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The Operational Meaning of Min- and Max-Entropy
Robert König, Renato Renner, and Christian Schaffner

Abstract—In this paper, we show that the conditional min-en-
tropy ��������� of a bipartite state ��� is directly related to the
maximum achievable overlap with a maximally entangled state if
only local actions on the �-part of ��� are allowed. In the special
case where � is classical, this overlap corresponds to the proba-
bility of guessing � given�. In a similar vein, we connect the con-
ditional max-entropy ��������� to the maximum fidelity of ���
with a product state that is completely mixed on �. In the case
where � is classical, this corresponds to the security of � when
used as a secret key in the presence of an adversary holding �.
Because min- and max-entropies are known to characterize infor-
mation-processing tasks such as randomness extraction and state
merging, our results establish a direct connection between these
tasks and basic operational problems. For example, they imply that
the (logarithm of the) probability of guessing � given � is a lower
bound on the number of uniform secret bits that can be extracted
from � relative to an adversary holding �.

Index Terms—Entropy measures, max-entropy, min-entropy,
operational interpretations, quantum information theory,
quantum hypothesis testing, singlet fraction, single-shot in-
formation theory.

I. INTRODUCTION

A CENTRAL goal of information theory is the (quanti-
tative) analysis of processes involving the acquisition,

transmission, and storage of information. For example, given a
(noisy) communication channel, one may ask at which rate data
can be transmitted reliably (this is the channel capacity). Or,
given a source emitting signals, one may be interested in the
amount of space needed to store the information in such a way
that the signal can be recovered later (this is the compression
rate). In the following, we call such quantities operational
because they are defined by an actual information-processing
task.

Traditionally, most operational quantities are defined asymp-
totically under the assumption that a certain process is repeated
many times independently.1 Consider, for example, the problem
of data compression. For a random variable and for , let
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1The independence assumption is sometimes replaced by the less restrictive
requirement that the process is Markovian.

be the minimum length (measured in terms of bits) of
an encoding such that can be recovered from
except with an error probability of at most . The compression
rate of a source emitting a sequence of mutually independent
pieces of data , each distributed according to , is
then defined by

(1)

It may be one of the most remarkable features of information
theory that a huge variety of operational quantities can be ex-
pressed in terms of a few simple entropy measures. In fact, in
the asymptotic case where a process is repeated many times in-
dependently, the (almost) only relevant entropy measure is the
Shannon entropy (or its quantum-mechanical generalization, the
von Neumann entropy). For example, the compression rate (1)
of a source emitting data distributed according to is equal to
the Shannon entropy of a random variable with distribution

, i.e.,

(2)

This equality is also known as the source-coding theorem [1].
Another well-known example is the channel capacity. Ac-
cording to the noisy-channel coding theorem [1], the maximum
rate at which information can be transmitted over a noisy
communication channel is equal to a difference between two
Shannon entropies [see (13)].

The situation is different in the nonasymptotic case or
when the independence assumption is dropped. Here, the
Shannon/von Neumann entropies no longer give a correct
characterization of operational quantities.2 Therefore, one has
to replace them by more general entropy measures. In the past
few years, several such generalizations have been developed,
notably the spectral entropy rates [2], as well as (smooth) min-
and max-entropies [3]. While both notions completely over-
come the need for independence or Markovian assumptions,
spectral entropy rates are (as suggested by their name) still
restricted to asymptotic considerations. In contrast, smooth
min- and max-entropies are fully general.3 In particular, no
repetition of random processes is required. That is, one may
consider situations where a source only emits one single piece
of information or where a channel is only used once.

The aim of this paper is to propose new operational in-
terpretations of these nonasymptotic entropy measures. Our

2For example, the minimum compression length � ��� defined above
can deviate arbitrarily from ����. This is readily verified by the following ex-
ample: Let � be defined as the random variable which takes the value 0 with
probability , and with probability is equal to a uniformly distributed bit
string of length �. Then, ���� � while � ��� � � for any suffi-
ciently small �.

