 2018), Julia
(Julialang, 2018), and Matlab (MathWorks, 2018),
through the subsystems OMPython (Lie et al., 2016),
OMJulia (Lie et al., 2019) and OMMatlab (OpenMod-
elica, 2020). This gives the user the possibility to use
Modelica together with the rich set of facilities and li-
braries in these languages, e.g. for tasks such as control
design and post processing of simulation results.
More precisely, the scripting language APIs

(OMPython, OMJulia, OMMatlab) provide methods
for

(i) establishing objects of Modelica code within the
scripting language,

(ii) getting and setting Modelica model parameters,

(iii) getting and setting piece-wise constant inputs over
a time interval,

(iv) getting and setting simulation options,

(v) carrying out simulation and getting solutions,

and more. Initial states can be set via parameters.

4.10 FMI – Functional Mockup Interface

4.10.1 FMI Import and Export

The FMI (Functional Mockup Interface) standard de-
scribes a way of describing and packaging causal mod-
els in either binary or source-code form. Many tools
(including Modelica tools) support exporting models
from their native modeling representation into FMI
form. The standard is widely used in industry, es-
pecially the automotive industry which initially drove
the development. Today, the Modelica Association is
maintaining the standard and continuously developing
it further. A model or simulation unit is called FMU
(Functional Mockup Unit) according to the standard.
Regarding export from Modelica tools, compared to a
Modelica model which is usually acausal, an exported
model in FMU form is less general since it is causal
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Figure 13: The OpenModelica OMSimulator composite model editor (left) and simulator right.

– the causality of ports has to be fixed. The Open-
Modelica toolset can be used to both export any given
Modelica model as an FMU and import FMUs to cre-
ate a composite model.

4.10.2 OMSimulator – FMI and TLM-based
Simulation/Co-simulation and Composite
Model Editor

Simulation according to the FMI standard can be done
using model-exchange FMUs (exported models with-
out a solver), co-simulation FMUs (exported mod-
els including an embedded solver), or tool-to-tool co-
simulation. Standard Modelica simulation uses the
same solver for all included model components, which
is the approach used for model-exchange FMUs. Co-
simulation mechanisms that synchronize several solvers
have to be used for co-simulation FMUs, which some-
times may cause numerical stability issues.
OMSimulator (2020) is an OpenModelica subsystem

that provides efficient simulation and co-simulation of
FMUs. Thus, models from non-Modelica tools com-
piled into FMUs can also be utilized and simulated.
Furthermore, models that cannot be exported as FMUs
can be integrated in a simulation using tool-to-tool co-
simulation. This is provided via wrappers to mod-
els in tools such as ADAMS (MSCSoftware, 2020),
Beast (Fritzson et al., 2014; Fritzson, 2018), Simulink
(MathWorks, 2019a), Hopsan (Axin et al., 2010), or co-
simulation of FMUs with embedded solvers. The sys-
tem can optionally be used with TLM (Transmission
Line Modeling) connectors, which provide numerically
more stable co-simulation.
The previous version, OMSimulator 1.0 (2017) was

already made available in OpenModelica 1.12.0 (Fritz-
son et al., 2018a). However, it was strictly restricted
to TLM-connections between components.

OMSimulator is provided together with a compos-
ite model editor integrated in OMEdit (Figure 13),
that allows combining external models (e.g. FMUs
for both model-exchanged and co-simulation) into new
composite models, simulating them and in some cases
(for the TLM version) perform 3D animation. Com-
posite models can be imported and exported by using
the SSP standard (Systems and Structure Parameter-
ization) standard (Modelica Association, 2018; Open-
Modelica, 2020).

4.11 Parameter System Identification

OMSysIdent (2020) is a system parameter identifica-
tion module built on top of the OMSimulator (2020)
API. For estimating the sought parameter values, a
system model needs to be provided as FMU, as well as
respective measurement data of the system. The API
of OMSysIdent is integrated with the scripting inter-
faces of OMSimulator and OpenModelica (using Lua
or Python scripting). Internally, the module uses the
Ceres Solver (Agarwal et al., 2018) library for the op-
timization task.

4.12 Parameter Search-Based Design
Optimization

An important use for modeling and simulation is to
improve a system design, usually before it is physi-
cally realized and manufactured. In this process it is
customary to perform a number of simulations for dif-
ferent values of the design parameters, until a design
has been obtained that best fulfills a given set of design
criteria.
The traditional parameter sweep based design opti-

mization performs many simulation runs while sweep-
ing, i.e., performing a linear search, of the desired pa-

258



Fritzon et al., “OpenModelica Integrated Environment”

(a) Selecting variables, objectives, parameters.

(b) A result plot with a Pareto optimization of two goal
functions.

Figure 14: The OpenModelica OMOptim tool for pa-
rameter sweep optimization.

rameters over an interval in order to find an optimal
value of a goal function or goal variable. The drawback
is the very large number of simulations that might be
required. For example, three parameters each with an
interval that is subdivided into 100 steps would require
one million simulations to cover all combinations for
these parameters.

4.12.1 The OMOptim Tool with Genetic
Algorithms for Parameter Search

The OMOptim OpenModelica tool (Figure 14),
(Thieriot et al., 2011) provides a GUI and uses ge-
netic algorithms (simulated annealing) during parame-
ter exploration as a search heuristic to find an optimal
parameter setting.

Figure 15: Sensitivity of reactor temperature to ran-
domly varied heat transfer coefficient UA.
Nominal parameters (solid) for increase in
cooling temperature Tc (red) and decrease
in cooling temperature Tc (blue).

4.12.2 Parameter Sweep Optimization based on
Python, Julia, or Matlab Scripting

With a simulation model expressed in Modelica, and
a cost function either expressed in Modelica or the
scripting language, for-loops in a scripting language,
Section 4.9, such as Python, Julia, Matlab, and to
some extent Modelica can be used to compute how the
cost function varies with changing values of parame-
ters. Typical scripting language code for carrying out
this operation is as follows (Julia syntax):

# mod -- model object

# sweep over np parameter values

np = 20

# parameter vector

par = range (1.0, 10.0, length =np)

# vector for storing resulting cost

cost = zeros(np)

for i in par

setParameters(mod ,"p = ✩(par [i])")

simulate(mod)

cost[i] = getSolutions(" cost ")[end]

end

This idea can trivially be extended to multi parame-
ter problems, including parameterization of inputs. To
find parameters which, say, minimize the cost, one can
then simply search for minimal point in the cost ar-
ray, or by fitting the cost array data to some analytic
parametric function, and then find the minimum of the
analytic function.

