
The OpenModelica Integrated Modeling, Simulation and

Optimization Environment

Peter Fritzson1, Adrian Pop1, Adeel Asghar1, Bernhard Bachmann1, Willi Braun2, Robert Braun1,
Lena Buffoni1, Francesco Casella3, Rodrigo Castro6, Alejandro Danós6, Rüdiger Franke7,

Mahder Gebremedhin1, Bernt Lie8, Alachew Mengist1, Kannan Moudgalya5, Lennart Ochel1,
Arunkumar Palanisamy1, Wladimir Schamai9, Martin Sjölund1, Bernhard Thiele1,

Volker Waurich4, Per Östlund1
1PELAB – Programming Environment Lab, Dept. of Computer and Information Science

Linköping University, SE-581 83 Linköping, Sweden
2FH Bielefeld, Bielefeld, Germany

3Dept. Electronics and Information, Politecnico di Milano, Milan, Italy
4TU Dresden, Dresden, Germany

5IIT Bombay, Mumbai, India
6Dept. Computer Science, Universidad de Buenos Aires, Argentina

7ABB AG, DE-68309 Mannheim, Germany
8University of South-Eastern Norway, Porsgrunn, Norway

9Danfoss Power Solutions GmbH & Co. OHG, Offenbach, Germany

peter.fritzson@liu.se, adrian.pop@liu.se

Abstract
OpenModelica is currently the most complete open-
source Modelica- and FMI-based modeling, simulation,
optimization, and model-based development
environment. Moreover, the OpenModelica
environment provides a number of facilities such as
debugging; optimization; visualization and 3D
animation; web-based model editing and simulation;
scripting from Modelica, Python, Julia, and Matlab;
efficient simulation and co-simulation of FMI-based
models; compilation for embedded systems; Modelica-
UML integration; requirement verification; and
generation of parallel code for multi-ore architectures.
The environment is based on Modelica and uses an
extended version of Modelica for its implementation.
This overview paper intends to give an up-to-date brief
description of the capabilities of the system, and the
main vision behind its development.

Keywords: Modelica, OpenModelica, MetaModelica,

FMI, modeling, simulation, optimization, development,

environment, compilation, embedded system, real-time

1 Introduction

The OpenModelica environment was the first open
source Modelica environment supporting the Modelica
modeling language (Modelica Association 2017)
(Fritzson 2014). Its development started in 1997
resulting in the release of a flattening frontend for a core
subset of Modelica 1.0 in 1998. After a pause of four
years, the open source development resumed in 2002.
An early version of OpenModelica is described in
(Fritzson et al 2005). Since then the capabilities of

OpenModelica have expanded enormously. The Open
Source Modelica Consortium which supports the long-
term development of OpenModelica was created in
2007, initially with seven founding organizations. The
scope and intensity of the open source development has
gradually increased. At the time of this writing the
consortium has fifty-three supporting organizational
members. The long-term vision for OpenModelica is an
integrated and modular modeling, simulation, model-
based development environment with additional
capabilities such as optimization, sensitivity analysis,
requirement verification, etc., which are described in the
rest of this paper. The previous overview paper about
OpenModelica was published 2005. The current paper
intends to give a more up-to-date overview of the system
and the vision and goals behind its development.

This paper is organized as follows. Section 2 presents
the idea of integrated environment, Section 3 the goals
for OpenModelica, Section 4 an overview of the
OpenModelica environment, Section 5 and its
subsections give more details about OpenModelica and
its subsystems, Section 6 presents related work and
Section 7 the conclusions.

2 Integrated Interactive Modeling

and Simulation Environments

An integrated interactive modeling and simulation
environment is a special case of programming
environments with applications in modeling and
simulation. Thus, it should fulfill the requirements both
from general integrated interactive environments and

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154206

206

from the application area of modeling and simulation
mentioned in the previous section.

The main idea of an integrated programming
environment in general is that a number of programming
support functions should be available within the same
tool in a well-integrated way. This means that the
functions should operate on the same data and program
representations, exchange information when necessary,
resulting in an environment that is both powerful and
easy to use. An environment is interactive and
incremental if it gives quick feedback, e.g., without re-
computing everything from scratch, and maintains a
dialogue with the user, including preserving the state of
previous interactions with the user. Interactive
environments are typically both more productive and
more fun to use than non-interactive ones.

There are many things that one wants a programming
environment to do for the programmer or modeler,
particularly if it is interactive. Comprehensive software
development environments are expected to provide
support for the major development phases, such as:

 Requirements analysis

 Design

 Implementation

 Maintenance

A pure programming environment can be somewhat
more restrictive and need not necessarily support early
phases such as requirements analysis, but it is an
advantage if such facilities are also included. The main
point is to provide as much computer support as possible
for different aspects of systems development, to free the
developer from mundane tasks so that more time and
effort can be spent on the essential issues.

Our vision for an integrated interactive modeling and
simulation environment is to fulfill essentially all the
requirements for general integrated interactive
environments combined with the specific needs for
modeling and simulation environments, e.g.:

 Specification of requirements, expressed as
documentation and/or mathematics

 Design of the mathematical model

 Symbolic transformations of the mathematical
model

 A uniform general language for model design,
mathematics, and transformations

 Automatic generation of efficient simulation code

 Execution of simulations

 Debugging of models

 Design optimization

 Evaluation and documentation of numerical
experiments

 Graphical presentation

 Model and system structure parameterization

 Variant and version handling, traceability

3 Goals for OpenModelica

The computational and simulation goals of the
OpenModelica tool development include, but are not
limited to, the following:

 Providing a complete open source Modelica-based
industrial-strength implementation of the Modelica
language, including modeling and simulation of
equation-based models, system optimization, and
additional facilities in the programming/modeling
environment.

 Providing an interactive computational environment
for the Modelica language. It turns out that with
support of appropriate tools and libraries, Modelica
is very well suited as a computational language for
development and execution of numerical
algorithms, e.g. for control system design and for
solving nonlinear equation systems.

The research related goals and issues of the
OpenModelica open source implementation of a
Modelica environment include, but are not limited to,
the following:

 Development of a complete formal specification and
reference implementation of Modelica, including
both static and dynamic semantics. Such a
specification can be used to assist current and future
Modelica implementers by providing a semantic
reference, as a kind of reference implementation.

