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Abstract

Understanding and exploiting the inhibition phenomenon, which promotes the stable coexistence of species, is a major
challenge in the mathematical theory of the chemostat. Here, we study a model of two microbial species in a chemostat
competing for a single resource in the presence of an external inhibitor. The model is a four-dimensional system of
ordinary differential equations. Using general monotonic growth rate functions of the species and absorption rate of
the inhibitor, we give a complete analysis for the existence and local stability of all steady states. We focus on the
behavior of the system with respect of the three operating parameters represented by the dilution rate and the input
concentrations of the substrate and the inhibitor. The operating diagram has the operating parameters as its coordinates
and the various regions defined in it correspond to qualitatively different asymptotic behavior: washout, competitive
exclusion of one species, coexistence of the species around a stable steady state and coexistence around a stable cycle.
This bifurcation diagram which determines the effect of the operating parameters, is very useful to understand the
model from both the mathematical and biological points of view, and is often constructed in the mathematical and
biological literature.
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1. Introduction

The chemostat is an important laboratory apparatus
used for the continuous culture of micro-organisms.
Competition for single and multiple resources, evolu-
tion of resource acquisition, and competition among
micro-organisms have been investigated in ecology and
biology using chemostats [1, 2, 3, 4]. A detailed mathe-
matical description of competition in the chemostat may
be found in [5, 6].

The basic chemostat model predicts that coexistence
of two or more microbial populations competing for a
single non-reproducing nutrient is not possible. Only
the species with the lowest ‘break-even’ concentration
survives, this is the species which consumes less sub-
strate to attain its steady state [7]. This result, known
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as the Competitive Exclusion Principle [8], was estab-
lished under various hypotheses [9, 10, 11, 12]. The
reader may consult [13, 14, 15] for a thorough account
on the contributions of diverse authors. When the break-
even concentrations are very close to each other an in-
teresting phenomenon, known as practical coexistence,
occurs [16].

Although this theoretical prediction has been corrob-
orated by the experiences of Hansen and Hubell [17],
the biodiversity found in nature as well as in waste-
water treatment processes and biological reactors are
exceptions to this principle. Several authors [18, 19,
20, 21, 22, 23, 24, 25, 26] studied the inhibition as a
factor in the maintenance of the diversity of microbial
ecosystems: Can the production of internal inhibitors or
the introduction of external inhibitors induce the stable
coexistence of competitors in a chemostat-like environ-
ment?

In this paper we consider the model introduced by
Lenski and Hattingh [25]. In this model, two species
compete for a single limiting resource in presence of
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an external inhibitor, like a pesticide or an antibiotic,
to which one species is sensitive and the other is resis-
tant. Moreover, the resistant species is able to detoxify
the environment, that is to remove the inhibitor from
the environment. For some values of the dilution rate,
the sensitive species has the lowest break-even concen-
tration and wins the competition in absence of the in-
hibitor. The presence of the inhibitor allows the coexis-
tence of both species. The complete mathematical anal-
ysis of the model in [25] was provided by Hsu and Walt-
man [23]. Due to the importance of this phenomenon
which promotes the stable coexistence of two species
competing for a single resource, the results of [23] were
discussed in the text book [6] and in the review paper
[27]. The aim of this work is to revisit the results of
[23, 27, 25, 6] and to discuss several important ques-
tions that were unanswered in these works.

The approach in [25] was to fix the biological pa-
rameters of the model, together with the dilution rate
of the chemostat, and discuss the behavior of the model
with respect to the input concentrations of the limiting
nutrient and inhibitor, which are operating parameters
of the model. Therefore these authors established the
‘operating diagram’ of the model: seven possible out-
comes were shown, corresponding to seven regions of
the operating diagram. Without detoxification, the com-
petitive exclusion principle holds, see [25], Fig. 1(a).
With detoxification two regions of stable coexistence
of both species appear, see [25], Fig. 1(b). Using the
Routh-Hurwitz theorem on local stability of the coexis-
tence equilibrium, these authors emphasized on the fact
that the coexistence equilibrium may be unstable. They
gave conditions on the biological parameters for which
the coexistence equilibrium becomes unstable. How-
ever they did not depicted the region of the operating
parameters in which this behavior holds.

The approach in [23, 27, 6] was more mathemati-
cal. The authors rescaled the biological and operating
parameters of the model, creating a ‘standard’ environ-
ment in which the operating parameters are fixed to the
value 1. This rescaling is often used in the mathemat-
ical literature on the chemostat [6]. The authors estab-
lished global results and shown that when the coexis-
tence equilibrium is unstable then the model can have
an attracting limit cycle. The theory developed in this
standard environment potentially permits to present the
operating diagrams of the model. However the operat-
ing diagram was not presented in [23, 27, 6]. Our main
contribution is to present the operating diagram and to
give its properties with respect of the biological param-
eters. The parameter space of the model is ten dimen-
sional: seven biological parameters and three operating

parameters. Exploring all of it is not possible. Our ap-
proach to handle this question is to split the question in
two intermediary questions. First we fix the biological
parameters and present the operating diagram. Second
we explore how the operating diagram varies when the
biological parameters are changed. The problem is re-
duced to the determination of the sign of a set of five
real valued functions of the dilution rate.

The operating diagram has the operating parameters
as its coordinates and the various regions defined in it
correspond to qualitatively different dynamics. This bi-
furcation diagram which determines the effect of the op-
erating parameters, that are controlled by the operator
and which are the dilution rate and the input concentra-
tions, is very useful to understand the model from both
the mathematical and biological points of view, and is
often constructed in the mathematical and biological lit-
erature [28, 29, 30, 31, 32, 33, 34, 35, 36, 37].

In this paper we extend [23, 27, 6] by considering
general growth functions and by describing the operat-
ing diagram. We extend also [25] by describing theoret-
ically the various regions of the operating diagram. In
particular we show that for the biological parameters in
[25], for all values of the three operating parameters the
coexistence equilibrium is stable whenever it exists and
we clarify the question of the destabilisation of the co-
existence equilibrium that was considered in [25] only
through numerical exploration.

The organization of this paper is as follows. In Sec-
tion 2, we present the model and some properties of its
solutions. In Section 3, we discuss the existence and the
local asymptotic stability of equilibria. In Section 4, we
discuss global results. In Section 5, we present the oper-
ating diagrams. In Section 6, we consider examples and
we give numerical simulations. A discussion follows in
Section 7.

2. Mathematical model

The model of the chemostat with external in-
hibitor [23, 25, 27] we consider here is of the form

S ′ = (S 0−S )D− f (p) f1(S )
x
γ1
− f2(S )

y
γ2
,

x′ = [ f (p) f1(S ) − D]x,
y′ = [ f2(S ) − D]y,
p′ = (p0 − p)D − g(p)y,

(1)

with S (0) ≥ 0, x(0) > 0, y(0) > 0 and p(0) ≥ 0. S (t)
denotes the concentration of the substrate at time t; x(t),
y(t) are the concentrations of the competitors at time t
and p(t) is the concentration of the external inhibitor.
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Variables/ Meanings of the Units
Parameters Variables/Parameters
S , x, y, p Concentrations of substrate, species and inhibitor mass/volume
m1, m2 Maximal growth rates of the competitors 1/time
K1, K2 Half saturation constants of the competitors mass/volume
δ Maximal growth rates of detoxification 1/time
K Half saturation constant of detoxification mass/volume
µ Degree of sensitivity of p on x volume/mass

γ1, γ2 Growth yield coefficients dimensionless

Table 1: Meanings and units of the variables and biological parameters.

S 0 > 0 is the input concentration of the nutrient, D >
0 is the dilution rate of the chemostat and p0 > 0 is
the input concentration of the inhibitor, all of which are
assumed to be constant and are under the control of the
experimenter. The parameters γi > 0, i = 1, 2, are the
growth yield coefficients. The function f represents the
degree of inhibition of p on the growth rate of x. The
so-called functional responses fi, i = 1, 2, represent the
specific growth rates of the competitors and the function
g represents the absorption rate of the external inhibitor
relative to y. The global analysis of the model (1) was
considered by Hsu and Waltman [23] when

f (p) = e−µp, f1(S ) =
m1S

K1 + S
,

f2(S ) =
m2S

K2 + S
, g(p) =

δp
K + p

,

(2)

where µ, mi, Ki, i = 1, 2, δ and K are positive con-
stant parameters whose meaning and units are given in
Table1. Here, except the three variable operating (or
control) parameters, which are the input of the inhibitor
p0, the dilution rate D and the inflowing substrate S 0,
all the other parameters are biological parameters which
depend on the organisms, substrate and inhibitor consid-
ered.

In this paper, we consider the general model (1) with-
out restricting ourselves to the special case (2). We
suppose only that f , f1, f2, and g in system (1) are
C1-functions satisfying the following conditions, see
Fig. 1(a):

(H1) f (0) = 1, f (p) ≥ 0 and f ′(p) < 0 for all p > 0.

(H2) For i = 1, 2, fi(0) = 0 and f ′i (S ) > 0 for all S ≥ 0.

(H3) g(0) = 0 and g′(p) > 0 for all p ≥ 0.

Following [23, 27], without loss of generality, the op-
erating parameters p0, D and S 0 together with the yields

γ1 and γ2 can be fixed to 1. This is done by the follow-
ing scaling of the dependent variables, and time:

Ŝ =
S
S 0 , x̂=

x
S 0γ1

, ŷ=
y

S 0γ2
, p̂=

p
p0 , t̂= Dt, (3)

and the following notations

f̂ ( p̂)= f
(
p0 p̂

)
, ĝ ( p̂)=

S 0γ2

p0D
g
(
p0 p̂

)
,

f̂i
(
Ŝ
)
=

1
D

fi
(
S 0Ŝ

)
, i = 1, 2.

(4)

Note that the functions f̂ , ĝ and f̂i, i = 1, 2, satisfy
assumptions (H1), (H2) and (H3). Then, making the
changes (3), (4) and dropping all the hats, model (1) is
written in the simplified non-dimensional form

S ′ = 1 − S − f (p) f1(S )x − f2(S )y,
x′ = [ f (p) f1(S ) − 1]x,
y′ = [ f2(S ) − 1]y,
p′ = 1 − p − g(p)y,

(5)

where f , g and fi, i = 1, 2, satisfy assumptions (H1),
(H2) and (H3). This is the system we will analyze here.

The proof of the following result is standard and
hence omitted.

Proposition 1. For non-negative initial conditions, all
solutions of system (5) are bounded and remain non-
negative for all t>0. Moreover, the compact set

Ω = {(S , x, y, p) ∈ R4
+ : 0 ≤ p ≤ 1, S + x + y = 1}

is positively invariant and is a global attractor for sys-
tem (5).

3. Existence and stability of equilibria

As it was noticed in [23], the results obtained in
[23, 25] for the specific functions (2) remain valid for
the general monotone growth functions satisfying as-
sumptions (H1), (H2) and (H3). In this section we give
the results in this more general setting.
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Figure 1: Illustrative graphs of functions (a): f1 and f2 and definitions of break-even concentrations λ1, λ2, λ+ and λ− which are given by (6) and
(8),respectively; (b): W with the unique positive solution p∗ of equation W(p) = 1 − λ2, when λ2 < 1.