3The spectral entropy rates can be seen as asymptotic limits of smooth min-/
max-entropies [4].
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main findings are motivated and described in the following
sections, which are organized as follows. In Section I-A, we
review the notion of min-/max-entropies, our central object
of interest. These entropy measures are the basis for the def-
inition of smooth min-/max-entropies, which can be seen as
generalizations of Shannon/von Neumann entropy, as indicated
above. Their properties are discussed later in Section I-A. After
this preparation, we will turn to connections between (smooth)
min/max-entropies and operational quantities, starting with
some important examples in Section I-B. We then summarize
the new operational interpretations derived in this work as well
as their implications in Section I-C.

A. (Smooth) Min-/Max-Entropy: Basic Definitions

1) Min-/Max-Entropy: We start with the definition of condi-
tional min-entropy. This quantity (and the closely related con-
ditional max-entropy) is the main object of study of this paper.
In what follows, denotes the identity on system .

Definition 1: Let be a bipartite density operator.
The min-entropy of conditioned on is defined by

(3)

where the infimum ranges over all normalized density operators
on subsystem and where4

(4)

It is interesting to note that the Shannon/von Neumann en-
tropy could be defined in a similar way. Namely, if we replace

by the von Neumann entropy and by the relative
entropy5 in (3), we find

This equality is readily verified using the fact that is
nonnegative for any normalized and equals zero if .

For a tripartite pure state , the von Neumann en-
tropy satisfies the equality6

(5)

The same is no longer true for the min-entropy. However, it turns
out that the entropy obtained by replacing the system by the
“purifying system” often appears in expressions character-
izing operational quantities. This motivates the following defi-
nition.

4For commuting density operators � and � , the quantity � ���� � corre-
sponds to the (classical) relative Rényi entropy of order�. In general, the rela-
tive Rényi entropy of order� of two probability distributions� and� is defined
as� ����� �� ��� � ��� ���� , and� is obtained in the
limit � � �.

5Note that the relative entropy (also knows as Kullback–Leibler divergence)
����� � �� ������ � � ��� � �� is also defined for unnormalized opera-
tors � .

6Note that, by definition, ��	�
� � ��	
� � ��
� and ��	��� �
��	�� � ����. The equality then follows from the fact that, by the Schmidt
decomposition, ��	
� � ���� and ��
� � ��	��.

Definition 2: Let be a bipartite density operator.
The max-entropy of conditioned on is defined by

(6)

where the min-entropy on the right-hand side is evaluated for a
purification of .7

This is well defined because all purifications of are re-
lated by unitaries on , and the quantity is in-
variant under such unitaries.

We point out that and could have been defined
alternatively by starting from an expression for and subse-
quent definition of by purification [i.e., (6)]. In this sense,
both quantities are equally fundamental.

If the state is clear from the context, we will omit the sub-
script in and . Also, in the special
case where the system is trivial (i.e., one-dimensional), we
omit the conditioning and simply write and .
Note that the above definitions also apply to classical probability
distributions which can always be written as quantum states

for some orthonormal basis .
To get some more intuition for these definitions, it may help

to compute their value for certain special states. One extreme
case are product states , for which one readily
verifies that the min-entropy only depends on the maximum
eigenvalue of , i.e., .
Note that this corresponds to the Rényi entropy of order
infinity of the density operator . Similarly, we get

, which is the Rényi entropy
of order of [see (24)]. Another extreme case is where
is a pure state. Here, one finds
and .

2) Smooth Min-/Max-Entropy: The smooth min/max-en-
tropy of a state is defined by the corresponding (nonsmooth)
min/max-entropy for an “optimal” state in a -neighborhood
of , where is called smoothness parameter.

Definition 3: Let be a bipartite density operator and
let . The -smooth min- and max-entropy of conditioned
on are given by

where the supremum ranges over all density operators
which are -close to .8

7In the existing literature, � and � are sometimes defined in a dif-
ferent manner (closely related to the Rényi entropy of order 0). It can be shown,
however, that the smooth variants of these definitions only deviate by an addi-
tive term which is logarithmic in the smoothness parameter (see [5]).

