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Abstract:We study the truncated multidimensional moment problemwith a general type of truncations. The
operator approach to themoment problem is presented. The case where the associated operators form a com-
muting self-adjoint tuple is characterized in terms of the givenmoments. The case of the dimensional stability
is characterized in terms of the prescribed moments as well. Some su�cient conditions for the solvability of
the moment problem are presented. A construction of the corresponding solution is described by algorithms.
Numerical examples of the construction are provided.
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1 Introduction
Let us introduce some notations. As usual, we denote by R,C,N,Z,Z+ the sets of real numbers, complex
numbers, positive integers, integers and non-negative integers, respectively. By Zn+ we mean Z+ × . . . × Z+,
and Rn = R × . . . × R, where the Cartesian products are taken with n copies. Let k = (k1, . . . , kn) ∈ Zn+,
t = (t1, . . . , tn) ∈ Rn. We denote by tk the monomial tk11 t

k2
2 . . . tknn , and we let |k| = k1 + . . . + kn. We also

denote byB(Rn) the set of all Borel subsets of Rn.
LetK be an arbitrary �nite subset of Zn+, and S = (sk)k∈K an arbitrary set of real numbers. The truncated

multidimensional moment problem consists of �nding a (non-negative) measure µ onB(Rn) such that∫
tkdµ(t) = sk, ∀k ∈ K. (1)

Themultidimensional moment problem (both the full and the truncated versions) turned out to bemuch
more complicated than its one-dimensional prototype [1], [2], [13]. An operator-theoretical interpretation of
the (full) multidimensional moment problem was given by Fuglede in [7]. It should be noticed that the oper-
ator approach to moment problems was introduced by Naimark in 1940–1943 and then developed by many
authors, see historical notes in [28]. Elegant conditions for the solvability of the multidimensional moment
problem in the case of the support on semi-algebraic sets were given by Schmüdgen in [17], [18]. Another
conditions for the solvability of the multidimensional moment problem, using an extension of the moment
sequence,were given by Putinar andVasilescu, see [16], [21]. Developing the idea of Putinar andVasilescu,we
presented di�erent conditions for the solvability of the two-dimensional moment problem and proposed an
algorithm (which essentially consists of solving of linear equations) for a construction of the solutions set [25].
An analytic parametrization for all solutions of the two-dimensional moment problem in a strip was given
in [27]. Another approach to multidimensional and complex moment problems (including truncated prob-
lems), using extension arguments for *-semigroups, has been developed by Cichoń, Stochel and Szafraniec,
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see [3] and references therein. Still another approach for the two-dimensionalmoment problemwas proposed
by Ovcharenko in [14], [15].

In this paper we shall be focused on the truncated multidimensional moment problem. A general ap-
proach for this moment problem was given by Curto and Fialkow in their books [4] and [5]. These books en-
tailed a series of papers by a group of mathematicians, see recent papers [6], [22], [24] and references therein.
This approach includes an extension of the matrix of prescribed moments with the same rank. E�ective opti-
mization algorithms for the multidimensional moment problems were given in the book of Lasserre [11]. An-
other approach for truncatedmoment problems, using a notion of an idempotent, was presented byVasilescu
in [23]. Atomic solutions to various matrix truncated K-moment problems were studied by Kimsey and Wo-
erdeman in [9]. There exists a connection of the truncated multidimensional moment problems with the
completion problems for subnormal operators, see, e.g., [10]. Observe that the complexi�cation of the real
truncated moment problem needs the even dimension d. The complexi�cation of the truncated multidimen-
sional moment problem and the use of hyponormal operators was investigated by Kimsey and Putinar in [8].
We should also mention recent papers [29], [19] on the subject.

Even in the one-dimensional case (n = 1) the operator approach is not e�ective for all types of truncations
K. Thus, we need to consider some admissible types of truncations, where one can get solutions. We shall
deal with truncations of the form K = K + K, where K is admissible (see De�nition 1 below). This type of
admissible subsets appeared in the work of Kimsey and Woerdeman [9]. It also appeared implicitly in the
paper of Laurent and Mourrain [12] (see the de�nition of a connected set on page 89 therein). Laurent and
Mourrain investigated the case of �atness for the corresponding moment problem. Kimsey and Woerdeman
mainly worked with another type of truncations K (≠ K + K), and constructed atomic solutions under some
conditions.

The second feature of the truncated case is that we need to take care that the associated multiplication
operators in the associated Hilbert space are well-de�ned. In Theorem 1 we give necessary conditions for the
solvability of the moment problem which guarantee that the associated operators are well-de�ned. While
condition (8) is well known, we did not meet condition (17) in this general context. For the case of the dimen-
sional stability, see, e.g. [22, Lemma 2.3].

If all the above is done, we come to a problem of an extension of commuting symmetric operators to a
commuting self-adjoint tuple, see Proposition 1. Of course, one especially needs explicit conditions, under
which the extensions exist and one can construct a solution of the moment problem. It should be noticed
that, besides some special cases of small size truncations, the notion of �atness turned out to be the most
useful and explicit. Its numerical applications were discussed in the book of Lasserre [11] (see, in particular,
Algorithm 4.1. on page 78).

In paper [22] Vasilescu introduced a notion of the dimensional stability, which used the geometry of the
associated Hilbert spaces. He showed that the dimensional stability is equivalent to �atness (in the case of
truncations described in Example 1, part 1 below). We provide a de�nition of the dimensional stability in our
case (De�nition 3) and present explicit numerical conditions which characterize this notion (Theorem 5).

We introduce a de�nition of the completely self-adjoint case (De�nition 2) and provide explicit numerical
conditions which characterize this notion (Theorem 4) as well. We brie�y consider the interrelation between
the dimensional stability and the complete self-adjointness (Theorem 6).

Themain result of the paper is Theorem7whichprovides explicit numerical conditionswhich ensure that
the moment problem (1) is solvable. These conditions do not reduce to the case of the dimensional stability,
since the associated operators are allowed to be nonself-adjoint. The construction of the corresponding solu-
tion of the moment problem is described in details by Algorithms 1,2. Numerical examples, which illustrate
the above results, are also given.
Notations. Besides the notations given above we shall use the following conventions. By Zk,l we mean all
integers j satisfying the following inequality: k ≤ j ≤ l; (k, l ∈ Z). For a complex number z, we write Re z for its
real part and Im z for its imaginary part. If H is a Hilbert space then (·, ·)H and ‖ ·‖H denote the scalar product
and the norm in H, respectively. Indices may be omitted in obvious cases. For a linear operator A in H, we
denote by D(A) its domain, by R(A) its range, and by A* its adjoint operator if it exists. We denote the inverse
of A by A−1 if A is invertible, and the closure of A by A if A is closable. If A is bounded then ‖A‖ denotes its
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norm. For a set M ⊆ H we denote by M the closure of M in the norm of H. By LinM we mean the set of all
linear combinations of elements from M, and spanM := LinM. By EH we denote the identity operator in H,
i.e. EHx = x, x ∈ H. In obvious cases we may omit the index H. If H1 is a subspace of H, then PH1 = PHH1

denotes the orthogonal projection of H onto H1.