3.1. Existence of equilibria
Hereafter we use the following conditions and nota-

tions: for functions f , fi, i = 1, 2, and g in (5), condi-
tions (H1) to (H3) hold. When equations f1(S ) = 1,
f2(S ) = 1 and f1(S ) = 1/ f (1) have solutions, they
are unique and then we define the break-even concen-
trations as:

λ1 = f −1
1 (1), λ2 = f −1

2 (1), λ+ = f −1
1

(
1

f (1)

)
. (6)

Otherwise, we put λ1 = +∞, λ2 = +∞ and λ+ = +∞.
We define the function W by

W(p) =
1 − p
g(p)

, for p ∈ (0, 1].

Using (H3), for all p ∈ (0, 1) we have W(p) > 0,
W ′(p) < 0 and limp→0 W(t) = +∞. Therefore, when
λ2 < 1, equation W(p) = 1 − λ2 admits a unique solu-
tion that we denote p∗:

W(p∗) = 1 − λ2. (7)

We have 0 < p∗ < 1, see Fig. 1(b).
If equation f1(S ) = 1/ f (p∗) has a solution, it is unique
and then we set

λ− = f −1
1

(
1

f (p∗)

)
. (8)

Otherwise, we let λ− = +∞. Since f is decreasing we
have 0< f (1)< f (p∗)< 1. Therefore 1/ f (1) > 1/ f (p∗)
and, since f1 is increasing, the numbers λ1, λ+ and λ−

are related as follows, see Fig. 1(a):

λ1 < λ
− < λ+. (9)

The existence of equilibria of system (5) is stated by
the following result:

Proposition 2. Assume that (H1), (H2) and (H3) are
satisfied. System (5) has the following equilibria:

• The washout equilibrium E0 = (1, 0, 0, 1), that al-
ways exists.

• The equilibrium E1 = (λ+, 1−λ+, 0, 1) of extinction
of species y, where λ+ is given by (6). This equilib-
rium exists if and only if λ+ < 1.

• The equilibrium E2 = (λ2, 0, 1 − λ2, p∗) of extinc-
tion of species x, where λ2 and p∗ are given by (6)
and (7), respectively. This equilibrium exists if and
only if λ2 < 1.

• The coexistence equilibrium Ec = (λ2, xc, yc, pc),
where λ2 is given by (6) and pc, yc and xc are given
by

pc = f −1
(

1
f1(λ2)

)
, yc = W(pc), xc = 1−λ2−yc.

(10)
This equilibrium exists if and only if λ2 < 1 and
λ− < λ2 < λ+, where λ+ and λ− are given by (6)
and (8), respectively.

Proof. The proof is given in Appendix A.1.

3.2. Local asymptotic stability of equilibria

For the study of the stability of equilibria it is conve-
nient to use the change of variable

Σ = 1 − S − x − y

in system (5) that reveals the cascade structure of the
system. Since Σ′ = −Σ, the system (5) may then be
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Equilibria Existence Local exponential stability
E0 = (1, 0, 0, 1) Always λ+ > 1 and λ2 > 1
E1 = (λ+, 1 − λ+, 0, 1) λ+ < 1 λ+ < λ2
E2 = (λ2, 0, 1 − λ2, p∗) λ2 < 1 λ2 < λ

−

Ec = (λ2, xc, yc, pc) λ− < λ2 < min(λ+, 1) (A + B)(A + B + C)C > BEF

Table 2: Existence and local asymptotic stability of equilibria of system (5) where A, B, C, E, F are defined by (14) and λ1, λ2, λ+ and λ− are given
by (6) and (8), respectively. Note that there is a typo in Table 2 of [27]: the condition λ1 > 1 of stability of E0 should be replaced by λ+ > 1.

replaced by
Σ′ = −Σ,
x′ = [ f (p) f1(1 − Σ − x − y) − 1]x,
y′ = [ f2(1 − Σ − x − y) − 1]y,
p′ = 1 − p − g(p)y.

(11)

The Jacobian matrix for the linearization of (11) at an
equilibrium point E∗ = (0, x∗, y∗, p∗) takes the triangular
form

J =

[
−1 0
A M

]
,

where M is the square matrix

M =

 m11 m12 m13
m21 m22 0
0 m32 m33

 , (12)

with

m11 = f (p∗) f1(1− x∗ − y∗)− 1− x∗ f (p∗) f ′1(1− x∗ − y∗),

m12 = −x∗ f (p∗) f ′1(1 − x∗ − y∗),

m13 = x∗ f ′(p∗) f1(1−x∗−y∗), m21 = −y∗ f ′2(1−x∗−y∗),

m22 = f2(1 − x∗ − y∗) − 1 − y∗ f ′2(1 − x∗ − y∗),

m32 = −g(p∗), m33 = −1 − y∗g′(p∗).

Therefore, the eigenvalues of J are −1, together with the
eigenvalues of matrix M. Hence the equilibrium point
E∗ is locally exponentially stable (LES) if and only if
the eigenvalues of M are of negative real parts. The
local stability of equilibria of system (5) is given by the
following result.

Proposition 3. Assume that (H1), (H2) and (H3) are
satisfied. The stability of equilibria of (5) is as follows:

• The equilibrium E0 is LES if and only if λ+ > 1 and
λ2 > 1.

• The equilibrium E1, if it exists, has at least three di-
mensional stable manifolds and is LES if and only
if λ+ < λ2.

• The equilibrium E2, if it exists, has at least three di-
mensional stable manifolds and is LES if and only
if λ2 < λ

−.

• The equilibrium Ec, if it exists, is LES if and only if

(A + B)(A + B + C)C > BEF, (13)

where A > 0, B > 0, C > 0 E > 0 and F > 0 and
are defined by:

A= f (pc) f ′1(λ2)xc, B= f ′2(λ2)yc,

C =1+g′(pc)yc, E = g(pc),
F = − f ′(pc) f1(λ2)xc.

(14)

Proof. The proof is given in Appendix A.2.

We summarize the results on existence and local sta-
bility of equilibria of (5), given by Propositions 2 and
3, in Table 2. We observe that E0 is LES if and only
if E1 and E2 do not exist, and Ec exists if and only if
E2 exists and is unstable, and E1, if it exists, is also un-
stable. One concludes that there is one and only one
equilibrium which is stable.

4. Global asymptotic stability of equilibria

The results of [23, 6] on the global asymptotic sta-
bility of equilibria of (5) obtained in the case where the
growth functions are given by (2) can be extended with-
out added difficulty to the general case where it is sim-
ply assumed that f , f1, f2 and g satisfy hypotheses (H1),
(H2) and (H3). For the convenience of the reader, we re-
call these results hereafter.

• If λ+ > 1 and λ2 > 1, then the washout equilibrium
E0 of system (5) exists and is globally asymptoti-
cally stable, see Proposition 3.1 in [23] or [6].

• If λ+ < 1 and λ+ < λ2, then the boundary equi-
librium E1 of system (5) exists and is globally
asymptotically stable with respect to solutions with
x(0) > 0, see Theorem 5.5 in [23] or Theorem 5.1
in [6].
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• If λ2 < 1 and λ2 < λ−, then the boundary equi-
librium E2 of system (5) exists and is globally
asymptotically stable with respect to solutions with
y(0) > 0, see Theorem 5.4 in [23] or Theorem 5.2
in [6].

• Let λ− < λ2 < λ+, that is, the positive equilib-
rium Ec exists, then the ω-limit set of every so-
lution of system (5) with positive initial condi-
tions remains at a positive distance away from the
boundary of R4

+. More precisely, for any solu-
tion (S (t), x(t), y(t), p(t)) of (5) with x(0) > 0 and
y(0) > 0, one has:

lim inf
t→∞

x(t) > 0 and lim inf
t→∞

y(t) > 0 (15)

See Theorem 6.1 in [23] or Theorem 7.1 in [6].

From a biological point of view, (15) guarantees the
coexistence of both species x and y. However, it does
not give the global asymptotic behavior. To study the
global asymptotic behavior of system (5) when Ec ex-
ists, we need a supplementary condition on the follow-
ing limiting system, obtained by putting Σ = 0 in system
(11): 

x′ = [ f (p) f1(1 − x − y) − 1]x,
y′ = [ f2(1 − x − y) − 1]y,
p′ = 1 − p − g(p)y.

(16)

• Suppose that system (16) has no limit cycles. Then
the positive equilibrium Ec is globally asymptoti-
cally stable with respect to solutions with positive
initial conditions, see Theorem 6.2 in [23] or The-
orem 7.2 in [6].

5. Operating diagrams

In this section we give our main result which is the
discussion of the existence and stability of equilibria of
(1) with respect of the operating parameters D, p0 and
S 0. We assume that f , g and f1, f2 are fixed. The fol-
lowing change of dependent variables

x̂=
x
γ1
, ŷ=

y
γ2
, (17)

which reduces (1) to
S ′ = (S 0 − S )D − f (p) f1(S )x̂ − f2(S )ŷ,
x̂′ = [ f (p) f1(S ) − D]x̂,
ŷ′ = [ f2(S ) − D]ŷ,
p′ = (p0 − p)D − ĝ(p)ŷ,

(18)

where ĝ (p) = γ2g (p). Note that ĝ satisfies (H3). There-
fore, without loss of generality we can assume that the
yields in (1) are equal to 1 (γ1 = γ2 = 1). So, we con-
sider the system

S ′ = (S 0 − S )D − f (p) f1(S )x − f2(S )y,
x′ = [ f (p) f1(S ) − D]x,
y′ = [ f2(S ) − D]y,
p′ = (p0 − p)D − g(p)y.

(19)

5.1. Existence and stability of equilibria
To emphasize the dependence of the equilibria of (19)

with respect to the operating parameters, we rewrite
here the results of Section 3, obtained for the non di-
mensional system (5). Using the inverse functions f −1

1 :
I1 → R+ and f −1

2 : I2 → R+ where

I1 = [0, f1(+∞)), I2 = [0, f2(+∞)),

which are increasing, we define the break-even concen-
trations as

λ1(D) = f −1
1 (D), λ2(D) = f −1

2 (D),

λ+(D, p0) = f −1
1

(
D

f (p0)

)
,

(20)

which are the solutions of equations f1(S ) = D, f2(S ) =

D and f1(S )= D
f (p0) , respectively. Note that λ1 is defined

on I1, λ2 is defined on I2 and λ+ is defined for (D, p0)
such that p0 ≥ 0 and D/ f (p0) ∈ I1.

We define the function W by

W(p,D, p0) =
(p0 − p)D

g(p)
, for p ∈ (0, p0].