8In the classical case, smooth entropies are usually defined with respect to
the trace distance  ��� �� � �� � �� . Quantum mechanically, distance
measures based on the fidelity� ��� �� � ������ are more suitable because
they are invariant under purifications. Candidates are the Bures distance �� �
�� � �� �� ��� �� and the angle �� � �� � 	
����� ��� ��. The
corresponding definitions are essentially equivalent because of the inequalities
� � ��� �� �  ��� �� � � � ��� �� .
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3) Basic Properties: It follows directly from the definitions
that the same kind of duality between min- and max-entropy
holds between the corresponding smooth versions, namely

(7)

for a purification of .
As already indicated, smooth min-/max-entropies can be

seen as generalizations of the Shannon/von Neumann entropy
. More precisely, the latter can be written in terms of the

former [6], [5], i.e.,

(8)

(9)

Note that the two statements are trivially equivalent because of
(5) and (7).

Given these asymptotic relations, it is not surprising that
smooth min-/max-entropies share various properties with the
Shannon/von Neumann entropy. For example, they are strongly
subadditive, i.e.,

(10)

and likewise for . In fact, inequality (10) can be seen as a
generalization of the strong subadditivity of the von Neumann
entropy , which can be recovered by virtue
of identity (8), i.e., for any

Interestingly, despite its generality, inequality (10) is easy to
prove, as we will see at the end of Section I-C.

B. Operational Quantities in Terms
of Smooth Min-/Max-Entropy

The main reason for considering (smooth) min-/max-en-
tropies is that they are well suited for the characterization of
operational quantities in the most general case. Recall that ex-
pressions for operational quantities involving the Shannon/von
Neumann entropy, e.g., (2), are typically only valid asymptoti-
cally, under the assumption that certain resources can be used
many times independently. Interestingly, the structure of such
expressions essentially remains the same if one drops these
assumptions, except that smooth entropies take the place of
Shannon/von Neumann entropy. The purpose of this section is
to illustrate this phenomenon with a few examples.

1) Data Compression: We start with the example of data
compression, which has already been introduced above. For a
random variable and , let again be the min-
imum length of an encoding from which the value of can be
recovered correctly with probability at least . It can then be

shown that is essentially equal to the smooth max-en-
tropy of [3]. More precisely, we have

(11)

for some . The -notation indicates that equality
holds up to an additive term of the order .9 In typical ap-
plications, this logarithmic term is much smaller than the other
quantities occurring in the expression. In particular, the term is
independent of the size of the resource (in our case, the random
variable ), and thus becomes irrelevant in the asymptotic limit
of large resources.

We stress that (11) is valid for a single realization of the
random variable , and thus strictly generalizes Shannon’s
source coding theorem described at the beginning of this
section. Identity (2) can be recovered as an asymptotic limit
of (11), for consisting of many independent and identically
distributed (i.i.d.) pieces , i.e.,

2) Channel Coding: As a second example, we consider the
noisy-channel coding problem. For any , let

be the maximum number of bits that can be transmitted in
one use of a classical noisy channel (specified by a
conditional probability distribution ) with maximum error
probability . As shown in [7], this quantity is given by

(12)
for some .

Similarly to the example of source coding, we may consider
the special case where the channel allows many mutually inde-
pendent transmissions. The figure of merit then is the channel
capacity

that is, the maximum rate at which information can be trans-
mitted by uses of the channel , in the limit of large .
Using the nonasymptotic statement (12) together with (8) and
(9), we find

(13)

This is Shannon’s well-known noisy-channel coding theorem.
3) Privacy Amplification: Let be a classical random vari-

able and let be (possibly quantum-mechanical) side infor-
mation. The goal of randomness extraction is to compute a bit

9Note that the smooth entropies are monotonic functions of �. Equality (11)
is thus just a way to state that the operational quantity � ��� lies in the
interval �� ����� ����, up to some additive constant of the order
��� ���.
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string which is uniform and independent of the side in-
formation . Randomness extraction is crucial for a number of
applications, particularly in the context of cryptography, where
it is also called privacy amplification [8]. For example, in a
key-agreement scheme, one may want to turn a (only partially
secure) raw key into a fully secure key . Security of

is then akin to uniformity relative to side information
held by a potential adversary.

The maximum number of uniform and independent bits that
can be extracted from is directly given by the smooth min-
entropy of . More precisely, let be the maximum
length of a bit string that can be computed from such
that is -close to a string which is perfectly uniform and
independent of the side information .10 One can show that [6],
[9]

where . In the special case where is independent
of , this corresponds to the leftover hash lemma [10], [8]. For
later reference, we also note that

(14)

which holds because is monotonically increasing
in and equals for .