2 Necessary conditions for the solvability of the moment problem
Consider the following operatorWj on Zn+:

Wj(k1, . . . , kj−1, kj , kj+1, . . . , kn) = (k1, . . . , kj−1, kj + 1, kj+1, . . . , kn), (2)

for j = 1, . . . , n. Thus, the operatorWj increases the j-th coordinate.

De�nition 1. A �nite subset K ⊂ Zn+ is said to be admissible, if the following conditions hold:
1) 0 = (0, . . . , 0) ∈ K;
2) ∀k ∈ K\{0},

k = Wa|k|Wa|k|−1 . . . Wa10, (3)

for some aj ∈ {1, . . . , n}, and

k̃r := War . . . Wa10 ∈ K, ∀r = 1, 2, . . . , |k|. (4)

We provide below some important examples of admissible sets.

Example 1. 1) Let K = Kr = {k ∈ Zn+ : |k| ≤ r}, r ∈ Z+. Then K is admissible, since ∀k = (k1, . . . , kn) ∈ K\{0},

k = Wkn
n Wkn−1

n−1 . . . W
k1
1 0.

2) For d1, . . . , dn ∈ Z+, let

K = Kd1 ,d2 ,...,dn := {k = (k1, . . . , kn) ∈ Zn+ : k1 ≤ d1, k2 ≤ d2, . . . , kn ≤ dn}. (5)

The set Kd1 ,d2 ,...,dn is admissible, since ∀k = (k1, . . . , kn) ∈ K\{0},

k = Wkn
n Wkn−1

n−1 . . . W
k1
1 0.

Notice that the truncated two-dimensional moment problem with rectangular data appeared in [8], [29]. The
general case of the set Kd1 ,d2 ,...,dn was proposed to the author by Vasilescu (private communication).

Suppose that for an admissible �nite set K ⊂ Zn+ the moment problem (1), with

K = K + K := {k ∈ Zn+ : k = u + v, u, v ∈ K},

and some S = (sk)k∈K, has a solution µ. Let us investigate which properties of the data S this fact yields.
The �rst property is the usual positivity condition. For practical purposes, we will assume below that the

elements of K are indexed by a single index i.e., we assume

K = {k0, k1, . . . , kρ} , (6)

with ρ + 1 = |K|. Consider an arbitrary polynomial of the following form:

p(t) =
ρ∑
j=0

αjtkj , αj ∈ C. (7)

Evaluating
∫
|p|2dµ, we get

Γ ≥ 0, (8)
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where
Γ :=

(
skj+km

)ρ
j,m=0

. (9)

We now suppose that for an admissible �nite set K ⊂ Zn+ the moment problem (1), with K = K + K and
some S = (sk)k∈K, is given and condition (8) holds (we do not require that the moment problem is solvable).
LetLdenote the set of polynomials of the form (7). Observe thatL forms a vector space. Consider the following
functional on L:

〈p, q〉 =
ρ∑

j,m=0
αjβmskj+km ,

where p ∈ L is as in Equation (7), and q ∈ L has the same form as p, but with βj(∈ C) instead of αj. The
functional 〈·, ·〉 is sesquilinear, 〈p, p〉 ≥ 0, and 〈p, q〉 = 〈q, p〉. Elements u, v ∈ L are said to be equivalent, if
〈u−v, u−v〉 = 0. By [p]L we denote the equivalence class which contains p ∈ L. The equivalence classes form
a �nite-dimensional Hilbert space H. The Hilbert space H is said to be associated to themoment problem (1).

We now return to the case of the solvable moment problem. Consider the space L2µ which consists of (the
equivalence classes of) complex-valued measurable functions f such that

∫
|f (t)|2dµ < ∞. The equivalence

class in L2µ will be denoted by [·]L2µ . Denote by Tl the following multiplication operator:

Tl f (t) = tl f (t), f ∈ Dl , (10)

with the domain Dl := {f (t) ∈ L2µ : tl f (t) ∈ L2µ}.
Consider the associated Hilbert space H, de�ned as above. The following transformation is useful:

W
ρ∑
j=0

αj[tkj ]L2µ =
ρ∑
j=0

αj[tkj ]L, αj ∈ C. (11)

The transformation W is well-de�ned, linear and isometric. It maps L2µ;K := Lin{[tkj ]L2µ}
ρ
j=0 onto H. Let ~er :=

(δr,m)nm=1 ∈ Zn+, r = 1, . . . , n, and

Ωl = {j ∈ {0, . . . , ρ} : kj + ~el ∈ K}, l = 1, . . . , n. (12)

Observe that
WTlW−1∑

j∈Ωl

αj[tkj ]L =
∑
j∈Ωl

αj[tkj+
~el ]L, αj ∈ C.

Since the operatorWTlW−1 is well de�ned, the following implication holds:∑
j∈Ωl

αj[tkj ]L = 0, for some αj ∈ C

⇒
∑
j∈Ωl

αj[tkj+
~el ]L = 0

 . (13)

The latter implication is equivalent to the following one:∑
j∈Ωl

αj[tkj ]L, [tkm ]L


H

= 0, ∀m ∈ Ωl , for some αj ∈ C

⇒
∑

j∈Ωl

αj[tkj+
~el ]L, [tkm+~el ]L


H

= 0, ∀m ∈ Ωl

 (14)

or, equivalently, ∑
j∈Ωl

αjskj+km = 0, ∀m ∈ Ωl , for some αj ∈ C

⇒
∑
j∈Ωl

αjskj+~el+km+~el = 0, ∀m ∈ Ωl

 . (15)
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Denote
Γl =

(
skj+km

)
m,j∈Ωl

, Γ̂l =
(
skj+~el+km+~el

)
m,j∈Ωl

, l = 1, 2, . . . , n, (16)

where the indices from Ωl are taken in the increasing order. We obtain the second necessary condition of the
solvability:

Ker Γl ⊆ Ker Γ̂l , l = 1, 2, . . . , n. (17)

We summarize our results in the following theorem.