Note that W is defined for (p,D, p0) such that p ≥ 0,
D≥ 0 and 0< p≤ p0. Note also that ∂W

∂p < 0. Therefore,
when λ2 < S 0, equation W(p,D, p0) = S 0 − λ2 has a
unique solution denoted by p∗ = p∗(D, p0, S 0)

W(p∗,D, p0) = S 0 − λ2. (21)

If equation f1(S ) = D/ f (p∗) has a solution, it is unique
and then we set

λ−(D, p0, S 0) = f −1
1

(
D

f (p∗)

)
. (22)

We define

pc(D) = f −1
(

D
f1 (λ2(D))

)
. (23)

Note that pc(D) is defined for D ∈ Ic where

Ic = {D ∈ I1 ∩ I2 : λ1(D) < λ2(D)} . (24)
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(a)
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Figure 2: Graphs of f1 (in red) and f2 (in blue) when equation f1(S ) = f2(S ) has a positive solution S = S and graphical depiction of Ic. (a):
Ic =

(
D, f2(+∞)

)
. (b): Ic =

(
0,D

)
where D = f1

(
S
)

= f2
(
S
)
. The interval Ic is defined by (24)

Equilibria Existence Local exponential stability
E0 = (S 0, 0, 0, p0) Always λ+ > S 0 & λ2 > S 0

E1 = (λ+, S 0 − λ+, 0, p0) λ+ < S 0 λ+ < λ2
E2 = (λ2, 0, S 0 − λ2, p∗) λ2 < S 0 λ2 < λ

−

Ec = (λ2, xc, yc, pc) λ− < λ2 < min(λ+, S 0) (A + B)(A + B + C)C > BEF

Table 3: Existence and stability of equilibria of (19) where λ1, λ2, λ+, λ−, A, B, C, E and F are given by (20), (22)and (28).

For simplicity we assume that equation f1(S ) = f2(S )
has at most one positive solution S = S > 0, see Fig. 2.
This property holds when f1(S ) and f2(S ) are Monod
functions. The case of multiple intersections can be
treated similarly. We have

• Ic = ∅ if f1(S ) < f2(S ) for all S > 0.

• Ic =
(
D, f2(+∞)

)
, if f1(S ) < f2(S ) for 0 < S < S

and f1(S ) > f2(S ) for S > S , see Fig. 2(a).

• Ic =
(
0,D

)
, if f1(S ) > f2(S ) for 0 < S < S and

f1(S ) < f2(S ) for S > S , see Fig. 2(b).

• Ic = (0, f2(+∞)) if f1(S ) > f2(S ) for all S > 0.

We define

yc(D, p0) = W(pc(D),D, p0),

xc(D, p0, S 0) = S 0−λ2(D)−yc(D, p0).
(25)

Note that yc is defined for (D, p0) ∈ Jc, where

Jc =
{
(D, p0) ∈ Ic × R+ : 0 < pc(D) < p0

}
, (26)

with Ic defined by (24). Note that xc is defined for(
D, p0, S 0

)
∈ Dc where

Dc =
{
(D, p0, S 0) ∈ Jc × R+ : S 0 > λ2(D) + yc(D, p0)

}
,

(27)

with Jc defined by (26).
To avoid cumbersome notations, and when there is

no risk of confusion, we will omit to mention the oper-
ating parameters D, p0 and S 0 in λ2, λ+, λ−, p∗, pc, yc

and xc. Straightforward computations, similar to those
used in the proofs of Propositions 2 and 3 show that the
following result holds.

Proposition 4. Assume that (H1), (H2) and (H3) are
satisfied. Let λ2, λ+ and λ− be defined by (20) and (22),
respectively. Let p∗ be defined by (21). Let pc, xc and yc

be defined by (23) and (25), respectively. System (19)
has the following equilibria:

• The washout equilibrium E0 = (S 0, 0, 0, p0).

• The boundary equilibrium E1 = (λ+, S 0−λ+, 0, p0)
of extinction of species y.

• The boundary equilibrium E2 = (λ2, 0, S 0 − λ2, p∗)
of extinction of species x.

• The positive equilibrium Ec = (λ2, xc, yc, pc) of co-
existence of the species.

The conditions of existence and stability of these equi-
libria are given in Table 3 where A = A(D, p0, S 0), B =

B(D, p0), C = C(D, p0), E = E(D), F = F(D, p0, S 0)

7



Equilibria Existence Local exponential stability
E0 = (S 0, 0, 0, p0) Always D>max( f (p0) f1(S 0), f2(S 0))
E1 = (λ+, S 0 − λ+, 0, p0) D < f (p0) f1(S 0) D < F1(D, p0)
E2 = (λ2, 0, S 0 − λ2, p∗) D < f2(S 0) S 0 < F2(D, p0)
Ec = (λ2, xc, yc, pc) D > F1(D, p0)& S 0> F2(D, p0) F3(D, p0, S 0) > 0

Table 4: Existence and stability of equilibria of System (19) with respect of the operating parameters. The functions F1, F2, F3 are defined by (30),
(31), (33), respectively, and λ1, λ2, λ+ and λ− are given by 20 and 22, respectively.

are defined by

A(D, p0, S 0) = α(D)xc(D, p0, S 0),

B(D, p0) = β(D)yc(D, p0),

C(D, p0) = D + γ(D)yc(D, p0),

E(D) = g(pc(D)),

F(D, p0, S 0) = φ(D)xc(D, p0, S 0).

(28)

Here α(D), β(D), γ(D) and φ(D) are given by

α = f (pc) f ′1(λ2), β = f ′2(λ2), γ = g′(pc),
φ = − f ′(pc) f1(λ2).

(29)

5.2. Existence and stability of equilibria with respect of
operating parameters

In what follows, our aim is to express the conditions
of existence and stability of the equilibria in Proposition
4 with respect of the operating parameters D, p0 and S 0.
For this purpose, we need the following definitions. We
let

F1(D, p0) = f (p0) f1
(

f −1
2 (D)

)
. (30)

Note that F1 is defined on I2 × R+. We let

F2(D, p0) = f −1
2 (D) + W(pc(D),D, p0). (31)

Note that F2 is defined for (D, p0) ∈ Jc, where Jc is
given by (26). We have the following result.

Lemma 5. The following equivalences hold:

pc(D)< p0 ⇐⇒ D>F1(D, p0)⇐⇒ λ2(D) < λ+(D, p0).

and

pc(D) > p∗(D, p0, S 0) ⇐⇒ S 0 > F2(D, p0)
⇐⇒ λ2(D) > λ−(D, p0, S 0).

Proof. The proof is given in Appendix A.3.

Using Lemma 5, the condition pc(D) < p0 in the def-
inition (26) of Jc can be written as follows

Jc =
{
(D, p0) : D ∈ Ic,D > F1(D, p0)

}
.

If we assume that equation f (p0) f1(S ) = f2(S ) has at
most one positive solution S = S (p0) > 0, which is the
case when f1(S ) and f2(S ) are Monod functions, then
the function F2 is defined for all (D, p0) ∈ Ic × R+ such
that D(p0) < D < f2(+∞), if f (p0) f1(S ) > f2(S ) for
0< S < S

(
p0

)
, or 0<D<D(p0), if f (p0) f1(S ) < f2(S )

for 0 < S < S
(
p0

)
. Here D(p0) = f2

(
S

(
p0

))
.

We define also the function

F3(D, p0, S 0) = (A + B)(A + B + C)C − BEF, (32)

where A, B, C, E and F are defined by (28). Note that
F3 is defined for (D, p0, S 0) ∈ Dc, where Dc is given
by (27). Therefore, using Lemma 5, we have

Dc =
{
(D, p0, S 0) : D∈ Ic,D>F1(D, p0), S 0>F2(D, p0)

}
.

Using these notations, we have the following descrip-
tion of existence and stability of the equilibria of (19).

Theorem 6. Assume that the hypotheses and notations
of Proposition 4 hold. The conditions of existence and
stability of equilibria of (19) can be expressed with re-
spect to the operating parameters D, p0 and S 0 as in
Table 4. where F1(D, p0), F2(D, p0) and F3(D, p0, S 0)
are defined by (30),(31) and (32), respectively.

Proof. Using (20) and hypothesis (H2), the condition
λ+ > S 0 and λ2 > S 0 of stability of E0 in Proposi-
tion 4 is equivalent to D > f (p0) f1(S 0) and D > f2(S 0).
Similarly, the condition λ+ < S 0 [resp. λ2 < S 0] of ex-
istence of E1 [resp. E2] in Proposition 4 is equivalent to
D < f (p0) f1(S 0) [resp. D < f2(S 0)].

We consider now the stability of E1 and E2. Using
Lemma 5, the condition λ+ < λ2 of stability of E1 in
Proposition 4 is equivalent to D < F1(D, p0). On the
other hand, using Lemma 5, the condition λ2 < λ− of
stability of E2 in Proposition 4 is equivalent to S 0 <
F2(D, p0).

Let us consider now the existence and stability of
Ec. Using Lemma 5, we see that the condition λ− <
λ2 < λ+ of existence of Ec in Proposition 4 is equiv-
alent to D > F1(D, p0) and S 0 > F2(D, p0). Finally,
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using the definition (32) of the function F3, the con-
dition of stability of Ec in Proposition 4 is equivalent
to F3(S 0,D, p0) > 0.

5.3. Instability of the positive equilibrium

We give now the necessary and sufficient conditions
on the operating parameters D, p0 and S 0 such that the
positive equilibrium Ec is unstable, that is we discuss
the sign of F3(D, p0, S 0). We have

F3 = a2x2
c + a1xc + a0. (33)

The coefficients a2 = a2(D, p0), a1 = a1(D, p0) and a0 =

a0(D, p0) of this polynomial are given by

a2 =α2C, a1 =α(2B+C)C−φBE, a0 = B(B+C)C, (34)

where B, C, E are defined by (28) and α, φ are given
by (29). Hence, F3 given by (33), appears as a second
order polynomial in xc whose coefficients are depending
only on D and p0 and not on S 0. Let ∆ = ∆(D, p0) be
the discriminant of F3:

∆ = a2
1 − 4a0a2. (35)

The roots of F3,

x1(D, p0)=
−a1−

√
∆

2a2
and x2(D, p0)=

−a1+
√

∆

2a2
, (36)

exist and are positive if an only if

a1(D, p0) < 0 and ∆(D, p0) > 0. (37)

We define the following functions

F4(D, p0) = F2(D, p0) + x1(D, p0),
F5(D, p0) = F2(D, p0)+x2(D, p0),

(38)

where F2(D, p0) is given by (31) and x1(D, p0),
x2(D, p0) are given by (36).