4) Decoupling: The previous result can be extended to a fully
quantum-mechanical setting as follows. Let and be two
quantum systems. The goal is to find a maximum subsystem
of such that the state on is completely mixed and decou-
pled from (conditioned on a suitable measurement on the re-
maining part of ). Let be the maximum size of
(measured in qubits) such that this is possible up to a distance
.11 One then finds [11]–[13]12

(15)

with .
5) State Merging: In the same manner as privacy amplifica-

tion generalizes to decoupling in the fully quantum case, data
compression (and its relatives such as coding with side infor-
mation) extends to a fully quantum setting; this is referred to as
state merging. The setting is described by a tripartite pure state

. The aim is to redistribute the -part to the system
by local operations and classical communications (LOCC) be-
tween and . Depending on the (reduced) state ,
this either consumes or generates bipartite entanglement. Let

be the minimal (maximal) number of ebits of
entanglement required (generated) by this process [the distinc-
tion between consumed/generated entanglement is reflected by

10See paragraph on max-entropy of classical information in Section I-C for
more details.

11This distance is quantitatively expressed by the decoupling accuracy; see
below.

12This is based on a tightened version [12] of a bound obtained in [11], which
shows that projecting onto a random subspace of dimension ���� achieves
decoupling. More precisely, it can be shown [12] that the decoupling accuracy
of the residual state is, on average over the measurement outcome, exponentially
small in the difference � ����� � ��� ���� .

the sign of the quantity ], such that the outcome is
-close to the desired output.13 One then finds

(16)

where again (see [13] for details). In fact, the
-part of this statement is a direct consequence of decoupling

result above [12], the arguments in [11] (cf., also Section III-B),
and the definition of .

C. Contribution: Min-/Max-Entropies
as Operational Quantities

In this paper, we show that min-/max-entropies have direct14

operational interpretations. We begin by presenting the corre-
sponding results for the special case where we condition clas-
sical information on a (possibly) quantum system . The
fully general case is discussed in Section I-C2.

1) Uncertainty About Classical Information: Consider an
agent with access to a (classical or quantum) system whose
state depends on a classical random variable . This situa-
tion can be described by a classical-quantum state

(17)

with a family of mutually orthogonal vectors repre-
senting the (classical) values of .

a) Min-Entropy of Classical Information is Guessing
Probability: Let be the probability that the agent
correctly guesses when using an optimal strategy; that is,

, where the optimal mea-
surement strategy is described by the positive operator-valued
measure (POVM) on that maximizes this expression.
Note that conditions for the optimality of a POVM in
this hypothesis testing problem were found by Holevo [14] and
independently by Yuen, Kennedy, and Lax [15]. These works
also use semidefinite programming duality in a similar fashion
as in this paper. Here, we are interested in the optimal value of
this optimization problem. We show that (cf., Theorem 1)

(18)

where the entropy is evaluated for the state given by (17).
If no side information is available or, more generally, if

the state of is independent of , we have
as noted in Section I-A. Identity (18)

then reduces to the trivial fact that the maximum probability
of correctly guessing without prior information is equal to

.
Note that previously, only the upper bound [16]

13Closeness is measured in terms of the distance of the output state
� of the protocol to the state �	 � � �
 �, where �	 �
is an ebit between � and �� � is the number of ebits generated, and �
 �
is identical to �
 � when identifying the subsystems � and � as well as
� and �.

14The term direct refers to the fact that no smoothing is required, in contrast
to the examples of Section I-B.
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and the lower bound [17]

were known, where the left-hand side is the average guessing
probability when the square root measurement [18] is used, that
is

b) Max-Entropy of Classical Information is Security of
Key: The secrecy of when used as a key in the presence of
an adversary with access to system is conventionally mea-
sured in terms of the distance of the state [cf., (17)] to a
product state of the form , where is the completely
mixed state (corresponding to the uniform distribution on )
and where is the reduced state on subsystem . This models
an ideal situation where the key is perfectly uniform and inde-
pendent of the adversary’s system. If the trace distance is used,
then this distance is directly related to the distinguishing advan-
tage between the real and the ideal system.