Theorem 1. Let the moment problem (1) withK = K + K, for an admissible �nite set K and some S = (sk)k∈K,
be given. Then conditions (8),(17) hold.

3 The operator approach to the moment problem. The dimensional
stability.

Suppose that for an admissible �nite set K ⊂ Zn+ the moment problem (1), with K = K + K and some S =
(sk)k∈K, is given. Fix an ordering of the elements in K as in Equation (6). Assume that conditions (8),(17)
hold.
We may construct the associated Hilbert space H, as in the previous section. For l = 1, . . . , n we consider the
following operators:

Ml
∑
j∈Ωl

αj[tkj ]L =
∑
j∈Ωl

αj[tkj+
~el ]L, αj ∈ C, (18)

with D(Ml) = Lin{[tkj ]L}j∈Ωl . By condition (17) the operator Ml is well-de�ned. Moreover, it is linear and
symmetric. In particular, we have

Ml[tkj ]L = [tkj+~el ]L, j ∈ Ωl; l = 1, . . . , n. (19)

Operators Ml are said to be associated to the moment problem (1).

Proposition 1. Let themoment problem (1) withK = K+K, for an admissible �nite set K and some S = (sk)k∈K,
be given and conditions (8),(17) hold. Suppose that there exist commuting self-adjoint operators M̃j ⊇ Mj (j =
1, . . . , n) in a �nite-dimensional Hilbert space H̃ ⊇ H. Then the moment problem (1) has a solution.

Proof. Assume the existence of commuting self-adjoint operators M̃j ⊇ Mj (j = 1, . . . , n) in a �nite-
dimensional Hilbert space H̃ ⊇ H. Observe that in this case operators M̃j are bounded and de�ned on the
whole space H̃. Choose an arbitrary k = (k1, . . . , kn) ∈ K\{0}. We shall use the notations from De�nition 1.
Using induction one can verify that[

tk̃r
]
L
= M̃ar . . . M̃a1 [1]L, r = 1, 2, . . . , |k|. (20)

In particular, we obtain that [
tk
]
L
= M̃a|k| . . . M̃a1 [1]L. (21)

Since the operators M̃j commute, we may rearrange the product in (21). Clearly, the operator Wi appears ki
times in (3). Thus, we get [

tk
]
L
= M̃k1

1 M̃
k2
2 . . . M̃kn

n [1]L, ∀k = (k1, . . . , kn) ∈ K. (22)

We can now construct a solution to the moment problem. For an arbitrary k = (k1, . . . , kn) ∈ (K + K), k =
k′ + k′′, k′ = (k′1, . . . , k′n), k′′ = (k′′1 , . . . , k′′n ) ∈ K, we may write

sk =
(
[tk

′
], [tk

′′
]
)
H
=
(
M̃k′1

1 . . . M̃k′n
n [1]L, M̃

k′′1
1 . . . M̃k′′n

n [1]L
)
H
=
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=
(
M̃k1

1 . . . M̃kn
n [1]L, [1]L

)
H
=
∫

tkdµ(t), (23)

where
µ(δ) =

(
E(δ)[1]L, [1]L

)
H , δ ∈ B(Rn), (24)

where E(δ) is the spectral measure of a commuting tuple M̃1, . . . , M̃n. Consequently, we get a solution µ of
the moment problem. 2

We now present some explicit numerical conditions which ensure that the associated operatorMl is self-
adjoint. Denote

gj := [tkj ]L, j ∈ Z0,ρ , (25)

Ω′
l := {0, . . . , ρ}\Ωl , l = 1, . . . , n.

Observe that
(gj , gm)H = skj+km , j,m ∈ Z0,ρ . (26)

Theorem 2. Let the moment problem (1) withK = K + K, for an admissible �nite set K and some S = (sk)k∈K,
be given and conditions (8),(17) hold. Fix an arbitrary l ∈ Z1,n. For every j ∈ Ω′

l , denote by αt(j) (t ∈ Ωl) an
arbitrary complex solution of the following linear algebraic system:∑

t∈Ωl

αt(j)skt+kk = skj+kk , k ∈ Ωl . (27)

The associated operator Ml is self-adjoint if and only if for every j ∈ Ω′
l the following relation holds:

∑
t,r∈Ωl

αt(j)αr(j)skt+kr − 2Re

∑
t∈Ωl

αt(j)skt+kj

 + skj+kj = 0. (28)

Proof. The operator Ml is self-adjoint if and only if

gj ∈ D(Ml), j ∈ Ω′
l . (29)

In fact, in the latter case the operator Ml is symmetric and de�ned on the whole �nite-dimensional space H.
We shall give a simple but general argument. It will be also used later. Let h be an arbitrary vector from H,
and G := Lin{gk}k∈Ω̃, where Ω̃ is an arbitrary subset of {0, . . . , ρ}. We denote by y the orthogonal projection
of h onto G. Then

(h, gk)H = (y, gk)H , k ∈ Ω̃.

Since y belongs to G, it has the following form: y =
∑

t∈Ω̃ αtgt, αt ∈ C. Then∑
t∈Ω̃

αt(gt , gk)H = (h, gk)H , k ∈ Ω̃. (30)

Conversely, let αt ∈ C (t ∈ Ω̃) be an arbitrary solution of the linear system (30). Set ŷ :=
∑

t∈Ω̃ αtgt. By (30)
we conclude that

(ŷ, gk)H = (h, gk)H , k ∈ Ω̃.