We give now necessary and sufficient conditions on
the operating parameters D and p0 such that (37) hold.
We have

a1 = b2y2
c + b1yc + b0, (39)

where the coefficients bi = bi(D) are given by

b2 =αγ(2β+γ), b1 =2αD(β+γ)−βEφ, b0 =αD2, (40)

with E, α, β, γ and φ defined by (28) and (29), respec-
tively. We have

∆ = c4y4
c + c3y3

c + c2y2
c + c1yc + c0, (41)

Yzz1 z2y0 y1 y2 y3

∆(Y)

a1(Y)

c0

b0

Figure 3: The graphs of a1(Y) and ∆(Y), defined by (42), showing the
relative positions of the roots yi = yi(D), i = 0 · · · 3, of the fourth order
polynomial ∆(Y) with respect to the roots z1 = z1(D) and z2 = z2(D)
of the second order polynomila a1(Y), when a1(z) < 0 and ∆(z) > 0
where z = z(D) is the local maximum of ∆(Y).

where the coefficients ci = ci(D) are given by

c4 = α2γ4, c3 = 4α2Dγ3 − 2αβγEφ(2β + γ),

c2 = 6α2D2γ2 + β2E2φ2 − 4αβ(β + γ)DEφ,

c1 = 4α2γD3 − 2αβD2Eφ, c0 = α2D4,

with E, α, β, γ and φ defined by (28) and (29), respec-
tively. Hence, a1 given by (39) and ∆ given by (41),
appear as a second order polynomial and a fourth or-
der polynomial in yc, respectively, whose coefficients
are depending only on D and not on p0 nor S 0. For the
convenience of the notations we denote by

a1(Y) = b2Y2+b1Y +b0,
∆(Y) = c4Y4+c3Y3+c2Y2+c1Y +c0,

(42)

the polynomials (39) and (41). Notice first that, since
b2 > 0, we have a1(Y) < 0 if and only if z1(D) < Y <
z2(D) where z1(D) and z2(D) are the positive real roots
of a1(Y). This condition holds if and only if b1(D) < 0
and ∆1(D) > 0 where ∆ = ∆1(D) is the discriminant of
the polynomial a1:

∆1 = b2
1 − 4b0b2. (43)

If this discriminant is positive, the roots z1(D) and z2(D)
are given by

z1(D)=
−b1−

√
∆1

2b2
and z2(D)=

−b1+
√

∆1

2b2
. (44)

9



For the study of the sign of ∆(Y) we use the following
facts. Since a1(z1(D)) = a1(z2(D)) = 0, from ∆ = a2

1 −

4a0a2 we deduce that

∆(z1(D)) < 0 and ∆(z2(D)) < 0.

Therefore, from ∆(0) = c0 > 0 and ∆(+∞) = +∞ it is
deduced that the polynomial ∆(Y) has at least two roots

y0(D) ∈ (0, z1(D)) and y3(D) ∈ (z2(D),+∞).

The condition (37) is satisfied if and only if ∆(Y) takes
positive values on the interval (z1(D), z2(D)) on which
a1(Y) < 0, see Fig. 3. If this condition holds then ∆(Y)
has necessarily three extremal points, that is to say, its
polynomial derivative,

∆′(Y) = 4c4Y3 + 3c3Y2 + 2c2Y + c1,

has three real roots. A necessarily and sufficient condi-
tion for this is that the discriminant of the polynomial
∆′(Y) is positive. Let us denote by ∆2 = ∆2(D) this
discriminant to emphasize its dependence on the sole
operating parameter D:

∆2 =−27d2
0d2

3 +18d0d1d2d3−4d0d3
2−4d3

1d3+d2
1d2

2 , (45)

where d3 = 4c4, d2 = 3c3, d1 = 2c2 and d0 = c1. If
∆2(D) > 0 then ∆′(Y) has three real roots z[(D), z(D)
and z](D) such that z[(D) < z(D) < z](D). Thus

z(D) is the middle root of ∆′(Y). (46)

If a1(z(D))<0 and ∆(z(D))>0 then the polynomial ∆(Y)
has two supplementary real roots y1(D) ∈ (z1(D), z(D))
and y2(D) ∈ (z(D), z2(D)), see Fig. 3. Thus y1(D) and
y2(D) are defined by

∆(y1(D)) = ∆(y2(D)) = 0
and z1(D) < y1(D) < y2(D) < z2(D).

(47)

Therefore (37) holds only if D ∈ I3, where I3 is the
subset of Ic defined by

I3 = {D ∈ Ic : b1(D)<0,∆1(D)>0,∆2(D)>0,
a1(z(D)) < 0,∆(z(D)) > 0} ,

(48)

where Ic is defined by (24), b1 is given by (40), ∆1
is given by (43), ∆2 is given by (45), a1 is given
by (34), ∆ is given by (35) and z(D) is given by (46).
If D ∈ I3 then ∆(Y) > 0 and a1(Y) < 0 if and only if
y1(D) < Y < y2(D). We define the following functions

F6(D) = pc(D) +
1
D

y1(D)g(pc(D)),

F7(D) = pc(D) +
1
D

y2(D)g(pc(D)),
(49)

where pc(D) is defined by (23) and y1(D), y2(D) are
given by (47). We can determine the sign of F3, that
is the stability of Ec, as stated in the following result.

Theorem 7. The positive equilibrium Ec is unstable
only if the subset I3 of Ic given by (48) is non empty. If
this condition holds then Ec is unstable if and only if the
three following conditions are satisfied by the operating
parameters D, p0 and S 0:

1. D ∈ I3,
2. F6(D) < p0 < F7(D) where F6(D) and F7(D) are

given by (49),
3. F4(D, p0) < S 0 < F5(D, p0) where F4(D, p0)

and F5(D, p0) are given by (38).

Proof. If ∆ > 0, the roots of F3 = 0 are x1(D, p0)
and x2(D, p0). Their product is equal to a0

a2
which is

positive. Therefore, the roots exist and are positive if
and only if (37) holds. The roots z1(D) and z2(D) of
a1(Y), given by (44), exist and are positive if and only if
b1(D) < 0 and ∆1(D) > 0 which are the two first condi-
tions in the definition of I3 (48). Now, ∆(Y) takes pos-
itive values between z1(D) and z2(D) if and only if the
three last conditions in (48) hold. Let y1(D) and y2(D)
be the roots of ∆(Y) defined by (47), that is such that
z1(D) < y1(D) < y2(D) < z2(D). One has a1 < 0 and
∆ > 0 if and only if

y1(D) < yc < y2(D). (50)

Using (25), we have

yc(D, p0) = D
p0 − pc(D)
g(pc(D))

.

Therefore, (50) is equivalent to the condition 2 in the
theorem. On the other hand F3 < 0 if and only if xc is
between the roots, that is,

x1(D, p0) < xc < x2(D, p0), (51)

where x1(D, p0) and x2(D, p0) are defined by (36). Us-
ing (25) and (31) we have xc = S 0 − F2(D, p0). There-
fore, (51) is equivalent to the condition 3 in the theo-
rem.

5.4. Construction of the operating diagram
The effect of the operating conditions on the asymp-

totic behavior of the system can be summarized with the
aid of the operating diagram. The operating diagram has
the operating parameters D, S 0 and p0 as its coordinates
and the various regions defined in it correspond to qual-
itatively different asymptotic behaviors. It is not easy
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(a) (b) (c) (d)

I↖II

IIIIV V

p0

S 0 Γ1

Γ2

Γ3

I↖II

III
IV

V

VI

↖VII

p0

S 0 Γ1

Γ2

Γ3 Γ4

I↖II

III

IV VI VII

p0

S 0 Γ1

Γ2

Γ3

Γ4

I↖II

III

IV
VIII

VI

VII

p0

S 0 Γ1

Γ2

Γ3

Γ4

Γ5

F6(D) F7(D)

Figure 4: Illustrative operating diagrams for D fixed: The curves Γi, i = 0 · · · 5 defined in the Table 5 separate the operating plane (p0, S 0) into
eight regions labeled I,..., VIII. (a) corresponds to the case without detoxification; in case (b), Ec is stable whenever it exists; in case (c) the stability
of Ec does not always occur and a region of instability can appear as shown in case (d). The existence and stability of equilibria E0, E1, E2 and Ec
in the regions I,..., VIII of these diagrams are shown by the Table 6.

to represent the regions of existence and stability of the
equilibria in the three dimensional space of the operat-
ing parameters D, p0 and S 0. For this reason we will fix
the operating parameter D and show the regions of ex-
istence and stability in the operating plane (p0, S 0), see
Fig. 4 and Fig. 5(b). The boundaries of the regions in
the operating diagram are locations where bifurcations
occur. In order to construct the operating diagram of
the system one must compute these boundaries. These
boundaries are defined by formulas (52), (53), (54), (55)
and (56) below. The surface Γ1 defined by

Γ1 :=
{
(D, p0, S 0) : D = f (p0) f1(S 0)

}
(52)

is the border to which E1 exists. The surface Γ2 defined
by

Γ2 :=
{
(D, p0, S 0) : D = f2(S 0)

}
(53)

is the border to which E2 exists. The surface Γ3 defined
by

Γ3 :=
{
(D, p0, S 0) : D = F1(D, p0),D < f (p0) f1(S 0)

}
(54)

is the border to which E1 is stable. The surface Γ4 de-
fined by

Γ4 :=
{
(D, p0, S 0) : S 0 = F2(D, p0),D < f2(S 0)

}
(55)

is the border to which E2 is stable. The surfaces Γ3
and Γ4 are the border to which Ec exists. The surface Γ5
defined by

Γ5 :=
{
(D, p0, S 0) : F3(D, p0, S 0) = 0

}
(56)

is the border to which Ec is unstable.
Table 5 gives the descriptions of these boundaries in

the operating plane (p0, S 0), where D > 0 is fixed. The

Boundary Equation in (p0, S 0), with D fixed

Γ1 Graph of S 0 = f −1
1

(
D

f (p0)

)
Γ2 Horizontal line S 0 = λ2(D)

Γ3

{
Vertical line p0 = pc(D)
and S 0 > λ2(D)

Γ4


Oblique line
S 0 = W(pc(D),D, p0) + λ2(D)
and p0 > pc(D)

Γ5

{
Graphs of S 0 = F4(D, p0)
or S 0 = F5(D, p0)

Table 5: Boundaries of the regions in the operating diagram.

curves Γi, i = 1, 2, 3, 4, intersect at point (p0, S 0) where
p0 = pc(D) and S 0 =λ2(D), see Fig. 4 and Fig. 5(b). The
curves Γi, i = 1..4, separate the operating plane (p0, S 0)
into at most seven regions, as illustrated by Fig. 4, la-
beled I, II, III, IV, V, VI and VII. Some of these regions may
be empty as shown on Fig. 4(a,c). Some of them may
be not connected, as shown in Section 6.4, where re-
gion VII has two connected components, see Fig. 14(a).
Fig. 4(a) corresponds to the case without detoxification,
that is to say g(p) = 0, where regions VI and VII are
empty. On the other hand, Fig. 4(c) corresponds to the
case where the tangent of Γ1 at point (pc, λ2) is above
Γ4, where the region V has disappeared. Moreover sub-
regions VIII⊂VII and IX⊂VI may occur, on which Ec is
unstable, see Fig. 4(d) and Fig. 5(b). The construction
of these regions will be explained in Section 5.6 below.
The behavior of the system in each of the nine regions
I,..., IX is given by Theorem 6. This behavior is summa-
rized in Table 6.

Before giving the construction of regions VIII and IX
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I II III IV V VI VII VIII IX
E0 S U U U U U U U U
E1 S S U U U
E2 S U S U U U U
Ec S S U U

Table 6: Existence and stability of equilibria E0, E1, E2 and Ec, de-
fined in Proposition 4, in the various the regions, labelled I to IX, of
the operating diagrams in Fig. 4, Fig. 5(b), Fig. 7(b), Fig. 8(b), Fig.
9(b), Fig. 10(b), Fig. 11(b), Fig. 12(b), Fig. 13(b) and Fig. 14. The
letter S (resp. U) means stable (resp. unstable) and no letter means
that the equilibrium does not exist.

we state in the next section two sufficient conditions of
stability of the positive equilibrium, for which the re-
gions VIII and IX are necessarily empty.