 Language design, e.g. to further extend the scope of
the language, e.g. for use in diagnosis, structural
analysis, system identification, integrated product
development with requirement verification, etc., as
well as modeling problems that require partial
differential equations.

 Language design to improve abstract properties
such as expressiveness, orthogonality, declarativity,
reuse, configurability, architectural properties, etc.

 Improved implementation techniques, e.g. to
enhance the performance of compiled Modelica
code by generating code for parallel hardware.

 Improved debugging support for equation based
languages such as Modelica, to make them even
easier to use.

 Improved optimization support, with integrated
optimization and modeling/simulation. Two kinds:
parameter-sweep optimization based on multiple
simulations; direct dynamic optimization of a goal
function without lots of simulations, e.g., using
collocation or multiple shooting.

 Easy-to-use specialized high-level (graphical) user

interfaces for certain application domains.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154206 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

207

 Visualization and animation techniques for
interpretation and presentation of results.

 Integrated requirement modeling and verification

support. This includes the ability to enter
requirements formalized in a kind of Modelica style,
and to verify that the requirements are fulfilled for
selected models under certain usage scenarios.

The OpenModelica effort started by developing a rather
complete formal specification of the Modelica language.
This specification was developed in Operational

Semantics, which still is the most popular and widely
used semantics specification formalism in the
programming language community. It was initially used
as input for automatic generation of the Modelica
translator implementations which are part of the
OpenModelica environment. The RML compiler
generation tool (our implementation of Operational
Semantics) (Fritzson et al, 2009) was used for this task.

However, inspired by our vision of integrated
interactive environments with self-specification of
programs and data, and integrated modeling and
simulation environments), in 2005 we designed and
implemented an extension to Modelica called
MetaModelica (Pop and Fritzson, 2006), (Fritzson, Pop,
Sjölund, 2011). This was done in order to support
language modeling and specification (including
modeling the language itself), in addition to the usual
physical systems modeling applications of Modelica, as
well as applications requiring combined symbolic-
numeric capabilities. Modeling the semantics in itself
was also inspired by functional languages such as
Standard ML (Milner 1997), and OCaml (OCaml org,
2018). Moreover, it was an investment into a future
Modelica becoming a combined symbolic-numeric
language such as Mathematica, but more efficient and
statically strongly typed.

This language extension has a backwards-compatible
Modelica-style syntax but was initially implemented on
top of the RML compiler kernel. The declarative
specification language primitives in RML with single-
assignment pattern equations, possibly recursive case
records (in MetaModelica called uniontypes) and match
expressions, fit well into Modelica since it is a
declarative equation-based language. In 2006 our whole
formal specification of Modelica static and translational
semantics, at that time about 50 000 lines, was
automatically translated into MetaModelica. After that,
all further development of the symbolic processing parts
of the OpenModelica compiler (the run-time parts were
mainly written in C), was done in MetaModelica.

At the same time we embarked on an effort to
completely integrate the MetaModelica language
extension into the Modelica language and the
OpenModelica compiler. This would enable us to
support both Modelica and MetaModelica by the same
compiler. This would allow modeling the Modelica tool
and the OpenModelica compiler using its own language.

This would get rid of the limitations of the RML
compiler kernel and the need to support two compilers.
Moreover, additional tools such as our Modelica
debugger can be based on a single compiler.

Such an ability of a compiler to compile itself is
called compiler bootstrapping. This development turned
out to be more difficult and time-consuming than
initially expected; moreover, developers were not
available for a few years due resource limitations and
other priorities. Finally, bootstrapping of the whole
OpenModelica compiler was achieved in 2011. Two
years later, in 2013, all our OpenModelica compiler
development was shifted to the new bootstrapped
compiler (Sjölund, Fritzson, Pop, 2014), (Sjölund,
2015), after automatic memory reclamation (garbage
collection), separate compilation, and a new efficient
debugger had been achieved for our new compiler
platform.

More recently, we have had an effort to restructure
and rewrite the frontend part of the OpenModelica
compiler (OMC). The reasons were two-fold: to support
the exact Modelica semantics required to simulate
certain models even though the semantics at that time
was not clearly specified by the Modelica language
specification (Modelica Association 2017), and to
achieve much higher compilation speed for large and
complex models. This work turned out to more difficult
than expected. Fortunately, recently, a lot of progress
has been made and a release of a preliminary version of
this new frontend as part of OMC now appears feasible
late fall 2018.

4 The OpenModelica Environment

At the time of this writing, the interactive
OpenModelica environment primarily consists of the
following components and subsystems:

 A graphical and textual model editor, OMEdit. This
is a graphical connection editor for component
based model design by connecting instances of
Modelica classes. The editor also provides text
editing. Moreover, the OMEdit GUI provides a
graphical user interface to simulation and plotting
(OMPlot). See Section 5.2.

 An interactive session handler, OMShell, that
parses and interprets commands and Modelica
expressions for evaluation. The session handler also
contains simple history facilities, and completion of
file names and certain identifiers in commands.
There is also a Python variant of the interactive
session handler called OMPython that supports the
same commands in Python. Very recently, similar
session handlers for Julia, called OMJulia, and
Matlab, called OMMatlab, have been implemented.
See Section 5.10.

 A Modelica compiler, OMC, translating Modelica to
lower level code such as C code, with a symbol table

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154206

208

containing definitions of models, functions, and
variables. Such definitions can be predefined, user-
defined, or obtained from libraries. See Section 5.1.
There is also a compilation mode to generate low-
footprint code for embedded systems, see Section
5.13.

 An execution and run-time module. This module
currently executes compiled binary code from
translated models and functions. It includes
numerical solvers as well as event handling facilities
for the discrete and hybrid parts of the Modelica
language. See Section 5.6.

 Debuggers and performance analyzers. These tools
provide source-level Modelica debugging on
equation models (Section 5.5), algorithmic model
code (Section 5.4), as well as performance analysis
of models (Section 5.5).

 Textual model editors. Any text editor can be used.
Among the OpenModelica tools, text editing of
models is supported by OMEdit (Section 5.2), by
the OpenModelica MDT Eclipse plug-in (Section
5.6), and by the interactive electronic book
OMNotebook (Section 5.7).

 An interactive electronic book, OMNotebook. This
tool provides an active electronic book facility
supporting chapters, sections, execution of
simulation models, plotting, etc. One book,
DrModelica, for teaching Modelica to the beginner,
is automatically opened by default. The user can
define his/her own books. This tool is useful for
developing interactive course material. See Section
5.7.