Therefore h − ŷ ⊥ G, and ŷ = y.
Applying the above argument to the case h = gj (j ∈ Ω′

l) and Ω̃ = Ωl, we conclude that yj :=
∑

t∈Ωl αt(j)gt is
the projection of gj onto D(Ml). Condition (29) is equivalent to the following condition:

‖yj − gj‖2 = (yj , yj) − (yj , gj) − (gj , yj) + (gj , gj) = 0, j ∈ Ω′
l . (31)

The latter condition can be rewritten in the form (28). 2
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Suppose that for the associated operator Ml (l ∈ Z1,n) conditions of Theorem 2 hold. From the proof of
Theorem 2 it is clear that

gj =
∑
t∈Ωl

αt(j)gt , j ∈ Ω′
l . (32)

Therefore
Mlgj =

∑
t∈Ωl

αt(j)Mlgt =
∑
t∈Ωl

αt(j)[tkt+~el ]L, j ∈ Ω′
l . (33)

Thus, by relations (19),(33) the operator Ml is explicitly de�ned on each vector gj, j = 0, . . . , ρ. We shall
rewrite this in the following form:

Mlgj =
ρ∑
k=0

α̂k(j)gk , j ∈ {0, . . . , ρ}, (34)

with complex coe�cients α̂k(j) (by gathering the coe�cients by each gk in the right-hand sides of rela-
tions (19),(33)).
We now assume additionally that for the associated operator Mr (r ∈ Z1,n) conditions of Theorem 2 hold, as
well. Then

Mrgj =
ρ∑
k=0

β̂k(j)gk , j ∈ {0, . . . , ρ}, (35)

with some complex β̂k(j). By (34) and (35) we come to the following relation:

(MlMr −MrMl)gj =
ρ∑
k=0

γk(j)gk , j ∈ {0, . . . , ρ}, (36)

with some complex γk(j).

Theorem 3. Let the moment problem (1) withK = K + K, for an admissible �nite set K and some S = (sk)k∈K,
be given and conditions (8),(17) hold. Suppose that for the associated operators Ml ,Mr (l, r ∈ Z1,n) conditions
of Theorem 2 hold. De�ne coe�cients γk(j), j, k ∈ Z0,ρ, as in Relation (36). The operators Ml and Mr commute
if and only if the following relation holds:

ρ∑
k,t=0

γk(j)γt(j)skk+kt = 0, j ∈ Z0,ρ . (37)

Proof. It follows from the preceding arguments. 2

De�nition 2. Suppose that for an admissible �nite set K ⊂ Zn+ the moment problem (1), with K = K + K
and some S = (sk)k∈K, is given and conditions (8),(17) hold. De�ne the associated Hilbert space H and the
associated operators Ml (l = 1, . . . , n). The set of moments S is said to be completely self-adjoint, if the
operators Ml are self-adjoint and pairwise commute.

Theorem 4. Let themoment problem (1) withK = K+K, for an admissible �nite set K and some S = (sk)k∈K, be
given and conditions (8),(17) hold. The set of moments S is completely self-adjoint, if and only if the following
conditions hold:
(a) For the associated operators Ml (l ∈ Z1,n) conditions of Theorem 2 hold.
(b) For the operators Ml ,Mr conditions of Theorem 3 hold, for all l, r ∈ Z1,n : l < r.

If conditions (a),(b) hold, then the moment problem (1) has a solution.

Proof. The statement about conditions (a),(b) follows, if we apply De�nition 2 and Theorems 2 and 3. The
last statement of the Theorem follows by Proposition 1. 2



8 | Sergey M. Zagorodnyuk

Denote
Ω0 = {j ∈ {0, . . . , ρ} : kj + ~e1, kj + ~e2, . . . , kj + ~en ∈ K}, (38)

and
H0 = Lin{[tkj ]L}j∈Ω0 . (39)

Observe that
Ω0 ⊆ Ωj , j = 1, . . . , n,

and therefore
H0 ⊆ D(Mj), j = 1, . . . , n.

De�nition 3. Suppose that for an admissible �nite set K ⊂ Zn+ the moment problem (1), with K = K + K and
some S = (sk)k∈K, is given and conditions (8),(17) hold. De�ne the associated Hilbert space H and its subspace
H0. The set of moments S is said to be dimensionally stable, if dimH = dimH0.

The dimensional stability can be veri�ed explicitly by the given moments. Denote

Ω′
0 := {0, . . . , ρ}\Ω0.

Theorem 5. Let the moment problem (1) withK = K + K, for an admissible �nite set K and some S = (sk)k∈K,
be given and conditions (8),(17) hold. For every j ∈ Ω′

0, denote by αt(j) (t ∈ Ω0) an arbitrary complex solution
of the following linear algebraic system:∑

t∈Ω0

αt(j)skt+kk = skj+kk , k ∈ Ω0. (40)

The set of moments S is dimensionally stable, if and only if the following relation holds:

∑
t,r∈Ω0

αt(j)αr(j)skt+kr − 2Re

∑
t∈Ω0

αt(j)skt+kj

 + skj+kj = 0, ∀j ∈ Ω′
0. (41)

Proof. Observe that the set of moments S is dimensionally stable, if and only if

gj ∈ H0, j ∈ Ω′. (42)

Denote by yj the projection of the vector gj (j ∈ Ω′) onto H0. By the general argument, presented in the proof
of Theorem 2, we conclude that

yj =
∑
t∈Ω0

αt(j)gt .

It remains to notice that relation (42) is equivalent to the following relation:

(yj − gj , yj − gj) = 0, j ∈ Ω′,

which can be written as in (41). 2
Suppose that for themoment problem, as inDe�nition 3, the set S is dimensionally stable. Then operators

Ml are self-adjoint and de�ned on the whole H. Observe that for l, r ∈ {1, . . . , n} : l ≠ r, we have

MlMr[tkj ]L = Ml[tkj+
~er ]L, ∀j ∈ Ω0. (43)

In general, it is not clear if the element kj + ~er =: ks, with s ∈ {0, . . . , ρ}, has the property s ∈ Ωl. Thus, we
can not apply relation (19) to get [tkj+~er+~el ]L. However, the following theorem holds.

Theorem 6. Let themoment problem (1) withK = K+K, for a set K as in Relation (5) and some S = (sk)k∈K, be
given. Suppose that conditions (8),(17) hold and that S is dimensionally stable. Then S is completely self-adjoint
and the moment problem (1) has a solution.
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Proof. In fact, for the type of truncations as in (5), when applying the operatorMr in (43) we do not leave the
domain of the operator Ml. Therefore we obtain that

MlMr[tkj ]L = [tkj+~er+~el ]L = MrMl[tkj ]L.

Thus, we have the completely self-adjoint case. It remains to apply Theorem 4. 2
Thus, in the case of rectangular truncations the dimensional stability (DS) implies the complete self-

adjointness (CS):
(DS)⇒ (CS). (44)

It is not clear if implication (44) holds for any admissible truncations. The validity of the inverse implication
in (44) is also of interest.

Suppose that for an admissible �nite set K ⊂ Zn+ the moment problem (1), with K = K + K and some
S = (sk)k∈K, is given and conditions (8),(17) hold. De�ne the associated Hilbert space H and its subspace H0.
To verify the dimensional stability, one can use Theorem 5. On the other hand, one can �nd projections of
elements gj (j ∈ Ω′

0) on the subspace H0, by using an orthonormal basis in H0.