One may relax the above and may only require that the de-
sired state is of the form , for some arbitrary density
operator . When using the trace distance, this relaxed defi-
nition is equivalent to the above up to a factor of 2. Also, since
the trace distance and the fidelity are essentially equivalent, we
can use the fidelity. We then get the following measure for the
secrecy of relative to :

where is the alphabet size of (we include this factor here
for convenience). We show that (cf., Theorem 3)

(19)

If no side information is available or, more generally, if is
independent of , we obtain
(cf., Section I-A). Identity (19) then simply expresses the fact
that the secrecy of in this case is quantified by the distance
of to the uniform distribution (where distance is measured
in terms of the fidelity).

2) Uncertainty About Quantum Information: We now dis-
cuss the fully general case, where we have an arbitrary bipartite
state . The min-/max-entropies carry the following op-
erational interpretations.

a) Min-Entropy is Maximum Achievable Singlet Fraction:
Define the maximally entangled state

where is an orthonormal basis of subsystem (of di-
mension ) and is a family of mutually orthogonal
vectors on subsystem (we assume that ). We
define the “quantum correlation” as the maximum

overlap with the singlet15 state that can be achieved by
local quantum operations (trace-preserving completely posi-
tive maps) on subsystem , that is

(20)

We show that (cf., Theorem 2)

(21)

Note that in the case where the information is classical, i.e.,
if is of the form (17), we have

The operation can be interpreted as a guessing strategy, so that
becomes the probability of correctly guessing

if . We thus recover the maximum guessing probability
as a special case, i.e.,

b) Max-Entropy is Decoupling Accuracy: The decoupling
accuracy is a parameter that can be seen as the quantum analog
of the error probability in classical coding theorems and is also
called quantum error in [11] and [19]; it measures the quality of
decoupling as follows. It is defined as the distance of to the
product state , where is the completely mixed state
on and is an arbitrary density operator. In a cryptographic
setting, it quantifies how random appears from the point of
view of an adversary with access to . As above for classical

, we define a fidelity-based version of this quantity as

(22)

where is the dimension of and is the completely mixed
state on . We show that (cf., Theorem 3)

(23)

It is immediately obvious that this generalizes the security pa-
rameter for a classical key , i.e., for of the form
(17), we have

3) Implications: A main implication of our results is that they
establish a connection between seemingly different operational
quantities. For example, because the number of uni-
form bits that can be extracted from with respect to side in-
formation is lower bounded by [see (14)], we
find that

15In the literature, the expression “singlet” often refers to the maximally en-
tangled two-qubit state �������� �������. Here we use the expressions “sin-
glet” and “singlet fraction” more generally for any maximally entangled state
�� �. This is justified because definition (20) gives the same value indepen-
dent of the choice of the maximally entangled state �� �.
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In other words, the negative logarithm of the guessing proba-
bility of tells us how many uniform bits we can extract from

(relative to some system ). This connection between ran-
domness extraction and guessing entropy may be useful for ap-
plications, e.g., in cryptography. Here, the derivation of lower
bounds on the amount of extractable randomness is usually a
central part of the security analysis (see [6] and [20]–[22]).

Our results can also be used to prove additivity properties of
the min-/max-entropies. One of them is additivity of the min-/
max-entropies for independent systems. Let

. Then, by the definition of

By virtue of (21), this is equivalent to

Note that the opposite inequality follows immediately from the
definition of and the additivity of . We thus have

and, equivalently [by the definition (6)]

A second example is the strong subadditivity of conditional
min-entropy (10). Here, it suffices to notice that every trace-
preserving completely positive map acting on can also be
understood as acting on registers and , hence

for every quantum state . By (21), this is equivalent to

The extension to smooth min-entropy (10) is straightforward
(see [6, Lemma 3.2.7]).

Our results also simplify the calculation of the min-/max-en-
tropies. As an example, let us calculate the entropy

for a state of the form .
By (23), it suffices to determine the quantity ,
which is given by

where is the completely mixed state on the -dimensional
Hilbert space . Using the multiplicativity of the fidelity, we
find

We thus obtain

(24)

for any of the form . This corresponds to the
Rényi entropy of order , which is hence the natural counterpart
to the min-entropy (Rényi entropy of order ). As noted in [3],
the Rényi entropy of order , for any , is—up to small
additive terms of the order —determined by a smoothed
version of . The max-entropy
of a density operator can thus be interpreted as a measure for its
rank.