 Jupyter notebook for OpenModelica. More recently,
the Python-based Jupyter notebook has appeared,
supporting a number of languages. Therefore we

have also developed a Jupyter notebook for
OpenModelica (OSMC 2018a) using Modelica
scripting. However, Python scripting together with
the OMPython package is used in the Jupyter
notebooks presented in (Lie et al, 2016)

 An interactive web-based electronic book,

OMWebbook. This is similar to OMNotebook, but
model editing and simulation is in a web-browser.
Simulation is performed by a simulation server. See
Section 5.8.

 An optimization module using parameter sweeps,
called OMOptim. This tool performs optimizations
by running several simulations for different
parameter settings while searching for the optimum
value of a user-specified goal function. See Section
5.17.

 A dynamic optimization module. Direct
optimization (without running lots of simulations)
of a whole solution trajectory using collocation or
multiple shooting. A goal function can be
formulated to be optimized under the constraints of
a selected model. See Section 5.17.

 Requirement verification and ModelicaML Eclipse

plug-in. This plug-in contains a Modelica-UML
profile that allows integrated requirement
verification and cyber-physical hardware-software
modeling by combining hardware modeling in
Modelica with software modeling using UML. The
tool contains a UML to Modelica translator that
makes it possible to simulate combined UML-
Modelica models. Moreover, automatic (dynamic)
verification of formalized requirements against
selected scenarios is supported by ModelicaML or
by a Modelica-based approach without using UML.
See Section 5.15 and Section 5.16.

Figure 1. The architecture of the OpenModelica environment. Arrows denote data and control flow.

Simulation
Execution

OMEdit Graphic
and Textual

Model Editor

OMNotebook
Interactive
Notebooks

Debugger

OMC
Interactive Compiler

Server

ModelicaML
UML/Modelica
and requirement

verification

MDT
Eclipse Plugin

OMOptim
Optimization

3D
Visualization

OMShell
Modelica
Scripting

OMPython
Python

Scripting

OMSimulator
FMI Simulation

OMJulia
 Julia
Scripting

OMWebbook
 Interactive
 Notebooks

OMMatlab
 Matlab
 Scripting

 OMSens
sensitivity
 analysis OMSysident

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154206 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

209

 MDT Eclipse plug-in. The MDT (Modelica
Development Tooling) Eclipse plug-in for Modelica
library and model compiler textual development,
project support, cross-referencing, building
executables, debugging, etc. See Section 5.6.

 3D animation visualization. This is provided by a
special module in OpenModelica, and uses the
standard Modelica MBS library 3D graphical
annotations. See Section 5.3.

 FMI Import and Export. A model (including models
from other tools, even non-Modelica ones) can be
imported or exported according to the FMI
(Functional Mockup Interface) standard as an FMU
(Functional Mockup Unit).

 OMSimulator FMI-based simulation and co-
simulation subsystem. This recently added
subsystem, which also can be run stand-alone
separated from the OpenModelica compiler,
supports efficient simulation and co-simulation of
single or composite FMUs. FMUs can also be
connected using a graphical editor to form
composite FMUs. See Section 5.12.

 OMSens. Sensitivity analysis subsystem that allows
both single-parameter and multi-parameter analysis,
the latter based on robust optimization techniques.
Specification of the analysis and display of results
can be made interactively via OMEdit in the current
prototype. An early prototype not yet integrated in
OMEdit is described in (Danós et al, 2017).

 OMSysIdent. A parameter system identification
module, using system identification vs

measurement data to determine the best model
parameter values for a certain model (OSMC
2018c).

 MetaModelica language extension. This is used for
modeling/specification of languages (including the
Modelica language) and for Modelica programming
of model transformations (Pop and Fritzson, 2006),
(Fritzson, Pop, Sjölund, 2011). Related to this, there
are discussions in the Modelica Design group about
possible extensions to the Modelica language that
would enable definition some language constructs
in a Modelica core library instead of being
hardcoded in the compiler.

 Parallelization and ParModelica language

extension. ParModelica is used for explicit
algorithmic parallel Modelica programming with
compilation to both multi-core CPU platforms and
GPGPU platforms (including NVIDIA). See
Section 5.18.

5 OpenModelica Subsystems

The relationships between the main OpenModelica
subsystems is depicted above in Figure 1. Their
functionality is briefly described in the following.

Figure 2. OMEdit on the Modelica.Electrical.Analog. Examples.ChuaCircuit model. Center: Model connection diagram. Upper

right: information window. Lower right: plot variable browser will a small popup re-simulate menu on top.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154206

210

5.1 OMC – The OpenModelica Model

Compiler

OMC is the OpenModelica compiler which translates
Modelica models into C/C++ code (or Java or C# code
using experimental code generators), which is compiled
and executed to perform simulations. The
OpenModelica compiler is generated from formal
specifications in RML (earlier) or MetaModelica
(currently). At the time of this writing the
OpenModelica compiler (OMC) is generated from a
specification of about two hundred thousand lines of
MetaModelica. Moreover, OMC is able to compile
itself, i.e., it is bootstrapped.

5.2 OMEdit – the OpenModelica Graphic

Model Editor and Simulator GUI

OMEdit is the OpenModelica graphic model editor
(Figure 2), (Asghar et al, 2011). In addition to
graphic/textual model editing and browsing, it also
provides model text editing, simulation, parameter
update, debugging, and plotting capabilities.

Using OMEdit to perform simulations and plotting
simulation results is depicted in Figure 3 below.

Figure 3. OpenModelica simulation of the V6Engine
model with 11000 equations. Plotting simulation results
using OMEdit. Left: Model browser. Right: Plot variable
browser. Bottom: message browser window.

5.3 3D Animation and Visualization

The OpenModelica 3D animation and visualization is a
built-in feature of OMEdit to animate based on 3D
shapes defined by the MSL Muilti-Body library. It
provides visualization of simulation results and
animation of geometric primitives and CAD-files. There
is also support for FMI-based visualization (Waurich
and Weber, 2017).

Figure 4. OpenModelica 3D animation of a simulated
excavator.