To illustrate the idea of parameter sweep, Figure 15
shows how the solution of a reactor model (Seborg
et al., 2011) changes for a randomly drawn heat trans-
fer coefficient within a range.
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Figure 16: Dynamic optimization formulates the whole
trajectory in terms of trajectory segments
whose shapes are adjusted during optimiza-
tion.

4.13 Dynamic Optimization Using
Collocation

Another approach, dynamic optimization using collo-
cation (Figure 16), (Bachmann et al., 2012; Åkesson,
2008; Ruge et al., 2014; Houska et al., 2011), avoids
the combinatorial explosion of multiple simulation runs
since only a single model evaluation is required to find
an optimal trajectory. This is at the cost of being very
sensitive to the model – the methods may typically not
converge except for small models, i.e., not at all robust.

A collocation method formulates an optimization
problem directly on a whole trajectory which is divided
into trajectory segments (Figure 16) whose shapes are
determined by coefficients which are initially not de-
termined.

During the optimization process these coefficients
are gradually assigned values which make the trajec-
tory segments adjust shape and join into a single tra-
jectory with a shape that optimizes the goal function
under the constraints of fulfilling the model equations.

The systems to be optimized are typically described
using differential-algebraic equations (DAEs), which
can be conveniently formulated in Modelica. The cor-
responding optimization problem can be expressed us-
ing graphical or textual formulation based on annota-
tions.

Solution algorithms based on collocation methods
are highly suitable for discretizing the underlying dy-
namic model formulation. Thereafter, the correspond-
ing discretized optimization problem can be solved,
e.g. by the interior-point optimizer Ipopt (Wächter
and Biegler, 2006). The performance of the optimizer
heavily depends on the availability of derivative infor-
mation for the underlying optimization problem. Typ-
ically, the gradient of the objective function, the Jaco-

bian of the DAEs as well as the Hessian matrix of the
corresponding Lagrangian formulation need to be de-
termined. If only some or none of these derivatives are
provided, usually numerical approximations are used.
The generation of symbolic Jacobian is already avail-
able in OpenModelica (Braun et al., 2012; Shitahun
et al., 2013) and the generation of symbolic Hessian is
currently under development.
The main symbolic transformation steps during com-

pile time and the dynamic optimization tool chain for
OpenModelica with Ipopt are visualized in Figure 17.
The optimization can be called via a batch process

using the following commands:

setCommandLineOptions("+gDynOpt");

loadFile("...");

optimize(nmpcProblem,

numberOfIntervals =20,

tolerance =1e-8);

The implementation has been tested with several ap-
plications and is demonstrated in the following using a
combined cycle power plant model, see Figure 18. The
model contains equation-based implementations of the
thermodynamic functions for water and steam, which
in turn are used in the components corresponding to
pipes and the boiler. The model also contains compo-
nents for the economizer, the super heater, as well as
the gas and steam turbines. The model has one input,
10 states, and 131 equations. Additional details on the
model are presented in (Casella et al., 2011a).

The optimization problem is set up to use 50 collo-
cation points that result in 1651 variables for the non-
linear optimal control problem and was solved on a
PC with a 3.2GHz Intel(R) Core(TM) i7. The algo-
rithm requires an initial trajectory of all problem vari-
ables, which is provided by a simulation where the rate
of change of the gas turbine load is set to a constant
value. The optimization results are shown in Figure 18
and correspond with the results that are discussed in
detail in (Casella et al., 2011a). Here, the trajectories
are smoother, and the performance has been improved
substantially.

4.14 Parameter Sensitivity Analysis Based
on Optimization

The sensitivity of non-linear models in the form of
ordinary differential equations is understood as the
tendency to undergo qualitatively noticeable changes
in response to shifts in the parameters used for the
model setup (Khalil, 2002). Given a nonlinear model
there exists an interest in automatically and effi-
ciently detecting small sets of parameters that can pro-
duce strong changes in state variables when perturbed
within ranges smaller than the uncertainty bounds.
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(a) Symbolic preprocessing and transformation.

(b) Optimization tool chain.

Figure 17: OpenModelica with Ipopt

(a) Combined cycle power plant displayed with
OMEdit

(b) Optimal start-up trajectories. The upper curve
shows the live steam temperature, the middle and
low curves show the turbine rotor surface and mean
temperatures.

(c) Optimal start-up trajectories. The upper curve
shows the pressure in the evaporator, the middle
curve shows the thermal stress in the steam tur-
bine shaft and the lower curve shows the control
input represented by the load.

Figure 18: Combined cycle power plant model in OpenModelica
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Object-oriented modeling languages such as Modelica
(Modelica Association, 2017; Fritzson, 2014) facilitate
a systematic treatment of the problem by exposing a
clear and unambiguous access to model parameters,
state variables, and simulation configuration. This pro-
motes the design of reusable frameworks that treat the
models as black boxes (not excluding exploiting inter-
nal knowledge on the model structure) The OpenMod-
elica (2020) tool also includes a Sundials/IDA solver
that calculates parameter sensitivities using forward
sensitivity analysis. Yet, this approach cannot be ap-
plied to models that are not fully differentiable. The
option of picking several values within a parameter
interval and sweep all possible combinations quickly
leads to a combinatorial explosion that renders the ap-
proach unfeasible. In the simultaneous approach, after
defining the parameters and their intervals, an algo-
rithm (typically an optimization-based strategy) finds
a vector of smallest perturbation values that produces
the largest impact on the state variables. The OM-
Sens OpenModelica (2020, ch. Paremeter Sensitivitites
with OpenModelica) sub-system is a tool to assess the
sensitivity of Modelica models (Danós et al., 2017).
OMSens uses different methods for sensitivity analy-
sis including robust, derivate-free non-linear optimiza-
tion techniques based on the CURVI family (Dennis Jr.
et al., 1991).