4) Outline of the Remainder of This Paper: In Section II,
we discuss some mathematical preliminaries, in particular,
semidefinite programming, which plays a crucial role in our
arguments. Our main results are then stated and proved in
Section III.

II. SOME TECHNICAL PRELIMINARIES

A. Semidefinite Programming

Our central tool will be the duality between certain pairs of
semidefinite programs. It will be convenient to use a fairly gen-
eral formulation of this duality; a derivation of the results sum-
marized in this section can be found, e.g., in [23, Section 6]. The
presentation here follows this reference, but specializes certain
statements to the situation of interest for simplicity. We start by
introducing a few definitions.

A subset of a vector space is called a convex cone
if and for all nonnegative and

. A convex cone gives rise to a partial order relation
on , defined by if and only if . If

is a Euclidean space with inner product , then the dual
cone of is defined by

. The interior is the subset of points
for which there exists an open ball centered around

and contained in .
Let and be Euclidean spaces with inner products

and , respectively. A linear map is called
dual of or adjoint to a linear map if

for all

For a given map , the dual map is necessarily unique if it
exists. The two linear programming problems we are interested
in are defined in terms of a pair of such maps. They are referred
to as the primal and dual problem, and are specified by param-
eters and . The programs are expressed by the
following optimizations:

(25)

We will usually assume that the sets we optimize over are
nonempty. (In the language of linear programming, there exists
a feasible plan and a dual feasible plan.) The weak duality the-
orem states that . We are particularly interested
in conditions for equality. (This is referred to as a zero duality
gap.) A simple criterion is Slater’s interiority condition, which
states the following.
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Lemma 1: Suppose that there is an element such
that . Suppose further that the infimum in (25)
is attained. Then, .

B. Quantum Operations

Let be a Hilbert space and let be the set of linear
maps . An element is called
nonnegative (written ) if for all .
A positive element (written ) is defined in the same
way with a strict inequality.

An operation is a linear map . It
is called trace-preserving if for all

. It is unital if it maps the identity on to the iden-
tity on , i.e., if . The map is called positive
if for all . It is completely positive (CP) if

is positive for
any auxiliary space , where is the identity operation.
A quantum operation is a completely positive trace-preserving
map (CPTP). The adjoint map of an operation

is the unique map satisfying

for all and . Note that
and for two maps and .

Two easily verified properties which follow directly from this
definition are

is unital if and only if is trace-preserving (26)

and

is positive if and only if is positive

In particular, the last statement implies that

is completely positive (CP) if and only if is CP (27)

Statements (26) and (27) can be summarized as follows. Let
us define as the set of quantum operations

and as the set of com-
pletely positive unital maps . We then
have the following.

Lemma 2: The adjoint map

is a bijection with inverse

Let be the dimension of and let be an
orthonormal basis of . (We will restrict our attention to fi-
nite-dimensional Hilbert spaces.) Let be a Hilbert
space with orthonormal basis . The maximally en-
tangled state on is defined as

(28)

The Choi–Jamiołkowski-map takes operations
to operators . It is defined as

It has the following well-known properties. The equivalence of
statements i) and ii) in the following lemma is an immediate
consequence of Lemma 2.

Lemma 3 (Choi–Jamiołkowski isomorphism [24]): Let
and be arbitrary Hilbert spaces. The map

bijectively maps:
i) the set to the set of operators

with ;
ii) the set to the set of operators

with .

Another concept we will need is the notion of classicality,
which allows us to treat ensembles as quantum states. We
will say that a Hermitian operator on a bipartite Hilbert
space is classical relative to an orthonormal basis

of if it is a linear combination of operators of
the form , where and is a Hermitian
operator on .

III. MAIN RESULTS AND THEIR DERIVATION

We are now ready to prove our main statements. We first focus
on the min-entropy in Section III-A. The interpretation of max-
entropy will be derived in Section III-B.

A. Proof of the Operational Characterization of

With Lemma 1 from Section II-A, it is straightforward to
prove the following statement. Note that we restrict our attention
to finite-dimensional Hilbert spaces. Since the optimizations are
now taken over compact sets, we can replace and by
and , respectively.