5.4 The OpenModelica Algorithm Debugger

The OpenModelica algorithm debugger (Figure 5),
(Pop, 2008), (Sjölund, 2015) is available for use either
from OMEdit or from the MDT Eclipse plug-in. The
debugger provides traditional debugging of the
algorithmic part of Modelica, such as setting
breakpoints, starting and stopping execution, single-
stepping, inspecting and changing variables, inspecting
all kinds of standard Modelica data structures as well as
MetaModelica data structures such as trees and lists.

Figure 5. The OpenModelica algorithmic code debugger
viewed from the MDT Eclipse plug-in. The OMEdit
version of the debugger looks about the same. A
breakpoint has been set in the function which is called
from the small model called SimulationModel.

5.5 The OpenModelica Equation Model

Debugger and Performance Analyzer

The OpenModelica equational model debugger (Figure
6), (Pop, Sjölund, et al, 2014), (Sjölund, 2015) is
available for use from OMEdit. It provides capabilities
for debugging equation-based models, such as showing
and explaining the symbolic transformations performed
on selected equations on the way to executable
simulation code. It can locate the source code position
of an equation causing a problem such as a run-time
error, traced backwards via the symbolic
transformations. Moreover, a performance analyzer tool
is also included in OpenModelica and integrated with
the debugger.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154206 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

211

Figure 6. The OpenModelica equation model debugger.
Left: equations view where equations and symbolic
transformations can be vied. Right: source view where the
erroneous equation is pointed out.

5.6 Run-time Solver Module and DAEMode

The OpenModelica execution and run-time solver
module executes compiled binary code from translated
models and functions. It includes numerical solvers as
well as event handling facilities for the discrete and
hybrid parts of the Modelica language.

A recent extension of this module is the DAEMode
used for solving very large models. This is part of an
emerging trend in Modelica tools of handling large-
scale models, with hundreds of thousands or possibly
millions of equations, (Casella, 2015). OpenModelica
has pioneered this field by introducing sparse solvers in
the solution chain: KLU for linear algebraic equations,
Kinsol for nonlinear algebraic equations, and IDA for
causalized differential equations. It also introduced the
direct use of IDA as differential-algebraic equation
solver, skipping the traditional causalization step, which
is computationally more efficient for certain classes of
systems. The largest system handled so far is an electro-
mechanical power system model with about 600.000
differential-algebraic equations, (Braun et al, 2017).

5.7 OMNotebook and DrModelica

OMNotebook (Figure 7) (Fernström et al, 2006) is a
book-like interactive user interface to OpenModelica
primarily intended for teaching and course material. It
supports sections and subsections to any level, hiding
and showing sections and cells, interactive evaluation
and simulation of Modelica models and plotting results.
The DrModelica (Lengquist-Sandelin, 2003) interactive
Modelica teaching course was the first main application,
at that time based on Mathematica notebooks.

Figure 7. The OMNotebook electronic notebook showing
part of the DrModelica document (course-material) for
learning Modelica. Top: The DrModelica document start
page. Bottom: The VanDerPol sub-document showing a
cell with a Modelica model, simulation commands, and
plot results.

5.8 OMWebbook – Interactive Web-based

Editable and Executable Book

OMWebbook (Figure 8) (Moudgalya et al, 2017),
(Fritzson et al, 2018), is an interactive web-based
electronic book. This is similar to OMNotebook, but
textual model editing and simulation is performed in a
web-browser. Simulation is performed by a dedicated
simulation server. Thus, the user need not install
OpenModelica on a computer. Editing and simulation
can even be done from smartphones or tablets.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154206

212

Figure 8. OMWebbook with editable models,
simulations, and plots.

5.9 MDT Eclipse Plug-in

The MDT (Modelica Development Tooling) Eclipse
plug-in (Figure 9) (Pop et al, 2006), (Pop 2008), is an
Eclipse-based textual development environment for
Modelica and MetaModelica model development.

It provides the usual facilities for software
development such as browsing, building, cross
referencing, syntax checking, and showing useful
information such as types, function signatures, etc.

MDT is primarily used for development of medium
to large scale Modelica projects, such as Modelica
libraries written in standard Modelica and the
OpenModelica compiler (currently containing more
than 200 packages) written in MetaModelica.

Figure 9. The OpenModelica MDT (Modelica
Development Tooling) Eclipse plug-in.

5.10 Python, Julia, and Matlab Scripting

Scripting APIs to OpenModelica is also provided for the
languages Python (Python 2018), Julia (Julia org, 2018),
and Matlab (MathWorks 2018), through the subsystems
OMPython (Lie et al, 2016), OMJulia and OMMatlab
(OSMC 2018a). This gives the user the possibility to use
Modelica together with the rich set of facilities and
libraries in these languages, e.g. for tasks such as control
design and post processing of simulation results.

5.11 Spoken Tutorials for OpenModelica

A number of interactive audio-video based spoken
tutorials (www.spoken-tutorial.org) have been
developed which provide step-by-step teaching about
how to use OpenModelica and develop simple models.
(Moudgalya et al, 2017). They are not part of the
OpenModelica installer and system, but mentioned here
since they provide important functionality to learn
OpenModelica and Modelica.

5.12 OMSimulator – FMI-based Simulation

and Composite Model Editor

OMSimulator, version 2.0, is an OpenModelica
subsystem that provides efficient simulation and co-
simulation of models in the (pre-compiled) FMI
standard FMU (Functional Mockup Unit) form. Thus,
models from non-Modelica tools compiled into FMUs
can also be included and simulated. Furthermore,
models that cannot be exported as FMUs can be
integrated in a simulation using tool-to-tool co-
simulation. This is provided via wrappers to models in
tools such as ADAMS, Beast, Simulink, Hopsan, or co-
simulation of FMUs with embedded solvers. The system
can optionally be used with TLM (Transmission Line
Modeling) connectors, which give numerically more
stable co-simulation.

Figure 10. The OpenModelica OMSimulator composite
model editor including 3D animation.

The earlier version OMSimulator 1.0, was already
available in OpenModelica 1.12.0 released 2017

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154206 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

213

(Fritzson, Braun, and Hartford, 2018), (OSMC 2018b),
but in that version TLM-connectors were mandatory and
pure FMI model-exchange based simulation was
missing.

Moreover, OMSimulator contains a composite model
editor integrated in OMEdit, that allows combining
external models (FMUs, both model-exchanged and co-
simulated ones) into new composite models.