4.14.1 Sensitivity Analysis of Modelica models

Unlike most previous approaches, OMSens offers a
wide choice of computational methods for sensitivity
analysis. Elsheikh (2012) uses automatic differentia-
tion to augment the model with the sensitivity equa-
tions. This is similar to the IDA Solver approach in
OpenModelica (2020, ch. Paremeter Sensitivitites with
OpenModelica) which is simpler to employ since it nu-
merically computes sensitivities directly. Wolf et al.
(2008) compares several methods including parameter-
sweep and solver-based approaches using the DASPK
solver (Petzold et al., 2006). Many optimization meth-
ods can be employed for sensitivity analysis. For exam-
ple, Ipopt (Wächter and Biegler, 2006) is a well-known
non-linear optimization routine. Other methods are
mentioned in Section 4.12 and Section 4.13, some of
which are time consuming or not at all robust.

4.14.2 Optimization-driven Sensitivity Analysis

Numerical aspects of the optimization algorithms need
to be considered carefully, as they affect their efficiency,
robustness and scope of applicability. A correct analy-
sis should consider the combined, simultaneous effects
of many perturbations of the parameters, something
that is unmanageable due to the number of combina-

tions and the impossibility of determining beforehand
the size of those perturbations. Nonlinear optimization
can be used to solve the problem by reformulating it
as a model stability problem (Danós et al., 2017).
In the current version OMSens implements a deriva-

tive–free optimization algorithm named CURVI –
curvilinear search method, Dennis Jr. et al. (1991)
which is able to solve very difficult problems while al-
lowing for custom interval constraints. There are three
versions: CURVIF, CURVIG, CURVIH that use, re-
spectively, function values, function values plus gra-
dients, and the latter plus Hessians. All versions are
globally convergent.
CURVIF is the flavor currently adopted in OMSens,

and does not necessarily employ the least number of
function evaluations. It can be seen as a trade-off be-
tween robustness and efficiency. Moreover, global opti-
mization functionality is currently being added to OM-
Sens.

4.14.3 OMSens Architecture

OMSens provides a flexible experimentation arena of
different sensitivity analysis strategies for Modelica
models. It provides modularity by being split into de-
coupled backend and frontend modules. It also pro-
vides flexibility since the backend is subdivided into
modules that encapsulate responsibilities and expose
clear invocation interfaces.
The OMSens modules can be divided in two groups:

simultaneous sensitivity analysis and individual sensi-
tivity analysis. In Figure 19 we find six main modules.
In the simultaneous scenario, module 3 (Optimization)
leads the workflow, invoking modules 1, 2 and 4 to per-
form an exploration of the parameter space. This needs
successive simulations requested from module 2 (Mod-
elica) depending on the simulation results of previous
invocations, following a closed loop strategy. In the in-
dividual scenario modules 5 and 6 lead their own work-
flows, invoking single simulations with no dependency
on the results of previous runs (open loop). Module
6 (Parameter sweeping) invokes simulations while se-
quentially picking values from a parameter space de-
fined by the user.
A summary of the presented sensitivity analysis

methods can be found in Table 6.
A sensitivity method measures the change of a cho-

sen variable/state variable with respect to changes in
one or more parameters. OpenModelica (2020, ch.
Paremeter Sensitivitites with OpenModelica) can cal-
culate sensitivities using the Sundials/IDA solver using
the derivatives of each state variable with respect to
each top-level parameter during a simulation (IDAsens
method) defined for all values of time. OMSens can
launch experiments using the IDASens method. OM-
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Table 6: Summary of sensitivity methods for a generic state variable x with respect to the i-th parameter pi.

Method Formula Input Type

IDAsense ṡi(t) =
∂x(t)
∂pi

Single year

Rel srel(t) =
σ(t)
std(t) Single year

RMS srms(t0, tf ) =
√

1
n
(σ2

0 + · · ·+ σ2
n) Range of years

Figure 19: OMSens high level architectural view.

sens allows defining custom methods for comparisons
of perturbed vs. unperturbed runs. For example, we
use a Relative (Rel) method defined as

srel(tk) =
σ(tk)

x(tk)
with σ = xper − x,

i.e. the difference in a state variable with and without
perturbation of a parameter (xper vs. x).
It can be used to rank the parameters affecting a

variable the most at a target year. We also define the
Root Mean Square (RMS) method sRMS(t0, tf ) that
calculates the root mean square of the differences σ(tk)
for integer years t0 ≤ tk ≤ tf . It can be used to
rank the most relevant parameters impacting a vari-
able throughout a range of years.

4.14.4 Case Study – Sensitivity Analysis of a
Complex Socio-Economic Model

World3 is a world-level socio-economic model available
as a Modelica library (Cellier, 2008), here referred to
as W3-Mod. It implements the World3 model as de-
scribed in Meadows et al. (2004, Limits to Growth, 3rd
edition) meant to forecast critical global aspects (popu-
lation, pollution, natural resources) as far as year 2100.
W3-Mod subdivides the model into 13 socio-economic

sectors, with a total of 41 state variables, 245 algebraic
variables, and 70 parameters (including bivariate table
functions) representing many facets of human life and
ecological factors.

In a separate earlier book by Meadows et al. (1974),
simplistic sensitivity experiments were considered, but
W3-Mod lacks a comprehensive sensitivity study. The
model has long been characterized as strongly nonlin-
ear and unstable with regards to parameter changes
(Castro, 2012; Scolnik, 1979; Vermeulen and de Jongh,
1976).

Applying optimization-based analysis, we used OM-
Sens to analyze the state variable Population of W3-
Mod at year 2100, perturbing the top-12 most influ-
encing parameters found using the Rel analysis method
for that state variable. We allowed all parameters to
change within a ±5% interval (conservative bounds for
socio-economic indicators). CURVI found three non-
intuitive perturbation values compared to the results
obtained with the Rel method alone, not shown here.

Parameters p land yield fact 1 and
p avg life ind cap 1 (Default land yield factor
and Default average life of industrial capital) were
perturbed in opposite directions compared to what an
individual parameter-based approach would indicate.
With these differences the impact is noticeable. In
Figure 20 we observe several simulations to interpret
the results, all extended up to the year 2500 for the
sake of readability. The black curve is the unperturbed
run. The red curve is the run perturbed with the
individual parameter-based strategy (Rel method)
and the green curve represents perturbations found
by CURVI. We can see that for the target year 2100
CURVI found a parameter combination that takes the
population way up compared to what was achieved
relying solely on the Rel method.