Lemma 4: Let and be finite-dimensional Hilbert
spaces, and let and be nonnegative operators on

and , respectively. Then

(29)

In addition, if is classical on relative to an orthonormal
basis , then the maximization on the right-hand side of
(29) can be further restricted to those operators which are
classical on relative to .

Proof: For a nonnegative operator with
, we can define the operator

where is an arbitrary normalized density operator on .
We then have

with and . This shows that we can
extend the maximization on the right-hand side of (29) to all
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operators whose partial trace is bounded by
(instead of being equal to ). The claim is therefore equivalent
to

(30)

To relate this to the general linear programming problem (25),
we define and as the
(real) vector spaces of Hermitian operators on and

, respectively, with standard Hilbert–Schmidt inner product.
Furthermore, we define the convex cones and as the
set of nonnegative operators in and

, respectively. We claim that these cones are self-dual, i.e.,
and . This is easily seen from the spectral

decomposition of a Hermitian operator. Finally, we define
as the linear map . It

is easy to check that the adjoint is equal to the
partial trace ; indeed, for
all and , we have

We also set and . With these definitions, we
conclude that the two optimization problems defined by (30) are
a special instance of (25); the claim is equivalent to the statement
that the duality gap vanishes. According to Lemma 1, it suffices
to check Slater’s interiority condition. For this purpose, we set

, where denotes the maximal eigen-
value. Clearly, is in the interior of . We also have

hence ; this proves the claim (30).
To prove the claim about the case where is classical

relative to an orthonormal basis of , we simply set
equal to the set of Hermi-

tian operators that are classical on . The remainder of the
proof is identical to the general case.

Observe that the left-hand side of (29) is equivalent to a min-
imization of the distance measure from (4), i.e., we have

(31)

Let us discuss the case where is classical on . Lemma 4
allows us to show that the min-entropy is equiva-
lent to the “guessing-entropy” of given .

Theorem 1: Let be classical on
. Then

where is the maximal probability of decoding
from with a POVM on , i.e.,

Proof: According to (31), it suffices to show that the right-
hand side of (29) is equal to . But this is a direct
consequence of the fact that every nonnegative operator
with which is classical on has the form

where the family is a POVM on .

The Choi–Jamiołkowski isomorphism yields an operational
interpretation of the min-entropy in the general case. We can
express the min-entropy as the maximal achievable singlet frac-
tion as follows.

Theorem 2: The min-entropy of a state on
can be expressed as

(32)

where is the maximal achievable singlet fraction,
i.e.,

with maximum taken over all quantum operations
and defined by

(28).
Proof: Let us rewrite statement (32) as

(33)

where is the maximally entangled state. Let be a
nonnegative operator on with , and
let be the unital map cor-
responding to under the Choi–Jamiołkowsi isomorphism
[cf., Lemma 3(ii)]. Let be the ad-
joint quantum operation (cf., Lemma 2). By definition of and
the adjoint , we have

Observe that the operators with are
in one-to-one correspondence with quantum operations

constructed in this fashion. The claim (33),
therefore, follows from Lemma 4 and (31).

Remark 1: The result of Theorem 2 can be extended to give an
alternative expression for the maximal achievable fidelity with a
nonmaximally entangled state

. We assume that and that has
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maximal Schmidt rank. Let be its re-
duced density operator. Then

(34)

for any bipartite state on . Statement (34) follows
by substituting for in (33),
using the fact that conjugating with an invertible matrix does not
change operator inequalities, and

.

B. Proof of the Operational Characterization of

To obtain the operational characterization of , we use
Theorem 2. Recall the definition of the decoupling accuracy of
a bipartite state , that is

where is the dimension of and is the completely
mixed state on . We begin by showing the following lower
bound on the decoupling accuracy.

Lemma 5: For all bipartite states , we have

Proof: Let be a purification of
, and let be a quantum operation

that satisfies (cf., Theorem 2)

Let be a purification of
. We then have

(35)

However

for some state on . By the monotonicity of the
fidelity, we therefore get

where we used the fact that . Inserting this into (35)
gives the claim.

The proof of the converse inequality closely follows a deriva-
tion in [19]. We include it here for completeness.