This editor, an extension of OMEdit (Figure 10), also
provides 3D visualization of connected mechanical
model components which can be FMUs, Modelica
models, etc., or co-simulated components. 3D animation
of simulated FMUs is possible (right part of Figure 10).
A composite model is saved as an XML file according
to the SSP (Systems and Structure Parameterization)
standard (Modelica Assocaition 2018), (OSMC 2018c).

5.13 Embedded System Support

OpenModelica provides code generation of real-time
controllers from Modelica models, for small foot-print
platforms such as Arduino boards. (Berger et al, 2017),
or in tools for RexRoth PLCs (Menager et al, 2014).

One example of code generation to small targets is
the Single board heating system (Figure 11) from IIT
Bombay (Arora, Kannan Moudgalya, and Malewar,
2010). It is used for teaching basic control theory, and
usually controlled by a serial port (set fan value, read
temperature, etc). OpenModelica can generate code
targeting the ATmega16 on the board.

The program size is 4090 bytes including LCD driver
and PID-controller (out of 16 kB flash memory
available). The ATmega16 we target has 1 kB SRAM
available for data (stack, heap, and global variables). In
this case, only 130 bytes is used for data variables.

Figure 11. The SBHS (Single Board Heating System), an
example embedded target system for OpenModelica.

To simplify interfacing of low-level devices from
Modelica, OpenModelica supports the
Modelica_DeviceDrivers library (Thiele, Beutlich,
Waurich, Sjölund, and Bellmann, 2017), which is a free
library for interfacing hardware drivers that is developed
primarily for interactive real-time simulations. It is
cross-platform (Windows and Linux). Using this
library, modeling, parameterization and configuration
can be done at a high level of abstraction using

Modelica, avoiding the need for low level C
programming.

5.14 Model-based Control, Synchronous

Modelica, and C++ Run-time

OpenModelica is one of the (currently) two Modelica
tools that support synchronous Modelica (Modelica
Association, 2017), implemented both on top of the
OpenModelica C run-time and C++ run-time. This can
be used for model-based control, using Modelica and
FMI, (Franke et al, 2017), and using the OpenModelica
C++ run-time (Franke et al, 2015).

5.15 ModelicaML Modelica-UML Profile

and Eclipse Plug-in

ModelicaML (Figure 12), (Schamai, 2013), (Schamai et
al, 2014) is an Eclipse plug-in and Modelica-UML
profile for the description of system architecture and
system dynamic behavior. It is based on an extended
subset of the OMG Unified Modeling Language (UML)
as well as Modelica, and is designed for Modelica code
generation from graphical models such as state
machines and activity diagrams, supporting
hardware/software co-modeling and system
requirement verification against selected scenarios. The
current prototype has not been updated recently and only
works together with an old version of Eclipse.

Figure 12. The ModelicaML Eclipse plug-in and UML-
Modelica profile for integrated software-hardware
modeling and requirements verification.

5.16 Requirement Verification

OpenModelica supports requirement verification using
the vVDR approach (virtual Verification of Designs vs.
Requirements), (Schamai, 2014<, Schamai et al, 2015).
It was first introduced in the ModelicaML Eclipse plug-
in mentioned previously, using a combination of UML
and Modelica for requirement specification. Recently, a
Modelica-only version of vVDR has been designed and
implemented in OpenModelica, using requirement
specification in Modelica, and a vVDR Modelica library
(Buffoni et al, 2014; Buffoni et al, 2017).

It is a simulation-based approach that can be used to
verify (Figure 13) different design alternatives against
sets of requirements using different scenarios. The tool

Structure

Behavior

Requirements

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154206

214

automatically generates verification models in
Modelica, performs the simulations, compares the
results, and generates a report about verification results.

Figure 13. Simulation-based requirement verification for
the two-tanks example. Requirement r001 regarding the
level of tank2 is violated twice (shown in red).

5.17 Design Optimization

Two forms of design optimization tool support are
available with OpenModelica: a) the traditional
parameter sweep static design optimization using many
simulation runs, or b) direct dynamic optimization of a
full trajectory. The first method is supported by the
OMOptim tool (Figure 14), (Thieriot et al, 2011).

Figure 14. The OpenModelica OMOptim tool for
parameter sweep optimization. Top: selecting variables,
objectives, parameters. Bottom: A result plot with a Pareto
optimization of two goal functions.

The second approach, dynamic optimization (Figure
15), (Bachmann et al, 2012), (Åkesson, 2008),
formulates an optimization problem directly on a whole
trajectory which is divided into trajectory segments
(Figure 15, top) whose shapes are determined by
coefficients which are initially not determined.

During the optimization process these coefficients are
gradually assigned values which make the trajectory
segments adjust shape and join into a single trajectory
with a shape that optimizes the goal function under the
constraints of fulfilling the model equations. Figure 15
(bottom) shows the relative speedup of performing
dynamic optimization of a goal function for a small
BatchReactor model using parallel versions of the
dynamic optimization methods multiple shooting and
multiple collocation running on a multi-core computer.
Optimization algorithms from the Ipopt library
(Wächter and Biegler, 2006), are employed for part of
the optimization mechanism.

Figure 15. Top: Dynamic optimization formulates the
whole trajectory in terms of trajectory segments whose
shapes are adjusted during optimization. Bottom: Relative
speedups and computation times of the complete dynamic
optimization process for the BatchReactor example model
using parallel multiple shooting or multiple collocation in
OpenModelica on 1, 2, 4, and 8 cores.

5.18 Parallelization and Multi-Core

Work on generating parallel code from Modelica
models has been ongoing for OpenModelica during
several years. Automatic extraction of task parallelism
and automatic scheduling is one approach that has been

⬚𝑡𝑡 0 𝑡𝑡1 𝑡𝑡2 𝑡𝑡3

ℎ1
ℎ2 ℎ3

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154206 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

215

investigated (Figure 16), (Aronsson 2006), (Walther et
al, 2014). Another approach is the ParModelica
language extension (Gebremedhin 2011) that allows
generation of OpenCL code for data-parallel platforms
such as the NVIDIA graphics cards. A third approach,
which is now integrated with the above approaches is
dynamic load balancing partly based on the running
simulation. (Gebremedhin and Fritzson, 2017).

Figure 16. Example of speedup of parallel code from
OpenModelica for the Fluid.Examples.Branching.
DynamicPipes model.