Example 2. Consider the truncatedmoment problem (1)with n = 2, K = K2,2 (see Example 1),K = K+K = K4,4,
and the following moments:

s(0,0) = 3, s(0,1) = s(0,2) = s(0,3) = s(0,4) = 1,

s(1,0) = 4, s(1,1) = s(1,2) = s(1,3) = s(1,4) = 0,

s(2,0) = 4, s(2,1) = s(2,2) = s(2,3) = s(2,4) = 0,

s(3,0) = 16, s(3,1) = s(3,2) = s(3,3) = s(3,4) = 0,

s(4,0) = 32, s(4,1) = s(4,2) = s(4,3) = s(4,4) = 0.

Order the elements of K as follows:

k0 = (0, 0), k1 = (0, 1), k2 = (0, 2),

k3 = (1, 0), k4 = (1, 1), k5 = (1, 2),

k6 = (2, 0), k7 = (2, 1), k8 = (2, 2).

Thus, we have ρ = 8. The matrix Γ = (skj+km )
8
j,m=0 has the following form:

Γ =



3 1 1 4 0 0 8 0 0
1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
4 0 0 8 0 0 16 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
8 0 0 16 0 0 32 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


. (45)

The non-negativity of Γ can be veri�ed directly, by checking that the determinants of all submatrices, standing
on the intersections of rows and columns with the same indices, are non-negative. The matrices Γ1, Γ2, Γ̂1, Γ̂2
have the following forms:

Γ1 =



3 1 1 4 0 0
1 1 1 0 0 0
1 1 1 0 0 0
4 0 0 8 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, Γ2 =



3 1 4 0 8 0
1 1 0 0 0 0
4 0 8 0 16 0
0 0 0 0 0 0
8 0 16 0 32 0
0 0 0 0 0 0


, (46)
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Γ̂1 =



8 0 0 16 0 0
0 0 0 0 0 0
0 0 0 0 0 0
16 0 0 32 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, Γ̂2 =



1 1 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


. (47)

The linear algebraic equation
Γ1~x = 0, ~x = (x1, . . . , x6)T ,

has the following solution: x3, x4, x5, x6 are arbitrary complex numbers, x1 = −2x4, x2 = −x3 + 2x4. It is easy
to verify that any solution satis�es Γ̂1~x = 0.
On the other hand, the linear algebraic equation

Γ2~x = 0, ~x = (x1, . . . , x6)T ,

has the following solution: x2, x4, x5, x6 are arbitrary complex numbers, x1 = −x2, x3 = 1
2 x2 − 2x5. Again, one

can verify that any solution satis�es Γ̂2~x = 0.
Thus, conditions (8),(17) hold. Let us check the dimensional stability. Consider the associated Hilbert space

H. For simplicity, we denote
gj = [tkj ]L, j = 0, . . . , 8.

Observe that
Ω0 = {0, 1, 3, 4}.

Let us apply the Gram-Schmidt orthogonalization process, removing linearly dependent elements, to the se-
quence g0, g1, g3, g4. Notice that all norms and scalar products are calculated by the moments:

(gj , gr)H =
(
[tkj ]L, [tkr ]L

)
H
= skj+skr , j, r = 0, 1, . . . , 8. (48)

We obtain an orthonormal basis F = {f0, f1} in H0, with

f0 =
1√
3
g0, f1 =

√
3
2

(
g1 −

1
3 g0

)
. (49)

Moreover, it turned out that
g3 = 2g0 − 2g1, g4 = 0. (50)

It remains to verify that the projections of elements g2, g5, g6, g7, g8 on H0 coincide with the corresponding
elements. For example,

g2 − (g2, f0)f0 − (g2, f1)f1 = g2 − g1,

but
‖g2 − g1‖2H = (g2 − g1, g2 − g1)H = (g2, g2) − (g2, g1) − (g1, g2) + (g1, g1) = 0.

For other elements, we proceed in a similarway. Consequently, the sequenceS = (sk)k∈K is dimensionally stable.
Let us construct an atomic solution µ of the moment problem. Observe that

Ω1 = {0, 1, 2, 3, 4, 5}, Ω2 = {0, 1, 3, 4, 6, 7}.

The operators M1 and M2 act in the following way:

M1g0 = g3 = 2g0 − g1, M1g1 = g4 = 0;

M2g0 = g1, M2g1 = g2 = g1.

Therefore

M1f0 =
4
3 f0 −

2
√
2

3 f1, M1f1 = −
2
√
2

3 f0 +
2
3 f1;
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M2f0 =
1
3 f0 +

√
2
3 f1, M1f1 =

√
2
3 f0 +

2
3 f1.

The matricesM1,M2 of operators M1,M2, respectively, for the basis F are:

M1 =
(

4
3 −2

√
2

3
−2

√
2

3
2
3

)
, M2 =

(
1
3

√
2
3√

2
3

2
3

)
.

The matrixM1 has eigenvalues λ1 = 0, λ2 = 2, with eigenvectors respectively:

~u1 =
1√
3
(1,
√
2)T , ~u2 =

1√
3
(−
√
2, 1)T .

The matrixM2 has eigenvalues λ̃1 = 0, λ̃2 = 1, with eigenvectors respectively:

~v1 =
1√
3
(
√
2, −1)T , ~v2 =

1√
3
(1,
√
2)T .

Let
H1 = Lin

{
1√
3
(f0 +

√
2f1)

}
, H2 = Lin

{
1√
3
(−
√
2f0 + f1)

}
,

H̃1 = Lin
{

1√
3
(
√
2f0 − f1)

}
, H̃2 = Lin

{
1√
3
(f0 +

√
2f1)

}
.

Observe that the spectral measure E(δ) in relation (24) can have jumps at points (x, y) with x ∈ {λ1, λ2}, y ∈
{λ̃1, λ̃2}. The measure support is contained in this set of four points. Thus, the measure µ has at most 4 atoms.
Notice that

µ({(x, y)}) = (E({(x, y)})g0, g0)H = (E1({x})E2({y})g0, g0)H =

= (E2({y})g0, E1({x})g0)H , ∀(x, y) ∈ R2. (51)

Observe that
E1({0})g0 = PH1g0 =

1√
3
(f0 +

√
2f1),

E1({2})g0 = PH2g0 =
√
6
3 (
√
2f0 − f1),

E2({0})g0 = PH̃1
g0 =

√
6
3 (
√
2f0 − f1),

E2({1})g0 = PH̃2
g0 =

1√
3
(f0 +

√
2f1).