Verification with multi-parameter sweeping is avail-
able to automate the simulation and analysis of ar-
bitrary combinations in a parameter space. The
optimization-based method yields a substantial im-
provement compared to an individual parameter-based
study. We now assess whether other perturbations offer
extra insights. We create a space for both parameters

263



Modeling, Identification and Control

Figure 20: Population in W3-Mod.
Standard Run and OMSens perturbations: Rel method, multi-parameter sweep and CURVI.

using the same perturbation vector [−5%, 0%,+5%]
and launch the analysis. The results in Figure 20 are
denoted with (0) and (1) for values of land yield and in-
dustrial capital parameters. We observe that the popu-
lation variable converges smoothly from the individual
parameter-based to the simultaneous parameter-based
study.

4.15 Model-based Control with Dynamic
Optimization

Modelica has been applied to the formulation of dy-
namic optimization problems for complex physical sys-
tems since many years (Franke et al., 2003). The
optimization methods of control vector parameteriza-
tion and multiple shooting enable the efficient use of
simulation models with numerical optimization solvers
and the treatment of large-scale problems with paral-
lel computing. Many successful industrial applications
to model-based control of power systems underline the
suitability. The Modelica technology and the imple-
mentation in OpenModelica evolved continuously.

FMI 2.0 for model exchange standardizes the solver
interface to simulation models. It covers executable
model code, an XML interface description, sparse
model structures and analytic Jacobian matrices. Mul-
tiple FMI instances of one and the same model enable
parallel optimization. The OpenModelica C++ run-
time was developed with focus on the export of simu-

lation models to real-time control applications. C++
provides for improved type safety, deterministic mem-
ory management and compiler optimizations resulting
in best in class execution times (Franke et al., 2015).

4.15.1 Synchronous Modelica for Model-Based
Control

Continuous-time physical models are treated with dis-
crete sample times in digital control applications. Mod-
elica’s synchronous language elements extension was
introduced for precisely defining and synchronizing
sampled-data systems with different sampling rates
(Modelica Association, 2017). OpenModelica was the
second Modelica tool which supported this extension,
implemented both on top of the OpenModelica C run-
time and the C++ run-time. This can be used for
model-based control, using Modelica and FMI (Franke
et al., 2017).

4.15.2 Control and Optimization of Electric Power
System as Exported FMUs

Figure 21 shows OMEdit with an example model of
an electric power system, covering an off-shore inter-
connector combined with wind farms and a back-to-
back HVDC coupling. The object-oriented model com-
prises 4 722 variables. 788 of those variables are non-
trivial. OMEdit exports the model as FMU 2.0 using
the OpenModelica C++ runtime.
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Figure 21: Model of an electric power system.

The control task is to maximize the transfer capacity
of the interconnector on top of collected wind power,
considering active and reactive power flows subject to
grid and voltage limitations. The prediction horizon
spans 96 sample intervals. This results in 76 436 (97 ·
788) non-trivial optimization variables.

Table 7 shows speedups achieved with different FMU
features and optimization solver configurations. The
reference configuration uses multiple shooting with 1
CPU, exploiting sparsity that results from the time
staggering structure over 96 intervals, but neglecting
sparsity inside model Jacobians at each time point.
The Jacobians are obtained with the method of finite
differences. A speedup of 1.9 is achieved with sparse
Jacobians by exploiting information in the XML inter-
face description. The speedup increases to 3.9 when
additionally enabling OpenModelica’s algorithmic dif-
ferentiation and re-use of numerical factors of equation
systems inside the model.

Parallel multiple shooting using a separate FMU in-
stance for each CPU further increases the speedup to
6.3 with 5 CPUs and up to 7.6 with 20 CPUs. The
speedup is still 7.0 with finite differences and 20 CPUs.
This is at the cost of twice the CPU usage though,
whereas algorithmic differentiation leaves more CPU
capacity for other tasks running at the same time.

4.16 Model-based Control System Design

In addition to the scripting API commands mentioned
in Section 4.9, the APIs OMPython (Lie et al., 2016),
OMJulia (Lie et al., 2019), OMMatlab (OpenModelica,
2020) also allow for getting and setting linearization
options, and carrying out linearization. The linearize
method returns a tuple of linear, time invariant (LTI)
matrices (A,B,C,D), which can be further used in var-
ious control tools, e.g., the MATLAB Control System
Toolbox (MathWorks, 2019b), the Python Control Sys-
tems Library (Murray and Livingston, 2019), or the
Julia Control Systems Toolbox (JuliaControl, 2019).

We consider a liquid reactor (Figure 22) taken from
(Seborg et al., 2011), where we seek to control the efflu-
ent temperature by manipulating the influent cooling
temperature.

The model is implemented in Modelica, and an ob-
ject is created in a scripting language (here: Julia, us-
ing OMJulia). At the operating point, the linearize
method is used to find an LTI approximation. Based on
this LTI approximation, Julia’s ControlSystems pack-
age can be used to do a root locus plot (Figure 23) on
how the closed loop eigenvalues vary with proportional
gain in a Proportional controller (P-controller),

Based on the root locus plot, a suitable controller
gain for the P-controller can be found, and like-
wise a suitable reset time/integral time in a Propor-
tional+Integral controller (PI controller). The result-
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Table 7: Speedup achieved with different FMU features and parallel computing.

Speedup for different solver configurations Finite Differ-
ences

AD with
refactoring

AD with fac-
tor reuse

Sequential shooting, Dense model blocks, no AD, 1 CPI 1.0 - -

Sequential shooting, Sparse model blocks, 1 CPU 1.9 1.3 3.9

Parallel multiple shooting, Sparse model blocks, 2 CPUs 2.8 2.2 4.6

Parallel multiple shooting, Sparse model blocks, 5 CPUs 4.6 3.7 6.3

Parallel multiple shooting, Sparse model blocks, 20 CPUs 7.0 6.5 7.6

Figure 22: Cooled liquid reactor.

Figure 23: Root locus plot of Seborg reactor. A modi-
fied plotting routine has been used, instead
of the root locus method of the ControlSys-
tems package.

ing PI controller gives quite good control of the reactor
temperature.

However, the resulting cooling temperature input
dips down to minus twenty Celcius, which is unreal-
istic. Constraining the cooling temperature to lie in
the range of liquid water, together with integral anti-
windup leads to the results in Figure 24a and Fig-
ure 24b for output T and controller Tc, respectively.

(a) Reactor temperature controlled with a constrained PI
controller with anti-windup. A continuous controller is
used, implemented in Modelica.

(b) PI control signals — cooling temperature, with con-
strained PI controller with anti-windup. A continuous
controller is used, implemented in Modelica.