5.5. Sufficient conditions of stability of the coexistence
equilibrium

As a corollary of Theorem 7, it is easy to see that
b1(D) < 0 is a necessary condition for the coexistence
equilibrium Ec to be unstable. Therefore, one has the
following result:

Proposition 8. Let D be such that b1(D) > 0. For all
operating parameters S 0 and p0, Ec is LES whenever it
exists.

As a consequence of this result, we have the follow-
ing graphical condition which asserts that in the case
depicted in Fig. 4(b), the positive equilibrium is stable
for all values of the operating parameters.

Proposition 9. Assume that D is such that the tangent
of Γ1 at point (pc, λ2) is under Γ4. Then b1(D) > 0, so
that for all operating parameters S 0 and p0,Ec is LES
whenever it exists.

Proof. The proof is given in Appendix A.4.

Assume that the condition in Proposition 9 holds.
Since Γ1 has a vertical asymptote, it intersects the
straight-line Γ4 at least at one second point, different
from (pc, λ2), see Fig. 4(b). For simplicity, we assume
that there is only one such intersection point, which
is the case for instance if Γ1 is convex. An example
exhibiting a non convex curve Γ1 will be examined in
Section 6.4. A sufficient condition for convexity of Γ1
(F′′ ≥ 0) is given in the following result.

Lemma 10. Assume that f ′′1 ≤ 0 and (1/ f )′′ ≥ 0 then
F′′ ≥ 0.

Proof. From F(p) = f −1
1

(
D

f (p)

)
we deduce that F′(p) =

D
f ′1 (F(p))

(
1

f (p)

)′
. Since

(
1

f (p)

)′
=

− f ′(p)
f 2(p) > 0, we have

F′(p) > 0. Therefore

F′′(p)=
−D f ′′1 (F(p)) F′(p)

[ f ′1 (F(p))]2

(
1

f (p)

)′
+

D
f ′1 (F(p))

(
1

f (p)

)′′
.

Since f ′′1 ≤ 0, F′ > 0,
(

1
f (p)

)′
> 0 and

(
1

f (p)

)′′
≥ 0 we

have F′′ ≥ 0.

We give now a second sufficient condition on the bi-
ological parameters such that Ec is stable whenever it
exists. For that we consider the model (19) with f , f1,
f2, and g given by (2).

Proposition 11. Let

µ0 =
2

√
K2 + 4K − K

ln
(

m1K2

m2K1

)
, µ1 = 2

m2K1

m1K2
.

If
K1 < K2 and µ0 ≤ µ ≤ µ1, (57)

then b1(D) > 0 for all D, so that for all operating pa-
rameters D, S 0 and p0,Ec is LES whenever it exists.

Proof. The proof is given in Appendix A.5.

5.6. Construction of the regions of instability

In the case depicted in Fig. 4(c), Ec is not necessarily
stable as in the case depicted in Fig. 4(b). Therefore
sub-regions VIII⊂VII and IX⊂VI may occur, on which Ec

is unstable, see Fig. 4(d) and Fig. 5(b). We describe
below how these regions VIII and IX are constructed. The
necessary condition on D for which Ec is unstable is
D ∈ I3, as shown in Theorem 7. Assume that I3 defined
by (48) is non empty. For simplicity, we assume that I3
is a sub-interval of Ic, as shown in Fig. 5(a). The curve
H of equation

H =
{
(D, p0) : a1(D, p0) < 0,∆(D, p0) = 0

}
(58)

separates the operating plane (D, p0) in two regions:
the bounded region U in which a1(D, p0) < 0 and
∆(D, p0) > 0, that is to say the condition (37) holds,
and the region S where this condition does not hold,
see Fig. 5(a). Notice that H is simply the union of
the graphs of functions p0 = F6(D) and p0 = F7(D),
given by (49), with D ∈ I3. Let (D, p0) ∈ U. There-
fore D ∈ I3 and F6(D) < p0 < F7(D). Hence, ac-
cording to Theorem 7, Ec is unstable if and only if
F4(D, p0) < S 0 < F5(D, p0).

12



D
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0
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↖
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p0 = F7(D)

p0 = F6(D)

I3
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Figure 5: (a): The curve H defined by (58) separates the plane (D, p0) in two regionsU and S so that if (D, p0) ∈ S, the positive equilibrium Ec is
stable for any S 0. The condition (D, p0) ∈ U is necessary of Ec to be unstable. (b): The construction of the curve Γ5 when D is fixed in the subset
I3 and F6(D) ≤ p0 ≤ F7(D). The figure illustrate a case where Γ5 intersects Γ1, so that both regions VIII and IX exist.

Case Interval I3 Figures
Left I3 = (D1,D3), where D1 < D3 < D2 Figs. 7(a) and 10(a)

Center I3 = (D3,D4), where D1<D3<D4<D2 Figs. 11(a) and 13(a)
Right I3 = (D3,D2), where D1 < D3 < D2 Fig. 12(a)

Table 7: Three forms of interval I3.

For D ∈ I3 fixed, equation F3(D, p0, S 0) = 0 de-
fines a closed curve Γ5 in the operating plane (p0, S 0),
see Fig. 4(d) and Fig. 5(b). Notice that Γ5 is simply
the union of the graphs of functions S 0 = F4

(
D, p0

)
and S 0 = F5

(
D, p0

)
, given by (38), with D ∈ I3 and

F6(D)≤ p0≤F7(D). The curve Γ5 can have no intersec-
tion with the curve Γ1, as in Fig. 4(d). It defines then a
sub-region VIII of region VII. In this case we simply de-
note by the same letter VII, the complement of VIII in the
region VII, see Fig. 4(d). On the other hand, the curve
Γ5 can intersect the curve Γ1, as in Fig. 5(b). It defines
then two sub-regions VIII⊂VII and IX⊂VI. For simplicity
we denote by the same letter VII, the complement of VIII
in the region VII and by the same letter VI the comple-
ment of IX in the region VI, see Fig. 5(b). With these no-
tations, Ec is unstable in the bounded sub-region VIII∪IX
of existence of Ec, and stable in its complementary re-
gion VI∪VII.

In Fig. 5(a) we have assumed that I3 is a sub-interval
of Ic. Actually, if we want to determine I3 we have to
fix the biological parameters of the model, and then we
have to plot the graphs of the five functions appearing in
the definition (48) of I3. Then, we consider the subset

on which these functions have the determined sign, see
Fig. 6. Therefore the determination of stability of Ec,
with respect to the biological and operating parameters,
is reduced to the determination of the sign of functions
depending only on the dilution rate D. It will be seen in
the examples given in Section 6 that I3 is indeed a sub-
interval of the interval Ic = (D1,D2), defined by (24), of
one of the three forms shown in Table 7

The operating diagrams shown in Fig. 4 and Fig. 5
are given only as illustrative examples, showing that our
analysis gives a complete description of the behavior of
the system for a large class of growth functions. No-
tice that for plotting operating diagrams we must choose
functions f , f1, f2, and g in system (19) and fix the val-
ues of the biological parameters. We illustrate this in
the Section 6 for various examples that have been con-
sidered in the literature.

5.7. The conjecture of Hsu and Waltman

Hsu and Waltman [23] conjectured that for the growth
functions given by (2), if Ec and E1 exist and E1 is un-
stable, then the system has no limit cycle. A necessary
condition for this conjecture to be true is that Ec is nec-
essarily stable if E1 exists and is unstable.
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Since E1 is unstable in region VI, if the Conjecture is
true, then the sub-region IX of region VI on which Ec is
unstable, cannot exist. We were not able to find a set of
biological parameters such that this region is non empty
and all the simulations given in Section 6 show that the
region IX never exist for the Monod growth functions
given by (2). However, we will show that this region can
exist for Holling type 3 growth functions (59), as shown
in Section 6.4. Therefore the Conjecture of Hsu and
Waltman does not hold for general monotonic growth
functions.

6. Examples

In this section, excepted for Section 6.4, we consider
the model (19) with f , f1, f2, and g given by (2). Let us
show the usefulness of our results on the construction
of the operating diagram corresponding to various sets
of biological parameters encountered in the literature, in
particular those considered in [23, 25], see Table 8.

We consider the parameter values of Hsu and Walt-
man [23], see Case 1, in Table 8. The modification of
one of these parameters given in Case 2 in Table 8, il-
lustrates the dependence of the operating diagram with
respect of the biological parameters, compare Figures
7(b) and 8(b).

We consider the parameter values of Lenski and Hat-
tingh [25], see Case 3 in Table 8. The modifications
of one of these biological parameters given in Case 4
or Case 5 in Table 8, illustrate again the dependence
of the operating diagram with respect of the biologi-
cal parameters, compare Figures 9(b), 10(b) and 11(b).
These modifications clarify also the remarks of [25] on
the destabilization of the coexistence equilibrium when
the biological parameters are changed.

We consider also two set of biological parameters
which are not taken from the existing literature, and are
chosen due to their interesting properties, see Case 6
and 7, in Table 8.

Notice that the functions f1 and f in (2) satisfy
the conditions in Lemma 10. Therefore Γ1 is convex
and intersects Γ4 at most at one point different from
(pc(D), λ2(D)).

6.1. Parameter values of Hsu and Waltman [23]
The parameter values used by [23] are given in Table

8, Case 1. It is shown in [23] that for D = S 0 = p0 = 1,
Ec is unstable.

The plots of the functions b1(D), ∆1(D), ∆2(D),
a1(z(D)) and ∆(z(D)), see Fig. 6, show that

I3 = (0,D3), with D3 ≈ 2.0578.

The plot of the curve H defined by (58) is shown in
Fig. 7(a). The curve H separates the plane (D, p0) into
two regionsU and S. Now, we determine the operating
diagram for D = 1 ∈ I3. Notice that

F6(1) ≈ 0.4034, F7(1) ≈ 2.108.

Therefore (D, p0) = (1, 1) ∈ U. The plot of the curve
Γ5, defined by (56), with D = 1, is shown in Fig. 7(b).
Using Theorem 7, one has the following result:

Claim 12. Let the biological parameters be given by
Table 8, Case 1. The coexistence equilibrium Ec is un-
stable only if D ∈ I3 and (D, p0) ∈ U whereU is shown
in Fig. 7(a). For D = 1, Ec is unstable if and only if
(S 0, p0) ∈ VIII, where VIII is shown in Fig. 7(b).

Notice that (S 0 = 1, p0 = 1) ∈ VIII, which agrees with
the result of [23]. The result of Claim 12 shows how
extensive is the parameter region where the coexistence
equilibrium is unstable.