6 Related Work

Since OpenModelica is a Modelica environment it has
of course been influenced by other Modelica tools. The
most influential of these tools is Dymola (Elmqvist et al,
1996), (Brück et al, 2002), (Dassault Systèmes 2013),
which was the first full-scale industrial-strength
Modelica environment. Certain aspects have also been
influenced by the MathModelica environment (Fritzson
2006), later renamed and further developed to Wolfram
System Modeler (Wolfram Research 2018), InterLisp,
Mathematica (Wolfram 2003), and ObjectMath
(Fritzson, et al, 1995) have influenced the design of
OpenModelica as an integrated symbolic-numeric
environment. Recently, the rapidly developing
symbolic-numeric Julia language (Bezanson 2017),
(Julia org, 2018) has appeared, with similar goals as
MetaModelica.

7 Conclusions

OpenModelica has been developed into a powerful open
source tool suite for modeling, simulation, and model-
based development. Still some challenges are being
worked on and remain to be addressed, for example very
large models with several million equations. The
debugger can be further improved to find additional
kinds of numeric/symbolic errors. Integration aspects
between tool functionalities can be further enhanced.
Just-in-time compilation would improve the system’s
interactive properties. Two large recent OpenModelica
efforts are the OMC new frontend development for
100% coverage and greatly enhanced compilation
speed, and the OMSimulator tool for efficient large-

scale FMI-based simulation. Recently OMJulia has been
introduced that provides OpenModelica access from
Julia. More powerful integration options between Julia
and OpenModelica are also being considered in order to
benefit from the Julia libraries and infrastructure.

Acknowledgements

This work has been supported by Vinnova in the ITEA
OPENPROD, MODRIO, and OPENCPS projects and in
the Vinnova RTISIM project. Support from the Swedish
Government has been received from the ELLIIT project.
The OpenModelica development is supported by the
Open Source Modelica Consortium. Many students,
researchers, engineers have contributed to the
OpenModelica system. There is not room here to
mention all these people, but we gratefully acknowledge
their contributions.

References

Peter Aronsson. Automatic Parallelization of Equation-Based
Simulation Programs. Linköping Studies in Science and
Technology, Ph.D. Thesis No. 1022. June 14, 2006.
URN: urn:nbn:se:liu:diva-7446

Adeel Asghar, Sonia Tariq, Mohsen Torabzadeh-Tari, Peter
Fritzson, Adrian Pop, Martin Sjölund, Parham Vasaiely,
and Wladimir Schamai. An Open Source Modelica Graphic
Editor Integrated with Electronic Notebooks and Interactive
Simulation. In Proc. of the 8th International Modelica

Conference 2011, pp. 739–747. Modelica Association,
March 2011.Linköping University, Sweden, 2010.

Inderpreet Arora, Kannan Moudgalya, Sachitanand Malewar.
A low cost, open source, single board heater system. In
Proc. 4th IEEE International Conference on E-Learning in

Industrial Electronics (ICELIE), Nov 7-10, 2010. IEEE
Xplore, DOI: 10.1109/ICELIE.2010.5669868

Bernhard Bachmann, Lennart Ochel, Vitalij Ruge, Mahder
Gebremedhin, Peter Fritzson, Vaheed Nezhadali, Lars
Eriksson, Martin Sivertsson. Parallel Multiple-Shooting
and Collocation Optimization with OpenModelica. In
Proceedings of the 9th International Modelica Conference
(Modelica'2012), Munich, Germany, Sept.3-5, 2012

Lutz Berger, Martin Sjölund, Bernhard Thiele. Code
generation for STM32F4 boards with Modelica device
drivers. In Proc.of 8th International Workshop on

Equation-Based Object-Oriented Modeling Languages and

Tools, Munich, Germany, Dec 1, 2017. Published by ACM
Digital Library. doi:10.1145/3158191.3158204

Jeff Bezanson, Alan Edelman, Stefan Karpinski and Viral B.
Shah. Julia: A Fresh Approach to Numerical Computing.
SIAM Review, 59: 65–98. 2017 doi: 10.1137/141000671.

Willi Braun, Francesco Casella, and Bernhard Bachmann
Solving Large-scale Modelica Models: New Approaches
and Experimental Results using OpenModelica, In Proc

12th Int. Modelica Conference, May 15-17, 2017, Prague,
Czech Republic, pp. 557-563, doi:10.3384/ecp17132557

Dag Brück, Hilding Elmqvist, Sven-Erik Mattsson, and Hans
Olsson. Dymola for Multi-Engineering Modeling and
Simulation. In Proceedings of the 2nd International

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154206

216

Modelica Conference, Oberpfaffenhofen, Germany, Mar.
18–19, 2002

Lena Buffoni and Peter Fritzson. Expressing Requirements in
Modelica. In Proceedings of the 55th Scandinavian

Conference on Simulation and Modeling (SIMS’2014),

available at www.scan-sims.org. Aalborg, Denmark, Oct
21-22, 2014.

Lena Buffoni, Adrian Pop, and Alachew Mengist. Traceability
and Impact Analysis in Requirement Verification. In
Proc.of 8th International Workshop on Equation-Based

Object-Oriented Modeling Languages and Tools, Munich,
Germany, Dec 1, 2017. Published by ACM Digital Library.
doi:10.1145/3158191.3158207

Francesco Casella. Simulation of Large-Scale Models in
Modelica: State of the Art and Future Perspectives. In
Proceedings of the 11th International Modelica

Conference, Sept 21-23 2015, Versailles, France, pp. 459-
468, doi:10.3384/ecp15118459

Alejandro Danós, Willi Braun, Peter Fritzson, Adrian Pop,
Hugo Scolnik, and Rodrigo Castro. Towards an
OpenModelica-based Sensitivity Analysis Platform
Including Optimization-driven Strategies. In Proc.of 8th

International Workshop on Equation-Based Object-

Oriented Modeling Languages and Tools, Munich,
Germany, Dec 1, 2017. Published by ACM Digital Library.
doi:10.1145/3158191.3158206

Hilding Elmqvist, Dag Bruck, and Martin Otter. Dymola—

User's Manual. Dynasim AB, Research Park Ideon, SE-223
70, Lund, Sweden, 1996

Dassault Systèmes. Dymola. Systems Engineering Overview.
https://www.3ds.com/products-services/catia/products/dymola/

Accessed Sept. 3, 2018.
Anders Fernström, Ingemar Axelsson, Peter Fritzson, Anders

Sandholm, Adrian Pop. OMNotebook – Interactive
WYSIWYG Book Software for Teaching Programming. In
Proc. of the Workshop on Developing Computer Science

Education – How Can It Be Done?. Linköping University,
Dept. Computer & Inf. Science, Linköping, Sweden, March
10, 2006.