Figure 24: Results for output T and controller Tc

More details of this example can be found in Khalili
and Lie (2018), with other examples including state
estimation and Linear Quadratic control.
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4.17 Model-based Fault and Dependability
Analysis

The purpose of reliability, and more generally, of de-
pendability studies is to evaluate non-functional per-
formances, that is, to calculate probabilities of un-
desirable events such as the failure of the mission
of a system, or to estimate the probability distribu-
tion of quantities like: total production on a given
time interval, maintenance cost, number of repairs
etc. Usually, dependability studies are performed
with dedicated methods and tools, based on discrete
(and often even Boolean) models of systems: fault
trees, Markov chains, Petri nets, BDMP (Boolean logic
Driven Markov Processes) etc. EDF (Electricité du
France) designed the Figaro modeling language in 1990
(Bouissou et al., 1991). This language generalizes all
the above cited models, and allows casting knowledge
in categories of systems in libraries. It is the basis of
KB3 which is the reference tool used for building fault
trees and dynamic models for probabilistic safety anal-
yses of nuclear power plants and most other reliability
analyses at EDF.
In order to benefit from this type of analysis a pro-

totype for coupling Modelica models with their Figaro
counterpart has been developed (Bouissou et al., 2016).
This coupling presented two main issues:

❼ The systems are modeled with different degrees of
granularity in the two languages.

❼ Links are explicit objects in the Figaro world that
can have properties and behavior, whereas the de-
fault port connections in Modelica are not objects.
When mapping Figaro to Modelica this is handled
by letting connections go through intermediary ob-
jects that contain that information.

Therefore, the mapping between Modelica and Fi-
garo components is not one-to-one. Instead compo-
nent types with a Figaro counterpart are identified in
Modelica through special interfaces and this informa-
tion is then used to export the Figaro model from the
corresponding Modelica model.
The reliability analysis performed on the Figaro

model can be then used to identify potential issues (for
example, critical components) and this information can
be fed back into the Modelica simulation (for example,
investigate in more details the effect of the failure of a
critical component).
Another approach has been to use Monte Carlo sim-

ulation on Modelica models. In order to do this, ran-
dom failures (and possibly repairs) are added to the
original simulation model, which is slightly modified
in order to propagate the effects of failures. The ar-
ticle by Bouissou et al. (2014) explains how standard

Modelica solvers can be used to simulate systems with
failure rates that depend on continuous variables (like
temperature, etc.). This was tested with a well-known
benchmark that was first published in (Aldemir, 1987)
and since then has been solved with many different
methods and tools.

In the OpenModelica setting, scripting is used to run
the simulation a large number of times (10 000 times
in this example), which allows to calculate by simple
statistical estimators the probability of various unde-
sirable events over time, and quantities such as average
production, life-cycle cost etc.

4.18 Data Reconciliation for Enhanced
Accuracy of Sensor Data

The operation of power plants requires a good quality
of the process data obtained through sensor measure-
ments. Unfortunately, sensor measurements such as
flow rates, temperatures, and pressures are subject to
errors that lead to uncertainties in the assessment of
the system’s state. Operational margins are therefore
set to take into account uncertainties on the system’s
state. Their effect is to decrease production because
safety regulations put stringent limits on the thermal
power of the plants. It is therefore important to com-
pute the best estimates of the measurement uncertain-
ties in order to increase power production by reducing
operational margins as much as possible while still pre-
serving system safety.

The best estimates can be obtained by combining
data statistics with a knowledge a priori of the sys-
tem in the form of a physical model. Data reconcilia-
tion is a technique that has been conceived in the pro-
cess industry for that purpose. It is fully described in
the VDI 2048 standard (VDI – Verein Deutscher Inge-
nieure, 2012, 2017, 2018) for the “Control and quality
improvement of process data and their uncertainties
by means of correction calculation for operation and
acceptance tests”. Up to now, it was only available
in dedicated tools such as VALI from Belsim (2019)
that require to develop a specific model of the sys-
tem under consideration. The main drawbacks are that
such models are costly to develop and difficult to vali-
date. A natural answer to this problem is to perform
data reconciliation on Modelica models. However, un-
der the current state-of-the-art of Modelica tools, such
task is not possible because an appropriate subset of
the Modelica model of the system under consideration
must be considered for data reconciliation. This sub-
set contains the (presumably) exact physical laws that
constrain the variables of interest to be reconciled. All
other equations such as boundary conditions or approx-
imated equations that affect the variables of interest
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must be removed. This subset is called the “auxiliary
conditions” in VDI 2048. The auxiliary conditions are
therefore underdetermined (more unknowns than equa-
tions) and cannot form a valid Modelica model for sim-
ulation.
OpenModelica is currently being extended to per-

form data reconciliation on regular Modelica models.
To that end the following is developed:

❼ New annotations are introduced to tag the vari-
ables of interest and the approximated equations.

❼ An algorithm is being developed to automatically
extract the auxiliary conditions.

❼ The data reconciliation procedure taking as inputs
the variables of interest as tagged by the user, their
measured values (mean values and statistical con-
fidence intervals) as provided by the user and the
automatically extracted auxiliary conditions from
the Modelica model provided by the user, is being
implemented. It produces as outputs the recon-
ciled values and their reduced confidence intervals.

❼ The GUI is being extended to handle inputs and
outputs.

The main benefit is to be able to perform data recon-
ciliation on existing validated model without having to
modify them for that purpose. This is a considerable
improvement with respect to the current state-of-the-
art.

4.19 Artificial Neural Networks for Model
Calibration and Augmentation

The pursuit of both model accuracy and simplicity in
general results in conflict. Ultimately, a model should
meet its accuracy requirements whilst remaining as
simple as possible. To validate a model, measurements
taken from the original system can be used (Zhu et al.,
2007). As an example, the trajectories from simula-
tions of the model can be compared to the actual mea-
surement data to validate the model behavior.
A more sophisticated approach may involve the ex-

traction of high-level features from said trajectories.
For example, a good model of a pendulum should ex-
hibit frequency and amplitude of oscillation similar to
those of the original pendulum.
Inherently, after the modeling process, there are dif-

ferences between the measurements of the model and
the original system that, by magnitude or trend over
time, cannot purely originate from measurement noise.
Assuming negligible numerical error, parameter errors
or model errors must be assumed. The former can be
eliminated by choosing accurate physical parameters.