By (51) we conclude that the solution µ is 2-atomic, having jumps 1 and 2 at points (0, 1) and (2, 0), respectively.

4 An algorithm for the truncated two-dimensional moment
problem.

In this section we shall study the case n = 2 of the moment problem (1). We shall give two algoritms: Algo-
rithm 1 and Algorithm 2. These algorithms always give the desired output for any correct input data. Let us
brie�y describe them. The task of Algorithm 1 is to obtain the matrices of all self-adjoint extensions of the
associated operators Ml in the corresponding Hilbert space H. We emphasize that the commutativity for the
extensions is not assumed. Self-adjoint extensions of any symmetric operator A, with equal de�ciency in-
dices, always exist. In the case of the densely de�ned operator it follows by von Neumann’s formulas. In the
general case it follows by generalized von Neumann’s formulas (see, e.g., [26, Theorem 3.13]).
The input data for Algorithm 2 includes the matrices of two commuting self-adjoint extensions M̃l ⊇ Ml in
H. The output is a solution of the moment problem (1). Thus, the moment problem reduces to providing a
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link between the algorithms. One should extract in some way commuting extensions between those given by
Algorithm 1. Su�cient conditions for such a successful extraction will be given in Theorem 7.

If s0 = 0, then the moment problem (1) can not have any solution di�erent from µ = 0. In this case, if all
the moments are zero then µ = 0 is a solution, otherwise there are no solutions. Thus, we can exclude the
case s0 = 0 from our further considerations.
Algorithm 1 (The construction of all self-adjoint extensions of Ml in H).
Input: an admissible �nite set K ⊂ Z2

+, K := K + K and a set of prescribed moments S = (sk)k∈K, with
s0 ≠ 0, which satis�es the necessary conditions (8) and (17). Here we �x an ordering of the elements in K as
in Equation (6), with k0 = 0.
Step 1. Consider the associated Hilbert space H, which is de�ned as in the paragraph following formula (8).
We shall use the brief notation (25). Although this space consists of abstract elements (the equivalence
classes), all numerical calculations will be performed by the basic property (26). For l = 1, 2 we consider
the associated operators Ml (see (18)). Observe that

Mlgj = [tkj+~el ]L =: gη(l;j), j ∈ Ωl; l = 1, 2. (52)

Step 2. (The construction of an orthonormal basis in H).
Apply the Gram-Schmidt orthogonalization procedure to the sequence

g0, g1, ..., gρ ,

removing the linearly dependent elements, if they appear. We get an orthonormal basis

F = {f0, f1, ..., fρ′}

in the Hilbert space H (where 0 ≤ ρ′ ≤ ρ). By the construction, an element fj is a linear combination of gks,
with explicitly calculated coe�cients. Notice that f0 ≠ 0.
Step 3. (The parametrization of all linear extensions of Ml).

Observe that Ml is de�ned on elements gj, j ∈ Ωl (l = 1, 2). At �rst, de�ne linear operators M̃l on these
elements in the same way. Denote

Ω′
l := {0, 1, ..., ρ}\Ωl , l = 1, 2. (53)

For l = 1, 2 one should repeat the following procedure.
Choose an arbitrary element gk, k ∈ Ω′

l. Calculate the norm of its projection on D(M̃l). If gk ∈ D(M̃l), then
we skip this element. Otherwise, we set

M̃lgk :=
ρ′∑
j=0

(αl;k,j + βl;k,j i)fj , αl;k,j , βl;k,j ∈ R, (54)

and extend the domain of M̃l, using linearity. Then we take another element gk, k ∈ Ω′
l, and proceed in a

similar way. We continue this procedure to de�ne M̃l on the whole H. This completes the procedure for Ml.
Notice that the case D(Ml) = H was not excluded in the above procedure. The latter case means that the

corresponding parameters αl;k,j , βl;k,j are absent.
Step 4. (The calculation of matrices of M̃l). Observe that each fj is a linear combination of gks (by the Gram-
Schmidt orthogonalization):

fj =
ρ∑
k=0

cj;kgk , cj;k ∈ C; j ∈ Z0,ρ′ ; (55)

and vice versa:

gj =
ρ′∑
k=0

dj;k fk , dj;k ∈ C; j ∈ Z0,ρ . (56)

Then

M̃l fj =
ρ∑
k=0

cj;kM̃lgk .
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By (52), (54) and (56) we see that M̃l fj is a linear combination of fk with some coe�cients, which may depend
linearly on αl;k,j , βl;k,j.
In the basis F, we calculate the matricesM1,M2 of M̃1 and M̃2, respectively. The coe�cients ofM1,M2 may
depend linearly on real parameters αl;k,j , βl;k,j.
Step 5. (The extraction of self-adjoint extensions of Ml).

The following condition:
M1 = M*

1, M2 = M*
2, (57)

ensures the self-adjointness of M̃1 and M̃2. Equating the corresponding entries of matrices in (57) we obtain
linear algebraic systems with complex coe�cients for unknown real parameters αl;k,j , βl;k,j. Taking the real
and the imaginary parts of these equations, we get linear algebraic systems with real coe�cients and real
unknowns αl;k,j , βl;k,j. They can be solved by the Gauss eliminationmethod. The solutions should be inserted
in the matrices M1,M2. The matrices M1,M2 parametrize all self-adjoint extensions of the corresponding
operators in H.
Output:matricesM1,M2, which can depend on a �nite number of free real parameters.

We now present some su�cient conditions, which allow to obtain a solution of the moment problem.

Theorem 7. Let the moment problem (1) with n = 2, K = K + K, for an admissible �nite set K and some
S = (sk)k∈K, be given and conditions (8),(17) hold. Suppose that for one of the associated operators M1,M2
condition (28) of Theorem 2 holds. Consider the matrices M1,M2, which can depend on a �nite number of free
real parameters, constructed by Algorithm 1. If the following linear system of algebraic equations:

M1M2 = M2M1, (58)

has a solution, then the moment problem (1) is solvable.

Remark 1. Observe that condition (28) of Theorem 2 ensures that one of the associated operators is self-adjoint.
Therefore one of thematricesM1,M2 has no parameters. Equating the corresponding entries ofmatrices in (58),
we obtain a linear algebraic system with complex coe�cients and real unknowns. Taking the real and the imag-
inary parts of these equations we get a linear algebraic system with real coe�cients and real unknowns, which
can be solved by the Gauss elimination method.