Rüdiger Franke, Marcus Walther, Niklas Worschech, Willi
Braun, and Bernhard Bachmann. Model-based Control with
FMI and a C++ Runtime for Modelica. In Proceedings of

the 11th International Modelica Conference, Versailles,
France, September 21-23, 2015. Published by LIU
Electronic Press. doi:10.3384/ecp15118339

Rüdiger Franke, Sven Erik Mattsson, Martin Otter, Karl
Wernersson, Hans Olsson, Lennart Ochel, and Torsten
Blochwitz. Discrete-time Models for Control Applications
with FMI. In Proceedings of the 12th International

Modelica Conference, Prague, Czech Republic, May 15-17,
2017. Published by LIU Electronic Press. doi:
10.3384/ecp17132507

Peter Fritzson, Lars Viklund, Dag Fritzson, and Johan Herber.
High Level Mathematical Modeling and Programming in
Scientific Computing, IEEE Software, pp 77–87, July 1995.

Peter Fritzson, Peter Aronsson, Håkan Lundvall, Kaj
Nyström, Adrian Pop, Levon Saldamli, and David Broman.
The OpenModelica Modeling, Simulation, and Software
Development Environment. In Simulation News Europe,
44/45, December 2005. See also:
http://www.openmodelica.org. An earlier version in

Proceedings of the 46th Conference on Simulation and

Modelling of the Scandinavian Simulation Society
(SIMS2005), Trondheim, Norway, October 13-14, 2005.

Peter Fritzson. MathModelica - An Object Oriented
Mathematical Modeling and Simulation Environment.
Mathematica Journal, Vol 10, Issue 1. February. 2006.

Peter Fritzson, Adrian Pop, David Broman, Peter Aronsson.
Formal Semantics Based Translator Generation and Tool
Development in Practice. In Proc. of the 20th Australian

Software Engineering Conference (ASWEC 2009), Gold
Coast, Queensland, Australia, April 14 – 17, 2009.

Peter Fritzson, Adrian Pop, and Martin Sjölund. Towards

Modelica 4 Meta-Programming and Language Modeling

with MetaModelica 2.0. Technical reports in Computer and
Information Science, No 10, Linköping University
Electronic Press. February 2011. URL
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68361

Peter Fritzson. Principles of Object Oriented Modeling and

Simulation with Modelica 3.3: A Cyber-Physical Approach.
1250 pages. ISBN 9781-118-859124, Wiley IEEE Press,
2014.

Peter Fritzson, Bernhard Bachmann, Kannan Moudgalya,
Francesco Casella, Bernt Lie, Jiri Kofranek, Massimo
Ceraolo, Christoph Nytsch Geusen, Luigi Vanfretti,
(editors). Introduction to Modelica with Examples in

Modeling, Technology, and Applications. Published by
Linköping University Electronic Press, series ”Linköping

University Interdisciplinary Studies” with ISSN 1650-9625.
On-line: http://omwebbook.openmodelica.org/ Accessed
Sept 3, 2018.

Dag Fritzson, Robert Braun, and Jan Hartford. Composite
modelling in 3-D mechanics utilizing Transmission Line
Modelling (TLM) and Functional Mock-up Interface (FMI)
Modeling, Identication and Control, Vol. 39, No. 3, pp.
179-190, 2018.

Peter Fritzson, Bernhard Bachmann, Kannan Moudgalya,
Francesco Casella, Bernt Lie, Jiri Kofranek, Massimo
Ceraolo, Christoph Nytsch Geusen, Luigi Vanfretti,
(editors). Introduction to Modelica with Examples in

Modeling, Technology, and Applications Published by
Linköping University Electronic Press, series ”Linköping

University Interdisciplinary Studies” with ISSN 1650-9625.
On-line: http://omwebbook.openmodelica.org/ Accessed
Sept 3, 2018.

Mahder Gebremedhin. ParModelica: Extending the

Algorithmic Subset of Modelica with Explicit Parallel

LanguageConstructs for Multi-core Simulation. Master
Thesis, Department of Computer and Information Science,
Linköping University, Oct. 2011. URN: urn:nbn:se:liu:diva-
71612

Mahder Gebremedhin and Peter Fritzson. Parallelizing
Simulations with Runtime Profiling and Scheduling, In
Proc..of 8th International Workshop on Equation-Based

Object-Oriented Modeling Languages and Tools, Munich,
Germany, 2017. Published by ACM.

Julia org. Julia Language Documentation, Release 1.0.
Accessed August 31, 2018, www.julialang.org

Eva-Lena Lengquist-Sandelin, Susanna Monemar, Peter
Fritzson, and Peter Bunus. DrModelica - An Interactive
Tutoring Environment for Modelica. In Proceedings of the

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154206 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

217

3rd International Modelica Conference, Nov. 3-4,
Linköping, Sweden, 2003

Bernt Lie, Sudeep Bajracharya, Alachew Mengist, Lena
Buffoni, Arunkumar Palanisamy, Martin Sjölund, Adeel
Asghar, Adrian Pop, Peter Fritzson. API for Accessing
OpenModelica Models From Python. In Proceedings of the

9th Eurosim Congress on Modelling and Simulation,
EuroSim2016, Oulu, Finland, September 12-16, 2016.
Published by IEEE, ISBN 978-1-5090-4119-0, pp. 707--
713; http://eurosim2016.

MathWorks. Matlab product overview.
https://www.mathworks.com/products/matlab.html
Accessed Sept 3, 2018.

Nils Menager, Niklas Worschech, and Lars Mikelsons. A
Toolchain for Rapid Control Prototyping using Rexroth
Controllers and Open Source Software. In Proceedings of

the 10th International Modelica Conference
(Modelica'2014), Lund, Sweden, March.10-12, 2014.

Robert Milner, Mads Tofte, Robert Harper, and David
MacQueen, The Definition of Standard ML - Revised. MIT
Press. ISBN: 0-262-63181-4. Year 1997

Modelica Association. Modelica: A Unified Object-oriented

Language for Physical Systems Modeling, Language

Specification Version 3.4. April 10, 2017. URL
http://www.modelica.org/

Modelica Association. SSP – MA Project for System
Structure and Parameterization of Components for Virtual
System Design. https://www.modelica.org/projects
Accessed Sept 3, 2018.