We consider now the dependence of the operating di-
agram on the biological parameters. For this purpose we
consider the parameter values given in Table 8, Case 2,
where the parameters are the same as in Case 1, except
that δ is lowered from 50 to 0.02. The plot of the func-
tion b1(D), see Fig. 8(a), shows that b1(D) > 0 for all
D ∈ [0,m2). Therefore, according to Proposition 8, we
have the following result:

Claim 13. Let the biological parameters be given by
Table 8, Case 2. Since b1(D) > 0 for all D ∈ [0,m2),
for all operating parameters D, S 0, p0, the coexistence
equilibrium Ec is LES whenever it exists

The plot of the operating diagram, with D = 1, is
shown in Fig. 8(b). The region VIII of instability of Ec

does not exist as predicted by Claim 13. In this case the
tangent of Γ1 at point (pc, λ2) is under Γ4. Therefore all
regions I, ..., VII exist and Ec is LES whenever it exists
as predicted also by Proposition 9.

6.2. Parameter values of Lenski and Hattingh [25]

The parameter values used in [25] are given in Table
8, Case 3. It should be noticed that these authors con-
sidered yields γ1 = γ2 = 106 in their model and used
δ = 10−6. The rescaling (17) used to fix γ1 = γ2 = 1
and the expression of ĝ = γ2g(p) in (18) show that we
must rescale δ to δ = 1.

The plot of the function b1(D), see Fig. 9(a), shows
that b1(D) > 0 for all D ∈ [0,m2). Therefore, according
to Proposition 8, we have the following result:
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(a)

b1(D) ∆1(D) ∆2(D) a1(D) ∆(D)
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Figure 6: The numerical plots of (a): b1(D) (in red) and ∆1(D) (in blue); (b): ∆2(D); (c): a1(z(D)) (in red) and ∆(z(D)) (in blue). These plots show
that the conditions in the definition (48) of I3 hold for 0 < D < D3 with D3 ≈ 2.0578. The biological parameters are given in Table 8, Case 1.
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Figure 7: The biological parameters are given in Table 8, Case 1. (a): The subsets U and S defined in Figure 5(a). (b): The operating diagram
(p0, S 0) for D = 1. The existence and stability of equilibria in the regions I, II, ..., VIII are shown by Table 6. Regions V and IX are empty.

Claim 14. Let the biological parameters be given by
Table 8, Case 3. Since b1(D) > 0 for all D ∈ [0,m2),
for all operating parameters D, S 0, p0, the coexistence
equilibrium Ec is LES whenever it exists

The result of Claim 14 gives a justification of the
claim of [25], that is, for D = 0.2, the coexistence equi-
librium Ec is stable whenever it exists. The operating
diagram in the plane (p0, S 0) and D = 0.2 is shown in
Fig. 9(b). Our diagram is similar to the diagram in [25],
Fig. 1(b).

In fact Claim 14 asserts that the stability occurs for
all values of D, not only for D = 0.2, as it was stated
in [25]. Let us give a proof of this result which is not
based on a numerical plot as for the proof of Claim 13.

Proof. (of Claim 14). The biological parameters given

in Table 8, Case 3 satisfy the conditions (57) in Propo-
sition 11. Indeed, we have µ0 ≈ 0.76 and µ1 = 1. Thus
µ0 ≤ µ ≤ µ1. According to Proposition 11, for all oper-
ating parameters D, S 0 and p0, the coexistence equilib-
rium Ec is stable whenever it exists.

It should be noticed that for the biological parameters
given in Table 8, Case 2, one has µ1 = 0.342 and µ = 5,
so that the condition µ ≤ µ1 is not satisfied. Hence we
do not have Proposition 11 to our disposal. Therefore,
in this case, we must use the plot of the curve b1(D) to
show that Ec is LES whenever it exists, see Figure 8.

We consider now the dependence of the operating
diagram on the biological parameters. For this pur-
pose, we notice that in [25] it was also stated that the
instability of Ec can be accomplished in two different
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Figure 8: The biological parameters are given in Table 8, Case 2. (a): The plot of b1(D) shows that b1(D) > 0 for all D, therefore Ec is LES
whenever it exists. (b): The operating diagram (p0, S 0) for D = 1. The existence and stability of equilibria in the regions I, II, ..., VII are shown by
Table 6. Regions VIII and IX are empty.

ways. First, lowering K1 can destabilize Ec: the authors
claimed that in the limiting case K1 = 0, Ec exists and is
unstable when D = 0.2, p0 = 2.5 and S 0 = 20. Second,
lowering K while raising µ may destabilize Ec: the au-
thors claimed that in the limiting case K = 0, if µ = 10,
then Ec exists and is unstable when D = 0.2, p0 = 2.5
and S 0 = 20. Let us show how our analysis can clarify
this question.

It is seen from the inequalities µ0 ≤ µ ≤ µ1 in (57)
that lowering K1 will raise µ0 and diminish µ1 so that the
inequalities µ0 ≤ µ ≤ µ1 can be violated, giving hence
the possibility of instability. On the other hand lowering
K will raise µ0, so that the inequality µ0 ≤ µ can be
violated, giving hence the possibility of instability.

Let us consider the parameter values given in Table 8,
Case 4, where the parameters are the same as in Case 3,
except that K is lowered from 10 to 0.035. For these
parameter values µ0 ≈ 4.06 and µ1 = 1, thus the in-
equality µ0 ≤ µ is violated. Indeed, we can see that the
instability of Ec can occur.

The plots of the functions b1(D), ∆1(D), ∆2(D),
a1(z(D)) and ∆(z(D)), similar to those presented in
Fig. 6, show that

I3 = (0,D3), with D3 ≈ 0.2155.

The plot of the curve H defined by (58) is shown in
Fig. 10(a). The curve H separates the plane (D, p0) into
two regionsU and S. Now, we determine the operating
diagram for D = 0.2 ∈ I3. Notice that

F6(0.2) ≈ 3.602, F7(0.2) ≈ 6.119.

The plot of the curve Γ5, defined by (56), with D = 0.2,

is shown in Fig. 10(b). Using Theorem 7, one has the
following result:

Claim 15. Let the biological parameters be given by
Table 8, Case 4. The coexistence equilibrium Ec is un-
stable only if D ∈ I3 and (D, p0) ∈ U, whereU is shown
in Fig. 10(a). For D = 0.2, Ec is unstable if and only if
(S 0, p0) ∈ VIII, where VIII is shown in Fig. 10(b).

Let us consider the parameter values given in Table 8,
Case 5, where the parameters are the same as in Case
3, except that K1 is lowered from 5 to 0.4. For these
parameter values µ0 ≈ 3.51 and µ1 = 0.08, thus the
inequalities µ0 ≤ µ ≤ µ1 are violated. Indeed, we can
see that the instability of Ec can occur.

The plots of the functions b1(D), ∆1(D), ∆2(D),
a1(z(D)) and ∆(z(D)), similar to those presented in
Fig. 6, show that

I3 = (D3,D4), with D3 ≈ 0.1691,D4 ≈ 0.5236.

The plot of the curve H defined by (58) is shown in
Fig. 11(a). The curve H separates the plane (D, p0) into
two regionsU and S. Now, we determine the operating
diagram for D = 0.2 ∈ I3. Notice that

F6(0.2) ≈ 1.608, F7(0.2) ≈ 2.564.

The plot of the curve Γ5, defined by (56), with D = 0.2,
is shown in Fig. 11(b). Using Theorem 7, one has the
following result:

Claim 16. Let the biological parameters be given by
Table 8, Case 5. The coexistence equilibrium Ec is un-
stable only if D ∈ I3 and (D, p0) ∈ U, whereU is shown
in Fig. 11(a). For D = 0.2, Ec is unstable if and only if
(S 0, p0) ∈ VIII, where VIII is shown in Fig. 11(b).
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Figure 9: The biological parameters are given in Table 8, Case 3. (a): The plot of b1(D) shows that b1(D) > 0 for all D, therefore Ec is LES
whenever it exists. (b): The operating diagram (p0, S 0) for D = 0.2. The existence and stability of equilibria in the regions I, II, ..., VII are shown
by Table 6. Regions V, VIII and IX are empty.
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Figure 10: The biological parameters are given in Table 8, Case 4. (a): The subsets U and S defined in Figure 5(a). (b): The operating diagram
(p0, S 0) for D = 0.2. The existence and stability of equilibria in the regions I, II, ..., VIII are shown by Table 6. Regions V and IX are empty.

6.3. Parameter values with I3 of type ‘Right’ of Table 7

All previous numerical plots of the operating diagram
correspond to the case where I3 of type ‘Left’ or ’Cen-
ter’ of Table 7. The aim of this section is to provide a set
of biological parameters for which I3 of type ‘Right’.

Let us consider the parameter values given in Ta-
ble 8, Case 6. The plots of the functions b1(D), ∆1(D),
∆2(D), a1(z(D)) and ∆(z(D)), similar to those presented
in Fig. 6, show that

I3 = (D3,m2), with D3 ≈ 2.1219.

The plot of the curve H defined by (58) is shown in
Fig. 12(a). The curve H separates the plane (D, p0) into
two regionsU and S. Now, we determine the operating

diagram for D = 2.2 ∈ I3. Notice that

F6(2.2) ≈ 2.0568, F7(2.2) ≈ 6.6073.

The plot of the curve Γ5, defined by (56), with D = 2.2,
is shown in Fig. 12(b). Using Theorem 7, one has the
following result:

Claim 17. Let the biological parameters be given by
Table 8, Case 6. The coexistence equilibrium Ec is un-
stable only if D ∈ I3 and (D, p0) ∈ U, whereU is shown
in Fig. 12(a). For D = 2.2, Ec is unstable if and only if
(S 0, p0) ∈ VIII, where VIII is shown in Fig. 12(b).

6.4. An example with curve Γ5 intersecting curve Γ1

The aim of this section is to provide a set of biological
parameters for which the curve Γ5 intersects the curve
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Figure 11: The biological parameters are given in Table 8, Case 5. (a): The subsets U and S defined in Figure 5(a). (b): The operating diagram
(p0, S 0) for D = 0.2. The existence and stability of equilibria in the regions I, II, ..., VIII are shown by Table 6. Regions V and IX are empty.
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Figure 12: The biological parameters are given in Table 8, Case 6. (a): The subsets U and S defined in Figure 5(a). (b): The operating diagram
(p0, S 0) for D = 2.2. The existence and stability of equilibria in the regions I, II, ..., VIII are shown by Table 6. Regions V and IX are empty.

Γ1, so that both regions of instability VIII and IX exist.
We were not able to find such a set of parameter val-
ues for the functions given in (2). The impossibility of
finding such values for (2) is in agreement with the con-
jecture of Hsu and Waltman, as we mentioned in the
Section 5.7.

We will consider another example of growth func-
tions for which curve Γ1 is not convex and its intersec-
tion with Γ5 can occur. Let us consider the following
growth functions

f (p) =
1

1 + µp
, f1(S ) =

m1S 2

K2
1 + S 2

,

f2(S ) =
m2S

K2 + S
, g(p) =

δp
K + p

.

(59)

The meaning and the units of the variables and pa-
rameters are as for (2) and are given in Table1. Notice
that the function f1 in (59) does not satisfy the condi-
tion in Lemma 10. Therefore curve Γ1 is not necessarily
convex and can intersect curve Γ4 at more than one point
different from (pc(D), λ2(D)).