Model errors, however, cannot be completely avoided
and the question arises how their impact can be
reduced. In practice it is usually not possible to
distinguish between parameter and modeling errors
and hence during model calibration often physically
“wrong” parameters compensate for modeling errors.
This can be seen as a motivation for grey-box model-
ing, where reference measurements are not only used
for model calibration, but to augment the first princi-
ples model (Modelica model) with a data-based model.
That is, specific relations within a model shall be
learned on the basis of reference data while keeping
physically established relations unchanged. This is dif-
ferent from pure black box modeling (Mohajerin et al.,
2018). The idea of localized adaption of single equa-
tions is especially applicable to object-oriented mod-
eling (like in Modelica) and aims at keeping learning
results understandable to the user by separation from
existing “white box” relations.

In order to evaluate an artificial neural network
(ANN) grey-box modeling approach in OpenModel-
ica, a framework for the training of Tensorflow ma-
chine learning models (Tensorflow.org, 2019) as shown
in Figure 25 is set up. The simulation data generated
in OpenModelica using the reference model is used to
train the ANN. This is achieved with the help of the
Python modules OMPython (Lie et al., 2016), numpy,
and Tensorflow. The integration of Tensorflow models
in a Modelica model is done using the “external C”
interface of Modelica.

The approach by Bruder and Mikelsons (2019) has
been tested using a dynamic system model of a mo-
torcycle (from the Planar Mechanics library (Zimmer,
2012) extended by a simple driver model. Particular
mathematical relations (drag force, dynamical wheel
loads and tire forces) therein were learned by feedfor-
ward ANNs which are trained using simulation data
generated from the original model driving specific ma-
neuvers (eight shaped trajectories with and without ac-
celeration). These machine-learnt relations were then
used to replace the original relations in new grey-box
motorcycle models.

This emulates a situation in which the original rela-
tions (e.g. those of a real system) are unknown but
measurements indicate an interdependence between
variables. The resulting grey-box model is then simu-
lated in order to validate it. The validation maneuver
is a double lane change and the simulation results are
shown in Figure 26. It can be seen that learning the
drag force and dynamical wheel loads worked out quite
well, while the learned tire force model is not applicable
at all.

Moreover, the extrapolation quality of the data-
based models in this example is investigated, e.g. using

268



Fritzon et al., “OpenModelica Integrated Environment”

Figure 25: A framework for training Tensorflow mod-
els.

Figure 26: Virtual measurement data of both the refer-
ence model and the model with wheel joints
including the ANN (artificial neural net-
work). The data was generated using Open-
Modelica and plotted using matplotlib.

the plots of the training data and requested data points
shown in Figure 27.

Figure 27: Inputs to ANN. Blue: learning set. Red:
inputs during simulation of the double lane
change.

4.20 Embedded System Support

OpenModelica provides code generation of real-time
controllers from Modelica models, for small foot-print
platforms such as Arduino boards or in tools for
RexRoth PLCs (Menager et al., 2014).

One example of code generation to small targets is
the Single board heating system (Figure 28) from IIT
Bombay (Arora et al., 2010). It is used for teaching
basic control theory, and usually controlled by a serial
port (set fan value, read temperature, etc.). OpenMod-
elica can generate code targeting the ATmega16 on the
board (and other AVR microcontrollers (Thiele et al.,
2017) or STM32F4 (Berger et al., 2017)).

The program size is 4090 bytes including LCD driver
and PID-controller (out of 16 kB flash memory avail-
able). The ATmega16 we target has 1 kB SRAM avail-
able for data (stack, heap, and global variables). In this
case, only 130 bytes is used for data variables.
To simplify interfacing of low-level devices from

Modelica, OpenModelica supports the Model-
ica DeviceDrivers library (Thiele et al., 2017), which
is a free library for interfacing hardware drivers that
is developed primarily for interactive real-time simu-
lations. The library is cross-platform (Windows and
Linux). Using this library, modeling, parameterization
and configuration can be done at a high level of
abstraction using Modelica, avoiding the need for low
level C programming. Another example using the
embedded system support is the Arduino controlled
electromagnetic levitation system depicted in Fig-
ure 29. The application is based on a commercially
available electromagnetic levitation kit by Zeltom LLC
(2019), which is targeted at educational applications.
The controller design is described in Thiele et al.
(2019) and uses additional OpenModelica technolo-
gies like the interactive Julia scripting (Section 4.9)
and the synchronous language elements extension
(Section 4.15.1).
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Figure 28: The SBHS (Single Board Heating System), an example embedded target system for OpenModelica.

Figure 29: Arduino controlled electromagnetic levita-
tion system.

4.21 MDT Eclipse Plug-in

The MDT (Modelica Development Tooling) Eclipse
plug-in (Figure 30) (Pop et al., 2006; Pop, 2008), is
an Eclipse-based textual development environment for
Modelica and MetaModelica model development.

It provides the usual facilities for software develop-

ment such as browsing, building, cross referencing, syn-
tax checking, and showing useful information such as
types, function signatures, etc.

MDT is primarily used for development of medium
to large scale Modelica projects, such as Modelica li-
braries written in standard Modelica and the Open-
Modelica compiler (currently containing more than 200
packages) written in MetaModelica.

4.22 ModelicaML UML Profile and Eclipse
Plug-in

ModelicaML (Figure 31), (Schamai, 2013; Schamai
et al., 2014) is an Eclipse plug-in and Modelica-UML
profile for the description of system architecture and
system dynamic behavior. It is based on an extended
subset of the OMG Unified Modeling Language (UML)
as well as Modelica, and is designed for Modelica code
generation from graphical models such as state ma-
chines and activity diagrams, supporting hardware/-
software co-modeling and system requirement verifica-
tion against selected scenarios. The current prototype
has not been updated recently and only works together
with an old version of Eclipse.

4.23 Verification of Designs against
Requirements using Simulation

Mastering the development of today’s complex systems
requires a structured approach called Systems Engi-
neering. One of the activities involved is design verifi-
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Figure 30: The OpenModelica MDT (Modelica Development Tooling) Eclipse plug-in.

Figure 31: The ModelicaML Eclipse plug-in and UML-Modelica profile for integrated software-hardware mod-
eling and requirements verification.
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cation is to determine if a given design meets a set of
specified requirements. Designs are often modeled and
can then be simulated. In contrast, requirements are
typically expressed in natural language to serve for bet-
ter communication between different stakeholders in-
volved. The drawback of using natural language (e.g.,
English) is that it may make the requirement specifi-
cation prone to human errors and ambiguity.