Lemma 6: For all bipartite states , we have

Proof: We use the following fact, which is a con-
sequence of the fact that all purifications of a fixed state
are related by a unitary transformation on a (possibly ex-
tended) ancilla. If has a reduced state of the form

, where is the com-
pletely mixed state on , then there exists a unitary
such that

(36)

for some state on , where denotes the
fully entangled state on (without loss of generality,
we can assume that ).

Let be an arbitrary density matrix on . Let
be a purification of , where we assume the

dimension of to be sufficiently large.
According to the definition of the fidelity, there exists a pu-

rification of such that

Applying the unitary from (36) gives

where because of
the invariance of the fidelity under unitary operations. Using the
monotonicity of the fidelity, we conclude that

where is the quantum operation
. Squaring both sides of the pre-

vious inequality, multiplying by , taking the maximum over
all quantum operations, and using Theorem 2 therefore gives

Since was arbitrary, we can maximize the left-hand side
over all . The claim then follows from the definitions of

and .

In summary, we have shown the following result.

Theorem 3: Let be a state on , and let be
the completely mixed state on . Then

where is the decoupling accuracy, defined by

with the maximum taken over all normalized states on .

IV. CONCLUSION

In information theory, entropies are generally interpreted as
measures of uncertainty. One method to make this interpretation
more precise is to establish relations between entropy measures
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TABLE I
OPERATIONAL INTERPRETATIONS OF (SMOOTH) MIN- AND MAX-ENTROPIES. THE APPROXIMATION ��� INDICATES THAT EQUALITY HOLDS UP TO AN ADDITIVE

TERM OF ORDER ��� AND FOR AN APPROPRIATE CHOICE OF THE SMOOTHNESS PARAMETER �

and operational quantities, that is, quantities that characterize
actual information-theoretic tasks.

Here, we consider a general scenario consisting of a (pos-
sibly quantum-mechanical) system as well as an observer
with (quantum or classical) side information . The uncertainty
of the observer about the state of system then depends on the
distribution of these states as well as the correlation between
and .

There are two extreme situations, namely, when is com-
pletely undetermined and when is determined. Taking into ac-
count the side information , these two situations are described
as follows.

1) The state of is fully correlated with (parts of) .16

2) The state of is uniformly distributed and independent of
the side information .

Note that in the first case, the requirement is merely that is
correlated with parts of . This is because the side information

may consist of additional information that is unrelated to .
For any given state , we may characterize the uncer-

tainty of given by the distance to these extreme situations.
If we take as a distance measure the overlap (i.e., the square
of the fidelity), we retrieve the definitions of and

[see (20) and (22), respectively]. Our main results
imply that these correspond to and ,
respectively. We thus conclude that quantifies the
closeness to a situation where is determined by , and, like-
wise, corresponds to the closeness to a situation
where is independent of (see second column of Table I).

Given a bipartite state , we may also ask for the number
of maximally entangled or completely independent qubits one
can extract from . Very roughly speaking, this is the idea un-
derlying the definitions of and , respec-
tively (see Section I-B for more details, in particular, the inter-
pretation of negative quantities). Remarkably, these quantities
are (approximately) given by the smooth entropies
and (see last column of Table I).17

Despite these similarities between the (previously known)
operational interpretations summarized in the last column of
Table I and those given in the second column (the ones derived

16In the general case where � and � are quantum-mechanical systems, full
correlation is akin to maximal entanglement.

17Note that compared to the discussion of the distance, the role of ��� and
�	
 is interchanged.

here), there are at least two fundamental differences. The first
is that the new interpretations are exact and, in particular, valid
without a smoothness parameter. In contrast, all previously es-
tablished interpretations only hold up to additive terms of the
order , where is a smoothness parameter (whose meaning
is that of an error or failure probability). A second difference is
that there does not seem to exist an obvious asymptotic coun-
terpart for our identities. In particular, there are no analogous
operational interpretations of the von Neumann entropy.

The results of this paper suggest that studying operationally
defined quantities may be a viable approach to identifying rel-
evant single-shot information measures in a multipartite set-
ting. Of particular interest is the conditional mutual information,
which has only recently been given an asymptotic interpreta-
tion [25].
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