Kannan Moudgalya, Bhargava Nemmaru, Kaushik Datta,
Priyam Nayak, Peter Fritzson, and Adrian Pop. Large Scale
Training through Spoken Tutorials to Promote and use
OpenModelica. . In Proceedings of the 12th International

Modelica Conference (Modelica'2017), Prague, Czech
Republic, May, 15-17, 2017.

OCaml org. OCaml web site. https://ocaml.org/ Accessed Sept
3, 2018.

OSMC. OpenModelica Users Guide, latest version.
https://www.openmodelica.org/doc/OpenModelicaUsersG
uide/latest/ Accessed September 3, 2018a.

OSMC. OMSimulator 1.0 documentation. Chapter 6 in
https://www.openmodelica.org/doc/OpenModelicaUsersG
uide/OpenModelicaUsersGuide-v1.12.0.pdf Accessed
September 3, 2018b.

OSMC. OMSimulator 2.0 documentation:
https://openmodelica.org/doc/OMSimulator/html/
Accessed September 3, 2018c.

Adrian Pop, Peter Fritzson, Andreas Remar, Elmir Jagudin,
and David Akhvlediani. OpenModelica Development
Environment with Eclipse Integration for Browsing,
Modeling, and Debugging. In Proceedings of the 5th

International Modelica Conference (Modelica'2006),
Vienna, Austria, Sept. 4-5, 2006.

Adrian Pop and Peter Fritzson, MetaModelica: A Unified
Equation-Based Semantical and Mathematical Modeling
Language. In D. Lightfoot and C. Szyperski, editors,
Modular Programming Languages, Vol. 4228 of Lecture
Notes in Computer Science, pages 211{229. Springer
Berlin / Heidelberg, 2006.DOI:10.1007/11860990 14.

Adrian Pop. Integrated Model-Driven Development

Environments for Equation-Based Object-Oriented

Languages. Ph.D. Thesis. Linköping Studies in Science and
Technology, Dissertation No. 1183, June 5, 2008.

Adrian Pop and Peter Fritzson. MetaModelica: A Unified
Equation-Based Semantical and Mathematical Modeling
Language. In Proceedings of Joint Modular Languages

Conference 2006 (JMLC2006) LNCS 4228, Springer
Verlag. Jesus College, Oxford, England, Sept 13-15, 2006.

Adrian Pop, Martin Sjölund, Adeel Asghar, Peter Fritzson,
Francesco Casella. Integrated Debugging of Modelica
Models. Modeling, Identication, and Control, Vol 35, No 2,
pp. 93-107, DOI: http://dx.doi.org/10.4173/mic.2014.2.3,
ISSN 1890-1328, Aug 2014.

Python Software Foundation. Python Programming Language
web page. https://www.python.org/ Accessed Sept 3, 2018.

Wladimir Schamai. Model-Based Verification of Dynamic

System Behavior against Requirements - Method,

Language, and Tool. Linköping Studies in Science and
Technology, Dissertation No. 1547, Nov 12, 2013. DOI:
10.3384/diss.diva-98107

Wladimir Schamai, Lena Buffoni, Peter Fritzson. An
Approach to Automated Model Composition Illustrated in
the Context of Design Verification. Modeling,

Identification and Control, Vol. 35, No. 2, pp. 79-91, ISSN
1890-1328, Aug. 2014

Wladimir Schamai, Lena Buffoni, Nicolas Albarello, Pablo
Fontes De Miranda, and Peter Fritzson. An Aeronautic Case
Study for Requirement Formalization and Automated
Model Composition in Modelica. In Proceedings of the 11th

International Modelica Conference (Modelica'2015), Paris,
France, September, 21-23, 2015

Martin Sjölund, Peter Fritzson, and Adrian Pop.
Bootstrapping a Compiler for an Equation-Based Object-
Oriented Language. DOI: 10.4173/mic.2014.1.1.
Modeling, Identification and Control, Vol 35, No 1, pp 1-
19, 2014.

Martin Sjölund. Tools and Methods for Analysis, Debugging,

and Performance Improvement of Equation-Based Models.
Ph.D. Thesis. Linköping Studies in Science and
Technology, Dissertation No. 1664, June 1, 2015.

Bernhard Thiele, Thomas Beutlich, Volker Waurich, Martin
Sjölund, and Tobias Bellmann. Towards a Standard-
Conform, Platform-Generic and Feature-Rich Modelica
Device Drivers Library. In Proc. of the 12th Int. Modelica

Conference, Prague, Czech Republic, May 2017.

Hubert Thieriot, Maroun Nemer, Mohsen Torabzadeh-Tari,
Peter Fritzson, Rajiv Singh, and John John Kocherry.
Towards Design Optimization with OpenModelica
Emphasizing Parameter Optimization with Genetic
Algorithms. In Proceedings of the 8th International

Modelica Conference (Modelica'2011), Dresden, Germany,
March.20-22, 2011.

Marcus Walther, Volker Waurich, Christian Schubert, and
Ines Gubsch. Equation based parallelization of Modelica
models. In Proceedings of the 10th International Modelica

Conference (Modelica'2014), Lund, Sweden, March.10-12,
2014.

Volker Waurich and Jürgen Weber. Interactive FMU-Based
Visualization for an Early Design Experience. In Proc. of

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154206

218

the 12th Int. Modelica Conference, Prague, Czech Republic,
May 2017.

Stephen Wolfram. The Mathematica Book, 5th Ed. Wolfram
Media, Inc, 2003.

Wolfram Research. Wolfram System Modeler Documentation
and Overview. http://www.wolfram.com/system-modeler/
Accessed September 3, 2018.

Andreas Wächter and Lorenz. Biegler, On the Implementation
of a Primal-Dual Interior Point Filter Line Search
Algorithm for Large-Scale Nonlinear Programming,
Mathematical Programming 106 (2006) 25-57. Also:
(Ipopt) https://projects.coin-or.org/Ipopt

Johan Åkesson. Optimica—An Extension of Modelica
Supporting Dynamic Optimization. In Proc. of 6th

International Modelica Conference 2008. Modelica.
Association, March 2008

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154206 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

219