To address these challenges, a modeling approach
called vVDR (virtual Verification of Designs vs. Re-
quirements) was developed that allows formalizing re-
quirements and creating executable Modelica mod-
els, called requirement monitors, for each requirement
statement (Schamai, 2013; Schamai et al., 2015; Ot-
ter et al., 2015). Once connected to executable de-
sign models, requirement monitors show the status of
the requirement violation with at least three literals:
not applicable, not violated, violated, at any simulated
time instant, as well as the accumulated status (i.e.,
has been tested, has been violated, etc.).

Furthermore, the vVDR modeling approach creates
separate models for scenarios that can be used for test-
ing different requirements. For this to be efficient it
includes a way to automatically compose executable
models each including the design to be tested, the sce-
nario to be used, and the relevant requirement moni-
tors. This is enabled by the binding concept and an
algorithm that iterates over design alternatives and all
available scenarios, and uses semantic equivalents of re-
quirement monitor inputs/outputs to identify monitor
models to be included (Schamai, 2013; Schamai et al.,
2014).

The approach has been tested successfully in sev-
eral case studies, including at Airbus (Schamai et al.,
2015), Scania (Liang et al., 2012), Electricité du France
(Schamai et al., 2014), and the Swedish Road and Traf-
fic Institute (Andersson and Buffoni, 2018). OpenMod-
elica was used as the prototyping environment when
running the case studies.

The vVDR approach was first made available in the
OpenModelica ModelicaML Eclipse plug-in mentioned
in Section 4.22, using a combination of UML and Mod-
elica for formal requirement specification. Later, a
Modelica-only version of vVDR has been designed and
implemented in OpenModelica using OMEdit as user
interface, requirement specification in Modelica, and a
vVDR Modelica library (Buffoni and Fritzson, 2015;
Buffoni et al., 2017; Buffoni, 2019). That library en-
ables defining binding information which is processed
by the binding algorithm implemented in OpenModel-
ica.

As mentioned, the vVDR simulation-based approach
can be used to verify (Figure 32) design alternatives
against sets of requirements using different scenarios.

Figure 32: Simulation-based requirement verification
for the two-tanks example. Requirement
r001 regarding the level of tank2 is violated
twice (shown in red).

The tool automatically generates verification models in
Modelica, performs the simulations, compares the re-
sults, and generates a report about verification results.

4.24 Parallelization and Multi-Core

Work on generating parallel code from Modelica mod-
els has been ongoing for OpenModelica during several
years. Both automatic and explicit parallelization ap-
proaches have been investigated and implemented.
Automatic parallelization of simulation code for

Modelica models has been investigated in different con-
texts and perspectives (Aronsson, 2006; Walther et al.,
2014; Gebremedhin and Fritzson, 2017). These paral-
lelization approaches attempt to automatically detect,
extract and utilize potential parallelism in the equation
systems generated from Modelica models.
Two recent approaches, hpcom (Walther et al., 2014)

and parmodauto (Gebremedhin and Fritzson, 2017;
Gebremedhin, 2019), are similar in the sense that they
both utilize equation level processing of strongly con-
nected components of large equation systems. The hp-
com parallelization approach utilize a semi-static cost
estimation approach based on previous execution his-
tory of a given model to effectively schedule and load
balance large simulation executions. This has the ad-
vantage that there will be a very small overhead on
the execution of a given simulation. However, it also
means that simulations cannot effectively respond to
changes in computational load and behavior during one
simulation run. On the other hand, the parmodauto
approach utilizes a runtime profiling and scheduling
approach where each simulation run is monitored and
load-balanced dynamically at runtime. This approach
has two main advantages. The first is that no prior
information is needed. In addition, it is also able to
respond to systems with simulation of dynamic behav-
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Figure 33: Example of speedup of parallel code from OpenModelica for the BranchingDynamicPipes model.

ior. However, this also means that there is an addi-
tional overhead involved in performing the monitoring
and profiling of simulation executions.

An explicit parallelization approach and language
extension, ParModelica (Gebremedhin, 2011; Ge-
bremedhin et al., 2012; Gebremedhin, 2019), based on
the OpenCL (2018) framework targeting shared mem-
ory multi-core processors is also currently available in
OpenModelica. The explicit parallelization brings sup-
port for expressing parallelization directly in a Model-
ica model using language constructs that are partially
based on familiar General-Purpose Graphics Process-
ing Unit (GPGPU) frameworks such as CUDA (Nvidia,
2008) and OpenCL. The Modelica language is extended
with constructs such as parallel for-loops and parallel
functions among others. These constructs can be uti-
lized to write an explicit parallel program in the al-
gorithmic parts of a Modelica model. The OpenMod-
elica compiler analyzes these constructs and generates
OpenCL code that can be executed on general purpose
CPUs, GPUs and accelerators without requiring any
change to the original Modelica source code.

5 Selected Open Source Modeling
and Simulation Applications

In the following a few open source and/or crowd-
sourced applications of OpenModelica are briefly pre-
sented.

5.1 Process Modeling Using Extended
Petri Nets in Modelica

Process modeling is not the most common application
for Modelica modeling. Fortunately, the open source
PNLib library (Proß and Bachmann, 2012) has been
developed in Modelica to support the xHPN (extended
Hybrid Petri Net) formalism. This formalism sup-
ports modeling of processes that can combine elements
which are stochastic, deterministic, discrete, and con-
tinuous which gives very powerful modeling capabili-
ties. The library was later extended and generalized to
version 2.0 and tool support in OpenModelica was im-
plemented by Ochel (2017), including applications to
biological processes. Figure 34 illustrates a restaurant
process model with customers arriving stochastically,
with ordering, waiting, serving, and eating.

5.2 Examples of Crowd-Sourced
Applications with OpenModelica

One of the benefits of OpenModelica being open source
software is that it is possible to engage the commu-
nity to contribute to appropriate content generation.
An example of this is already provided in Section 4.8,
wherein the Textbook Companion effort is explained.
In this section, we describe a few crowd-sourced simu-
lation activities using OpenModelica.