Proof. By Remark 1 we conclude that the operatorsM1 andM2 have commuting self-adjoint extensions in H.
Applying Proposition 1 we obtain that the moment problem has a solution. 2

The following algorithm provides a solution to the moment problem, if we have commuting matrices
M1,M2, selected from thoseobtainedbyAlgorithm1. Inparticular, it canbeapplied if conditions of Theorem7
hold.
Algorithm 2 (The construction of a solution of the moment problem).
Input: commuting matricesM1,M2, selected from those obtained by Algorithm 1.
Step 1. Find all eigenvalues and eigenvectors of matricesM1,M2.
Step 2. Calculate the (atomic) solution of themoment problem by formula (24). Observe that the solution can
have atoms at points (x, y), where x is an eigenvalue ofM1, y is an eigenvalue ofM2. Notice that

µ({(x, y)}) = (E({(x, y)})g0, g0)H = (E2({y})g0, E1({x})g0)H , (59)

where Ej(δ) (δ ∈ B(R)) is the spectral measure of the (bounded) self-adjoint operator M̃j, j = 1, 2.
Output: a solution µ of the moment problem.

Let us illustrate the above algorithms by the following examples.

Example 3. Consider the truncatedmoment problem (1)with n = 2, K = K1,1 (see Example 1),K = K+K = K2,2,
and the following moments:

s(0,0) = 4, s(0,1) = 12, s(0,2) = 48,

s(1,0) = 4, s(1,1) = 12, s(1,2) = 48,
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s(2,0) = 4, s(2,1) = 12, s(2,2) = 48.

Order the elements of K as follows:

k0 = (0, 0), k1 = (0, 1), k2 = (1, 0), k3 = (1, 1).

Thus, we have ρ = 3.
The matrix Γ = (skj+km )

3
m,j=0 has the following form:

Γ =


4 12 4 12
12 48 12 48
4 12 4 12
12 48 12 48

 . (60)

The non-negativity of Γ holds. It is veri�ed by checking that the determinants of all submatrices, standing on the
intersections of rows and columns with the same indices, are non-negative. Observe that

Ω1 = {0, 1}, Ω2 = {0, 2}. (61)

The matrices Γ1, Γ2, Γ̂1, Γ̂2 have the following forms:

Γ1 =
(

4 12
12 48

)
, Γ2 =

(
4 4
4 4

)
, (62)

Γ̂1 =
(

4 12
12 48

)
, Γ̂2 =

(
48 48
48 48

)
. (63)

Therefore conditions (17) hold. Let us apply Algorithm 1.
Step 1. Consider the associated Hilbert space H. Consider the multiplication operators Ml as in (18). Notice that

M1g0 = g2, M1g1 = g3, (64)

M2g0 = g1, M2g2 = g3, (65)

and
D(M1) = Lin{g0, g1}, D(M2) = Lin{g0, g2}. (66)

Step 2. Let us apply the Gram-Schmidt orthogonalization process, removing linearly dependent elements, to the
sequence g0, g1, g2, g3. We shall use the property (26). We obtain that

f0 =
1
2 g0, f1 =

1
2
√
3
(g1 − 3g0) , (67)

and
g2 = g0, g3 = g1. (68)

Therefore F := {f0, f1} is an orthonormal basis in H, and ρ′ = 1.
Step 3. Notice that

Ω′
1 = {2, 3}, Ω′

2 = {1, 3}. (69)

By (66) and (68) we see that D(M1) = H and D(M2) = Lin{g0}. Therefore M̃1 = M1. De�ne M̃2 on g1 in the
following way:

M̃2g1 =
1∑
j=0

(α2;1,j + β2;1,j i)fj , α2;1,j , β2;1,j ∈ R. (70)

Since g3 = g1, the procedure of the extension is �nished.
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Step 4. By (64),(68) we see that M1 = M̃1 = EH . Therefore, M1 is the identity matrix. Let us calculate M2.
Observe that

g0 = 2f0, g1 = 6f0 + 2
√
3f1. (71)

By (67),(71),(65),(70) we get
M̃2f0 = 3f0 +

√
3f1,

M̃2f1 =
(

1
2
√
3
(α2;1,0 + β2;1,0i) − 18

)
f0 +

(
1

2
√
3
(α2;1,1 + β2;1,1i) − 6

√
3
)
f1.

Then

M2 =
(

3 1
2
√
3 (α2;1,0 + β2;1,0i) − 18√

3 1
2
√
3 (α2;1,1 + β2;1,1i) − 6

√
3

)
. (72)

Step 5. Conditions (57) imply that

α2;1,0 = 36
√
3 + 6, β2;1,0 = β2;1,0 = 0. (73)

Conditions (57) are satis�ed, since M1 is the identity matrix. The real parameter α2;1,1 is free. Algorithm 1 is
�nished.

We see that M1 is self-adjoint, therefore there is no need to verify condition (28) of Theorem 2. We choose
α2;1,1 = 36 + 2

√
3 to get

M2 =
(

3
√
3√

3 1

)
. (74)

MatricesM1,M2 commute. We may apply Algorithm 2.
Step 1. ThematrixM1 has an eigenvalue λ1 = 1 and the eigensubspaceH1 = H. ThematrixM2 has eigenvalues
λ̃1 = 0 and λ̃2 = 4, with eigensubspaces

H̃1 = Lin
{
−12 f0 +

√
3
2 f1

}
, H̃2 = Lin

{√
3
2 f0 +

1
2 f1
}
,

respectively.
Step 2. Observe that

E2({0})g0 = PH̃1
g0 =

1
2 f0 −

√
3
2 f1,

E2({4})g0 = PH̃2
g0 =

3
2 f0 +

√
3
2 f1.

By formula (59) we obtain that the solution µ is 2-atomic with jumps 1, 3 at points (1, 0) and (1, 4), respectively.

In the case where operators M1,M2 are both nonself-adjoint, the commutativity condition (58) should be
analyzed to get a solution of the moment problem. The following example illustrate this situation.

Example 4. Consider the truncatedmoment problem (1)with n = 2, K = K1,1 (see Example 1),K = K+K = K2,2,
and the following moments:

s(0,0) = 3, s(0,1) = 2, s(0,2) = 2,

s(1,0) = 3, s(1,1) = 2, s(1,2) = 2,

s(2,0) = 5, s(2,1) = 4, s(2,2) = 4.