Assume that the parameter values are those given
in Table 8, Case 7. The plots of the functions b1(D),
∆1(D), ∆2(D), a1(z(D)) and ∆(z(D)), similar to those
presented in Fig. 6, show that

I3 = (D3,D4), with D3 ≈ 1.43610−4,D4 ≈ 4.90110−4.

The plot of the curve H defined by (58) is shown in
Fig. 13(a). The curve H separates the plane (D, p0) into
two regionsU and S. Now, we determine the operating

18



D

p0 (a)

F6(0.0003)

F7(0.0003)

H

S U

p0

S 0 (b)

F7(0.0003)F6(0.0003)

II←

VI

VII
←IV

VIII

IX

I
↓

III

Figure 13: The biological parameters are given in Table 8, Case 7. (a): The subsets U and S defined in Figure 5(a). (b): The operating diagram
(p0, S 0) for D = 0.0003. The existence and stability of equilibria in the regions I, II, ..., IX are shown by Table 6.
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Figure 14: Supplementary information on the operating diagram shown in Fig. 13. (a): The full operating diagram. (b): A zoom near the origin.
The nine regions I, ..., IX are non empty. The region VII is not connected. The existence and stability of equilibria are shown by Table 6.

diagram for D = 0.0003 ∈ I3. Notice that

F6(0.0003) ≈ 27.05, F7(0.0003) ≈ 594.7.

The plot of the curve Γ5, defined by (56), with D =

0.0003, is shown in Fig. 13(b). Notice that in this ex-
ample, Γ5 intersects Γ1. Let us denote by VIII and IX
the regions delimited by these curves as shown in Fig.
13(b). Using Theorem 7, one has the following result:

Claim 18. Let the biological parameters be given by
Table 8, Case 7. The coexistence equilibrium Ec is un-
stable only if D ∈ I3 and (D, p0) ∈ U, whereU is shown
in Fig. 13(a). For D = 0.0003, Ec is unstable if and only
if (p0, S 0) ∈ VIII∪ IX, where VIII and IX are shown in Fig.
13(b).

This last example has many interesting properties:

• The region IX is non empty. Hence, the positive
equilibrium Ec is unstable at the same time as the
boundary equilibrium E1 exists and is unstable.
Therefore it is a counter example of the Conjecture
of Hsu and Waltman for the inhibition and growth
function given in (59).

• The curve Γ1 is not convex. Even if its tan-
gent at point (pc, λ2) is above the straight-line Γ4,
this curve intersect Γ4 at two points different from
(pc, λ2), so that the region V is not empty, and the
region VII is not connected, as shown in Fig. 14(a).

• All nine regions I, ..., IX are non empty, as shown
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Parameters m1 m2 K1 K2 δ K µ Figures
Case 1 5 6 0.5 3.5 50 0.1 5 Fig. 6 and Fig. 7
Case 2 5 6 0.5 3.5 0.02 0.1 5 Fig. 8
Case 3 0.7 0.7 5 10 1 10 1 Fig. 9
Case 4 0.7 0.7 5 10 1 0.035 1 Fig. 10
Case 5 0.7 0.7 0.4 10 1 10 1 Fig. 11
Case 6 8 3 2.5 1 5 0.01 3 Fig. 12
Case 7 1 0.01 1 1 0.5 0.007 1 Fig. 13 and Fig. 14

Table 8: Parameter values used in Section 6.

in Fig. 14 (a) and (b).

This example shows that for (59), according to the
operating parameters, the model can exhibit nine differ-
ent asymptotic behaviors. In contrast, for (2), accord-
ing to the operating parameters, the model can exhibit
only eight (and probably only seven, if the Conjecture
of Hsu and Waltman is true) different asymptotic behav-
iors. Indeed, in this case region V can exist if and only
if the tangent of Γ1 at point (pc, λ2) is under the straight-
line Γ4, and according to Proposition 9, Ec is necessarily
stable. Therefore only the seven regions I, II, III, IV, V,
VI and VII can exist. On the other hand, region V does
not exist if and only if the tangent of Γ1 at point (pc, λ2)
is above the straight-line Γ4, and Ec can be unstable.
Therefore only the eight regions I, II, III, IV, VI, VII, VIII
and IX can exist. In fact, if the Conjecture of Hsu and
Waltman is true, the region IX never exist for (2), so that
the number of regions reduces to seven.

7. Discussion

In this work we have generalized the model of com-
petition in the chemostat with an inhibitor [23, 25] by
considering generic growth rate functions of competi-
tors and absorption rate of external inhibitor. Our main
contribution is the determination of the operating dia-
gram and the analysis of its dependence with respect to
the biological parameters. As it was noticed by Smith
and Waltman [6], p. 252, the operating diagram is prob-
ably the most useful answer for the discussion of the
behavior of the model with respect of the parameters.
This diagram shows how robust or how extensive is the
parameter region where coexistence occurs, where the
coexistence equilibrium is stable and where it is unsta-
ble.

The operating diagram has the operating parameters
D, S 0 and p0 as its coordinates and the various regions
defined in it correspond to qualitatively different asymp-
totic behavior. As it is not easy to represent the regions

of existence and stability of the equilibria in a three di-
mensional space, we fixed the operating parameter D
and showed the regions of existence and stability in the
operating plane (p0, S 0) in which the various outcomes
occur. In this paper, we have fixed D since it is the
choice made by Lenski and Hattingh [25]. These au-
thors considered a set of biological parameters and they
plotted the operating diagram for D = 0.2, 0 ≤ p0 ≤ 5
and 0 ≤ S 0 ≤ 20. They claimed, without proof, that,
when D = 0.2, the coexistence equilibrium is stable for
all values of the operating parameters p0 and S 0. Since a
numerical exploration of the whole range of parameters
is not possible, it is necessary to develop a theory that
support such claims. The theory developed in this pa-
per completely solve this problem: we show that for the
biological parameters in [25], for all values of the three
operating parameters (not only for D = 0.2 and p0, S 0

arbitrary) the coexistence equilibrium is stable when-
ever it exists. This theory permits also to clarify the
question of the destabilisation of the coexistence equi-
librium that was evocated in the Appendix of [25].

We applied our theory to the biological parameter
values considered by Hsu and Waltman [23] and we
gave the whole range of the operating parameters for
which instability of the coexistence occurs. Figure 7
shows how extensive is the operating parameters region
where coexistence occurs around a positive equilibrium
and how extensive is the parameter region where this
coexistence equilibrium is unstable. For instance the
value D = 1 considered [23] may be changed to any
value 0 < D < 2.0578 and for such a value D, the set
of (p0, S 0) for which instability occurs can be theoreti-
cally predicted. For D = 1 this set is shown in Figure
7(b), which shows that the particular choice p0 = 1,
S 0 = 1 for which the instability was shown in [23] can
be changed in all the region VIII.

The sensitivity analysis of a mathematical model is
a major problem in the literature. The parameter space
is often multidimensional and exploring all of it is not
possible. The theory developed in this paper gives a
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complete answer to this problem for the model consid-
ered in [23, 25]. Decoupling the operating parameters
and the biological parameters and fixing the biological
parameters reduces the problem to a three dimensional
parameter space that can be explored. Since the condi-
tion of instability is polynomial in the operating param-
eters S 0 and p0, as shown in Section 5.3, we reduced the
problem of exploring all the three dimensional set of op-
erating parameters to the determination of the signs of
five real valued functions of only one variable (the dilu-
tion rate D), see Theorem 7. This problem can be eas-
ily solved numerically. In Section 6 we have shown on
seven well chosen examples that our theory is very effi-
cient to address practical questions on the determination
of the operating diagrams when the biological parame-
ters are fixed. This section completes the theoretical re-
sults obtained in Sections 5. The choices of the biologi-
cal parameters in Table 8 are motivated in the beginning
of Section 6. For the biological parameters considered
in [23, 25], we have changed some of them to illustrate
the dependence of the operating parameters with respect
of the biological parameters. Compare Figures 7(b) and
8(b). Compare Figures 9(b), 10(b) and 11(b).

From the biological viewpoint, the operating diagram
indicates the possible choices of the operating parame-
ters for a prescribed behaviour of the system. For in-
stance, to maintain the coexistence of species in the
chemostat, the ideally parameter values of D, p0 and S 0

should be chosen in the region of stable coexistence. If
the model exhibit a region of destabilization, the operat-
ing diagram exhibits this region and gives to the exper-
imenter useful informations on the experimental condi-
tions that can demonstrate the oscillatory case. There-
fore the operating diagram which determines the effect
of the operating parameters, is very useful to understand
the model from both the mathematical and biological
points of view, and it is often constructed in the mathe-
matical and biological literature, see the citations given
in the introduction.

Our mathematical analysis of the model has revealed
nine possible behaviors: washout, competitive exclu-
sion of one species, coexistence of the species around
a stable steady state and coexistence around a stable cy-
cle. In the previous literature these nine possible be-
haviours were not all described and, even more, one of
them was expected to never occur: it is the asymptotic
behaviour corresponding to region the IX where the pos-
itive coexistence equilibrium exists and is unstable and
at the same time the boundary equilibrium E1 exists and
is unstable. Actually, a consequence of the Conjecture
of Hsu and Waltman [23] is that when E1 exists and
is unstable, the positive equilibrium Ec is necessarily

stable. This conjecture was formulated for the growth
functions given in (2). We have shown in Section 6.4
that this conjecture does not hold for the growth func-
tions given in (59).

Our study clarified what are the results in the existing
literature that can be extended from the special case (2)
to the general case of monotonic growth functions and
what are the results that cannot be extended. Actually, it
was noticed by Hsu and Waltman [23] that their results
are probably valid for general monotone dynamics. Our
findings show that the conditions on existence and lo-
cal or global stability are easily extended to the general
case, see Sections 3 and 4. However, some results are
not valid in the general case: for instance, the Conjec-
ture of Hsu and Waltman on the stability of Ec, when E1
exists and is unstable, does not hold in the general case
of monotonic growth function, as shown in Section 6.4.

We were not able to find a set of biological parame-
ters for (2) such that the region IX is not empty. Whether
or not the region IX is always empty for (2) is the first
step toward the study of the Conjecture of Hsu and Walt-
man and deserves further attention.

We can also fix the operating parameter p0 and show
the regions of existence and stability in the operating
plane (S 0,D) or fix the operating parameter S 0 and
show the regions of existence and stability in the oper-
ating plane (p0,D). These diagrams will be considered
in a future work.

Appendix A. Proofs

Appendix A.1. Proof of Proposition 2

The steady states of (5) are the solutions of the set of
equations

0 = 1 − S − f (p) f1(S )x − f2(S )y,
0 = [ f (p) f1(S ) − 1]x,
0 = [ f2(S ) − 1]y,
0 = 1 − p − g(p)y.

(A.1)

Therefore, besides the washout equilibrium E0 =

(1, 0, 0, 1) where both populations are extinct, that al-
ways exists, (5) has the following types of equilibria:

• E1 = (S 1, x1, 0, p1), where second population is
extinct and x1 > 0.

• E2 = (S 2, 0, y2, p2), where first population is ex-
tinct and y2 > 0.