Very few open source chemical process simulators
are available to the community. The situation is worse
when it comes to general purpose dynamic simulation
of chemical processes. A prerequisite for this is the
ability to simultaneously solve all equations that make
up the flowsheet or the circuit. As there could be tens
of thousands of nonlinear equations in such problems,
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Figure 34: A restaurant process model using PNLib in OpenModelica, with ordering, waiting, serving, eating.

unless proper tools are made available, it is difficult to
get contributions from the community.

In order to make it convenient for the community
to contribute, a library of thermodynamic models has
been made available. This was achieved by a port
of thermodynamics to Modelica, including component
data and correlations for the calculation of properties
(Jain et al., 2019; FOSSEE-OMChemSim, 2020).

Models of chemical process unit operations, build-
ing blocks of chemical engineering operations, have
been created using OpenModelica. Using these and
a thermodynamics library models available in Open-
Modelica, chemical process flowsheets have been cre-
ated (Nayak et al., 2019; FOSSEE-Flowsheets, 2020).
A schematic of a sample flowsheet is given in Figure 35.

With the above mentioned tools, it has become con-
venient for the community to create chemical process
simulations and offer them as open source. A total of
more than 50 chemical process flowsheets solved using
OpenModelica are now available (FOSSEE-Flowsheets,
2020) and many more are in progress. Given that

simultaneous solution of thousands of equations is a
difficult task, training a large number of engineers on
this important technology would have been impossible
without an open source simulator such as OpenModel-
ica.

Can the above approach be extended to another dis-
cipline? We explored applying the same principles to
power system simulation. Fortunately, a power system
simulation library OpenIPSL (Baudette et al., 2018) is
already available. Students have contributed 35 power
system simulation models (FOSSEE-Power, 2020), a
sample of which is shown in Figure 361.

6 Related Work

Since OpenModelica is a Modelica environment it has
of course been influenced by other Modelica tools. The

1Another open source library for power systems with a more
modern design called PowerGrids (Casella and Guironnet,
2020), has recently become available.
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Figure 35: Example flowsheet for Acetic acid esterification by ethanol.

Figure 36: Modeling and simulation of IEEE 24 Bus system using OpenModelica and the OpenIPSL library.
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most influential of these tools is Dymola (Elmqvist
et al., 1996; Brück et al., 2002; Dassault Systèmes,
2018), which was the first full-scale industrial-strength
Modelica environment. Certain aspects have also been
influenced by the MathModelica environment (Fritz-
son, 2006), later renamed and further developed to
Wolfram System Modeler (Wolfram Research, 2018).
The systems InterLisp (Teitelman, 1974), Mathemat-
ica (Wolfram, 2003), and ObjectMath (Fritzson et al.,
1995) have influenced the design of OpenModelica
as an integrated symbolic-numeric environment. Re-
cently, the rapidly developing symbolic-numeric Julia
language (Bezanson et al., 2017; Julialang, 2018) has
appeared, with similar goals as MetaModelica regard-
ing integration and efficient execution of both symbolic
and numeric operations.

7 Conclusion

OpenModelica has been developed into a powerful open
source tool suite for modeling, simulation, and model-
based development. It is a unique effort that provides
a workbench for research on integration and develop-
ment of methods, tools and scientific knowledge in an
open source setting. Still some challenges are being
worked on and remain to be addressed, for example
very large models with several million equations. The
debugger can be further improved to provide high-level,
user-friendly diagnostic messages to help the user re-
solve run-time numerical errors, a difficult task partic-
ularly for novice users. Recently new methods such
as data reconciliation and usage of the machine learn-
ing TensorFlow framework for model calibration have
been integrated. There is room for more such efforts.
Integration aspects between tool functionalities can be
further enhanced. Just-in-time compilation would im-
prove the system’s interactive properties. Two large
recent OpenModelica efforts briefly described in this
article are the OMC new frontend development for
100% compilation coverage and greatly enhanced com-
pilation speed, and the OMSimulator tool for efficient
large-scale FMI-based simulation. A new effort has just
been started on designing and implementing an im-
proved compiler backend with enhanced scalable sym-
bolic algorithms to be able to handle very large models.
Recently OMJulia has been introduced that provides
OpenModelica access from Julia. More powerful inte-
gration options between Julia and OpenModelica are
also being considered in order to benefit from the Julia
libraries and infrastructure.
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Adrian Pop, Per Östlund, Francesco Casella, Mar-
tin Sjölund, and Rüdiger Franke. A New
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University, Department of Computer and Informa-
tion Science, November 2013. doi:10.3384/diss.diva-
98107.

Wladimir Schamai, Lena Buffoni, and Peter Fritzson.
An Approach to Automated Model Composition Il-
lustrated in the Context of Design Verification. Mod-
eling, Identification and Control, 35(2):79–91, 2014.
doi:10.4173/mic.2014.2.2.

Wladimir Schamai, Lena Buffoni, Nicolas Albarello,
Pablo Fontes De Miranda, and Peter Fritzson. An
Aeronautic Case Study for Requirement Formaliza-
tion and Automated Model Composition in Mod-
elica. In Proc. of the 11th International Model-
ica Conference, Versailles, France, September 2015.
doi:10.3384/ecp15118911.

Hugo D. Scolnik. A critical review of some global
models. In Global and Large Scale System Mod-
els, Berlin, Heidlberg, 1979. Lecture Notes in Con-
trol and Information Sciences, vol 19. Springer.
doi:10.1007/bfb0049022.

Dale Seborg, Thomas Edgar, Duncan Mellichamp, and
Francis Doyle. Process Dynamics and Control. Wi-
ley, 2011. ISBN 978-1-119-28591-5.

Alachew Shitahun, Vitalij Ruge, Mahder Gebremed-
hin, Bernhard Bachmann, Lars Eriksson, Joel An-
dersson, Moritz Diehl, and Peter Fritzson. Model-
Based Dynamic Optimization with OpenModel-
ica and CasADi. IFAC Proceedings Volumes,
46(21):446–451, 2013. doi:10.3182/20130904-4-jp-
2042.00166.

Michael Sielemann, Francesco Casella, Martin Ot-
ter, Christop Clauß, Jonas Eborn, Sven Erik
Matsson, and Hans Olsson. Robust Initializa-
tion of Differential-Algebraic Equations Using Ho-
motopy. In Proc. of the 8th International Mod-
elica Conference, Dresden, Germany, June 2011.
doi:10.3384/ecp1106375.

Martin Sjölund. Tools and Methods for Analy-
sis, Debugging, and Performance Improvement of
Equation-Based Models. PhD thesis, Linköping Uni-
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