The matrix Γ = (skj+km )
3
m,j=0 has the following form:

Γ =


3 2 3 2
2 2 2 2
3 2 5 4
2 2 4 4

 . (75)
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The non-negativity of Γ holds. Observe that

Ω1 = {0, 1}, Ω2 = {0, 2}. (76)

The matrices Γ1, Γ2, Γ̂1, Γ̂2 have the following forms:

Γ1 =
(

3 2
2 2

)
, Γ2 =

(
3 3
3 5

)
, (77)

Γ̂1 =
(

5 4
4 4

)
, Γ̂2 =

(
2 2
2 4

)
. (78)

Therefore conditions (17) hold. We can apply Algorithm 1.
Step 1. The same as in the previous example.
Step 2. Let us apply the Gram-Schmidt orthogonalization process, removing linearly dependent elements, to the
sequence g0, g1, g2, g3. We shall use the property (26). We obtain that

f0 =
1√
3
g0, f1 =

√
3
2

(
g1 −

2
3 g0

)
, f2 =

1√
2
(g2 − g0), (79)

and
g3 = −g0 + g1 + g2. (80)

Therefore F := {f0, f1, f2} is an orthonormal basis in H, and ρ′ = 2.
Step 3. Notice that

Ω′
1 = {2, 3}, Ω′

2 = {1, 3}. (81)

De�ne M̃1 on g2 in the following way:

M̃1g2 =
2∑
j=0

(α1;2,j + β1;2,j i)fj , α1;2,j , β1;2,j ∈ R. (82)

We de�ne M̃2 on g1 by the following formula:

M̃2g1 =
2∑
j=0

(α2;1,j + β2;1,j i)fj , α2;1,j , β2;1,j ∈ R. (83)

Since g3 = −g0 + g1 + g2, the procedure of the extension is �nished. Notice that we have 12 free real parameters
at this moment.
Step 4. Observe that

g0 =
√
3f0, g1 =

2√
3
f0 +

√
2
3 f1, g2 =

√
3f0 +

√
2f2,

g3 =
2√
3
f0 +

√
2
3 f1 +

√
2f2. (84)

By (79),(84),(82),(83),(64) and (65) we get

M̃1f0 = f0 +
√

2
3 f2, M̃1f1 = f1 +

1√
3
f2,

M̃1f2 =
1√
2

(
α1;2,0 + β1;2,0i −

√
3
)
f0 +

1√
2
(α1;2,1 + β1;2,1i) f1+

+ 1√
2

(
α1;2,2 + β1;2,2i −

√
2
)
f2;

M̃2f0 =
2
3 f0 +

√
2
3 f1,
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M̃2f1 =
(√

3
2(α2;1,0 + β2;1,0i) −

2
√
2

3

)
f0+

+
(√

3
2(α2;1,1 + β2;1,1i) −

2
3

)
f1 +

√
3
2 (α2;1,2 + β2;1,2i) f2,

M̃2f2 = f2.

Then

M1 =


1 0 1√

2

(
α1;2,0 + β1;2,0i −

√
3
)

0 1 1√
2 (α1;2,1 + β1;2,1i)√

2
3

1√
3

1√
2

(
α1;2,2 + β1;2,2i −

√
2
)
 , (85)

M2 =


2
3

√
3
2 (α2;1,0 + β2;1,0i) −

2
√
2

3 0
√
2
3

√
3
2 (α2;1,1 + β2;1,1i) −

2
3 0

0
√

3
2 (α2;1,2 + β2;1,2i) 1

 . (86)

Step 5. Conditions (57) imply that

β1;2,j = β2;1,j = 0, j = 0, 1, 2;

α1;2,0 =
5√
3
, α1;2,1 =

√
2
3 , α2;1,0 =

2√
3
, α2;1,2 = 0. (87)

Two free real parameters remain: α1;2,2 and α2;1,1. MatricesM1,M2 take the following form:

M1 =


1 0

√
2
3

0 1 1√
3√

2
3

1√
3

1√
2
α1;2,2 − 1

 , (88)

M2 =


2
3

√
2
3 0

√
2
3

√
3
2α2;1,1 −

2
3 0

0 0 1

 . (89)

Algorithm 1 is �nished.
Condition (58) will be satis�ed if α2;1,1 =

√
2
3 . One free real parameter remains α1;2,2. We set α1;2,2 = 2

√
2.

Therefore

M1 =


1 0

√
2
3

0 1 1√
3√

2
3

1√
3 1

 , M2 =

 2
3

√
2
3 0√

2
3

1
3 0

0 0 1

 . (90)

We may apply Algorithm 2.
Step 1. The matrixM1 has eigenvalues λ0 = 0, λ1 = 1 and λ2 = 2, with eigensubspaces

H0 = Lin
{
− 1√

3
f0 −

1√
6
f1 +

1√
2
f2
}
, H1 = Lin

{
1√
3
f0 −

√
2
3 f1

}
,

H2 = Lin
{

1√
3
f0 +

1√
6
f1 +

1√
2
f2
}
,

respectively. The matrixM2 has eigenvalues λ̃0 = 0 and λ̃1 = 1, with eigensubspaces

H̃0 = Lin
{
− 1√

3
f0 +

√
2
3 f1

}
,
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H̃1 = Lin
{

1√
2
f0 +

1
2 f1 +

1
2 f2; −

1√
6
f0 −

1
2
√
3
f1 +
√
3
2 f2

}
,

respectively.
Step 2. Observe that

E1({0})g0 = PH0g0 =
1√
3
f0 −

1√
6
f1 −

1√
2
f2,

E1({1})g0 = PH1g0 =
1√
3
f0 −

√
2
3 f1,

E1({2})g0 = PH2g0 =
1√
3
f0 +

1√
6
f1 +

1√
2
f2;

E2({0})g0 = PH̃0
g0 =

1√
3
f0 −

√
2
3 f1,

E2({1})g0 = PH̃1
g0 =

2
√
3

3 f0 +
√
6
3 f1.

By formula (59) we obtain that the solution µ is 3-atomic with unit jumps at points (0, 1), (1, 0) and (2, 1).

Remark 2. Observe that in Algorithm 1 we restricted ourselves by considering possible extensions M̃j of Mj
inside the original Hilbert space H. Instead of H one can consider any �nite-dimensional Hilbert space H̃ ⊇ H,
and construct possible extensions M̃j of Mj in H̃.

Acknowledgement: The author is grateful to Prof. Vasilescu for a useful discussion on themoment problems.
The author is grateful to referees for their valuable comments and suggestions
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