• Ec = (S c, xc, yc, pc), where both populations sur-
vive: xc > 0, yc > 0.
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The components S = S 1, x = x1 and p = p1 of the
boundary equilibrium E1 are the solutions of (A.1) with
x > 0 and y = 0, that is p1 = 1 and

1 − S 1 = f (p1) f1(S 1)x1, (A.2)
f (p1) f1(S 1) = 1. (A.3)

Therefore, from (A.3) we have f1(S 1) = 1
f (1) , that is

S 1 = λ+, where λ+ is given by (6). Then, using (A.2)
we deduce that x1 = 1 − λ+. This equilibrium exists if
and only if x1 > 0, that is λ+ < 1.

The components S = S 2, y = y2 and p = p2 of the
boundary equilibrium E2 are the solutions of (A.1) with
x = 0 and y > 0. Hence, f2(S 2) = 1, that is S 2 = λ2,
where λ2 is given by (6) and

1 − S 2 = f2(S 2)y2, (A.4)
1 − p2 = g(p2)y2. (A.5)

From (A.4) we have y2 = 1 − λ2. Then, using (A.5) we
deduce that W(p2) = 1−λ2, that is p2 = p∗, where p∗

is given by (7). This equilibrium exists if and only if
y2 > 0 and p2 > 0, that is λ2 < 1.

The components of Ec = (S c, xc, yc, pc), a positive
equilibrium of (5), are the solutions of (A.1) with x > 0
and y > 0. Hence, f2(S c) = 1, that is S c = λ2, where λ2
is given by (6) and

1 − S c = f (pc) f1(S c)xc + f2(S c)yc, (A.6)
f (pc) f1(S c) = 1, (A.7)

1 − pc = g(pc)yc. (A.8)

From (A.7) we have f (pc) = 1
f1(λ2) , from (A.8) we have

yc = W(pc) and from (A.6) we have xc = 1 − λ2 − yc.
Therefore pc, yc and xc are given by (10). Hence, a pos-
itive equilibrium Ec of system (5), if it exists, is unique.
Let us study the condition of existence of Ec. We first
note that

xc + yc = 1 − λ2 > 0⇐⇒ λ2 < 1. (A.9)

Moreover, we have yc > 0 if and only if 0 < pc < 1.
Using the fact that f is decreasing and f (0) = 1 (hy-
pothesis (H1)) we have

yc > 0⇐⇒ 0 < pc < 1⇐⇒ f (1) < f (pc) < 1. (A.10)

Now, by (6) and (10) we have

1 =
1

f1(λ1)
, f (1) =

1
f1(λ+)

, f (pc) =
1

f1(λ2)
,

so that, by using the fact that f1 is increasing (hypothesis
(H2)), we obtain from (A.10)

yc > 0⇐⇒ f1(λ1) < f1(λ2) < f1(λ+)⇐⇒ λ1 < λ2 < λ
+.

(A.11)

On the other hand, by (7), (8) and (10) we have, respec-
tively

W(p∗) = 1 − λ2, f (p∗) =
1

f1(λ−)
, W(pc) = yc,

f (pc) =
1

f1(λ2)
.

Hence, using the facts that W and f are decreasing, and
f1 is increasing, we have

xc > 0 ⇐⇒ yc < 1 − λ2 ⇐⇒ W(pc)<W(p∗)
⇐⇒ pc > p∗ ⇐⇒ f (pc) < f (p∗)
⇐⇒ f1(λ2)> f1(λ−) ⇐⇒ λ2 > λ

−.

(A.12)

Taking into account (9), from (A.9), (A.11) and (A.12),
we conclude finally that Ec exists if and only if λ− <
λ2 < min(λ+, 1).

Appendix A.2. Proof of Proposition 3

At washout equilibrium E0, the matrix M defined by
(12) is

M0 =

 f (1) f1(1) − 1 0 0
0 f2(1) − 1 0
0 −g(1) −1

 .
The eigenvalues of M0 are: −1, f (1) f1(1) − 1 and
f2(1)−1. Then, the equilibrium E0 is LES if and only
if f (1) f1(1) < 1 and f2(1) < 1, or equivalently, λ+ > 1
and λ2 > 1.

Suppose that the equilibrium E1 exists, that is λ+<1.
At E1 the matrix M defined by (12) is

M1 =

 −(1 − λ+) f (1) f ′1(λ+) 0 m13
0 f2(λ+) − 1 0
0 −g(1) −1

 ,
where m13 = (1−λ+) f ′(1) f1(λ+), The eigenvalues of M1
are: −1, −(1 − λ+) f (1) f ′1(λ+) < 0 and f2(λ+) − 1. Since
E1 has three negative eigenvalues, it has at least three
dimensional stable manifolds. Moreover, E1 is LES if
and only if f2(λ+) < 1, or equivalently, λ+ < λ2.

Suppose that the equilibrium E2 exists, that is λ2 < 1.
At E2 the matrix M defined by (12) is

M2 =

 f (p∗) f1(λ2) − 1 0 0
−(1 − λ2) f ′2(λ2) −(1 − λ2) f ′2(λ2) 0

0 −g(p∗) m33

 ,
where m33 = −1 − (1 − λ2)g′(p∗). The eigenvalues
of M2 are: f (p∗) f1(λ2) − 1, −(1 − λ2) f ′2(λ2) < 0 and
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−1 − (1 − λ2)g′(p∗) < 0. Since E2 has three nega-
tive eigenvalues, it has at least three dimensional sta-
ble manifolds. Moreover, E2 is LES if and only if
f (p∗) f1(λ2) < 1, or equivalently, λ2 < λ

−.
At Ec, the matrix M defined by (12) takes the form

Mc =

 −A −A −F
−B −B 0
0 −E −C

 ,
where A, B, C, E and F are defined by (14). Obviously
A > 0, B > 0, C > 0, E > 0 and F > 0. The character-
istic polynomial of Mc is given by

λ3 + B1λ
2 + B2λ + B3 = 0,

with B1 = A + B + C, B2 = C(A + B) and B3 = BEF.
Since B1 > 0, B2 > 0 and B3 > 0, by the Routh-Hurwitz
criterion, Ec is LES if and only if B1B2 > B3 that is to
say (13) holds.

Appendix A.3. Proof of Lemma 5
Using (20), hypothesis (H2) and the definition (30),

we have

λ+ < λ2 ⇐⇒ f −1
1

(
D

f (p0)

)
< f −1

2 (D)

⇐⇒ D < f (p0) f1
(

f −1
2 (D)

)
⇐⇒ D < F1(D, p0).

On the other hand, using (20), (23) and hypotheses (H1)
and (H2), we have

pc(D) < p0 ⇐⇒ f −1
(

D
f1(λ2)

)
< f −1

(
D

f1(λ+)

)
⇐⇒

D
f1(λ2)

>
D

f1(λ+)

⇐⇒ f1(λ2) < f1(λ+)⇐⇒ λ2 < λ
+.

This completes the proof of first equivalences. Using
(22) and (23), together with hypotheses (H1) and (H2),
we have

λ2>λ
− ⇐⇒ f1(λ2)> f1(λ−) ⇐⇒

D
f (pc)

>
D

f (p∗)

⇐⇒ f (pc) < f (p∗) ⇐⇒ pc > p∗.
(A.13)

Using the fact that ∂W
∂p < 0 and (21), we have

pc> p∗ ⇐⇒ W(pc,D, p0)<W(p∗,D, p0)
⇐⇒ W(pc(D),D, p0)<S 0−λ2.

(A.14)

Therefore, from (A.14), together with λ2 = f −1
2 (D) and

the definition (31) of F2, we deduce that pc > p∗ is
equivalent to S 0 > F2(D, p0). This completes the proof
of second equivalences.

Appendix A.4. Proof of Proposition 9

Let D be fixed and let F(p0) = f −1
1

(
D

f (p0)

)
. The curve

Γ1 is the graph of the function S 0 = F(p0). Using
f1 (λ2) f (pc) = D, we get that the slope F′(pc) of the
tangent of Γ1 at point (pc, λ2) is given by

F′(pc)=
1

f ′1 (F(pc))
−D f ′(pc)

f 2(pc)
=

1
f ′1 (λ2)

− f ′(pc) f1 (λ2)
f (pc)

.

Since the slope of the straight-line Γ4 is D/g(pc), the
condition F′(pc) < D/g(pc) is equivalent to

D f ′1 (λ2) f (pc) + f ′(pc) f1 (λ2) g(pc) > 0.

Straightforward computations show that

b1(D) = f ′2 (λ2) M + D f (pc) f ′1 (λ2)
[
f ′2 (λ2) + 2g′(pc)

]
,

where M = D f ′1 (λ2) f (pc) + f ′(pc) f1 (λ2) g(pc) > 0.
Hence b1(D) > 0. Therefore, using Proposition 8, for all
operating parameters S 0 and p0 and whenever it exists,
Ec is stable.

Appendix A.5. Proof of Proposition 11

Let us prove that b1(D) > 0 for all D ∈ Ic so that,
using Proposition 8, for all operating parameters D, S 0

and p0 Ec is stable whenever it exists. Recall that b1 =

b1(D) is given by (40)

b1 = 2αD(β + γ) − βEφ,

where E is defined by (14) and α, β, γ and φ are defined
by (29). From g(p) =

δp
K+p and g′(p) = δK

(K+p)2 one has
g(p)≤g′(p) if and only if (K + p)p≤K. Therefore p is
between the roots of equation p2 + K p − K = 0. Since
p ≥ 0 we have

g(p) ≤ g′(p)⇐⇒ 0 ≤ p ≤

√
K2 + 4K − K

2
. (A.15)

Straightforward calculations show that

pc(D) =
1
µ

ln
(

m1K2

m2K1 + D(K2 − K1)

)
.

Since K1 < K2, pc is decreasing. Thus, using µ ≥ µ0,
one has

pc(D) < pc(0) =
1
µ

ln
(

m1K2

m2K1

)
≤

√
K2 + 4K − K

2
.

Therefore, using (A.15), one has

g(pc) ≤ g′(pc). (A.16)
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Now using (A.16), (29) and (14) together with f ′(p) =

−µ f (p), one has

b1(D)≥ f (pc(D)) g (pc(D)) M,

where M = 2D f ′1(λ2(D)) − µ f1(λ2(D)) f ′2(λ2(D)). Thus,
if M > 0 then b1(D) > 0. Straightforward computations
show that

f1(λ2(D))=
m1K2D

m2K1+D(K2−K1)
, f ′2(λ2(D))=

(m2−D)2

m2K2
,

f ′1(λ2(D)) =
m1K1(m2 − D)2

(m2K1 + D(K2 − K1))2 .

Hence

M =
m1D(D − m2)2

m2(m2K1 + D(K2 − K1))2 N,

where N = K1m2(2 − µ) + µD(K1 − K2). Thus M is
positive if and only if N > 0. Since pc(D) > 0 we have

D(K1 − K2) > m2K1 − m1K2,

from which we deduce that

N > K1m2(2−µ) + µ(m2K1 −m1K2) = 2K1m2 − µm1K2.

Hence, from µ ≤ µ1 one has N > 0. Therefore, if (57)
holds then b1(D)>0 for all D.
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