THE OPERATOR EQUATION THT = K

GERT K. PEDERSEN AND MASAMICHI TAKESAKI¹

ABSTRACT. Let H and K be bounded positive operators on a Hilbert space, and assume that H is nonsingular. Then (i) there is at most one bounded positive operator T such that THT=K; (ii) a necessary and sufficient condition for the existence of such T is that $(H^{1/2}KH^{1/2})^{1/2} \le aH$ for some a>0, and then $||T|| \le a$; (iii) this condition is satisfied if H is invertible or more generally if $K \le a^2H$ for some a>0; (iv) an exact formula for T is given when H is invertible.

If H is a selfadjoint positive nuclear operator on a Hilbert space \mathfrak{H} , then the map $\varphi: A \rightarrow \operatorname{Tr}(AH)$ is a normal positive functional on the von Neumann algebra $B(\mathfrak{H})$. If $0 \leq K \leq H$ then the functional $\psi: A \rightarrow \operatorname{Tr}(AK)$ is majorized by φ . By S. Sakai's noncommutative Radon-Nikodym theorem [3] there is therefore a positive operator T with $||T|| \leq 1$ such that $\psi(A) = \varphi(TAT)$ for all A in $B(\mathfrak{H})$. Moreover, by [4, Lemma 15.4] the operator T is uniquely determined. Since the correspondence between normal positive functionals and positive nuclear operators is bijective this implies that THT = K. The purpose of this paper is to give a necessary and sufficient condition for the existence of a positive solution to the operator equation THT = K, with arbitrary H and K in $B(\mathfrak{H})_+$. Applications of the result to noncommutative integration theory can be found in [2].

The authors acknowledge with gratitude the hospitality of R. V. Kadison at the University of Pennsylvania where this work was completed.

THEOREM. Let H and K be selfadjoint positive operators in $B(\mathfrak{H})$, and assume that H is nonsingular. There is then at most one positive operator T in $B(\mathfrak{H})$ such that THT=K. A necessary and sufficient condition for the existence of such T is that $(H^{1/2}KH^{1/2})^{1/2} \leq aH$ for some a>0; and then $\|T\| \leq a$. This condition will be satisfied if H is invertible or, more generally, if $K \leq a^2 H$ for some a>0.

© American Mathematical Society 1972

Received by the editors April 27, 1972.

AMS 1970 subject classifications. Primary 47B15; Secondary 46L10.

Key words and phrases. Noncommutative Radon-Nikodym theorem, positive operators.

¹ The first author was supported in part by NSF Grant 28976X and the second author was supported in part by NSF Grant GP-28737.

PROOF. Suppose that S and T are positive operators in $B(\mathfrak{H})$ such that SHS=THT. Put $A=H^{1/2}S$ and $B=H^{1/2}T$. Then $A^*A=B^*B$ and from the polar decomposition A=UB, where U is a partial isometry such that U^*U is the range projection of B. Thus

$$H^{1/2}SH^{1/2} = AH^{1/2} = UBH^{1/2} = UH^{1/2}TH^{1/2}.$$

But $H^{1/2}SH^{1/2}$ and $H^{1/2}TH^{1/2}$ are both positive and since the polar decomposition (of $H^{1/2}SH^{1/2}$) is unique this implies that U is the range projection of $H^{1/2}T$. Thus A=B and since H is assumed to be nonsingular this implies that S=T. It follows that the equation THT=K can have at most one positive solution.

If THT = K with T in $B(\mathfrak{H})_+$ then

$$(H^{1/2}KH^{1/2})^{1/2} = (H^{1/2}TH^{1/2}H^{1/2}TH^{1/2})^{1/2} = H^{1/2}TH^{1/2} \le ||T|| H.$$

Conversely, if $(H^{1/2}KH^{1/2})^{1/2} \leq aH$ for some a > 0 then $(H^{1/2}KH^{1/2})^{1/4} = a^{1/2}SH^{1/2}$ for some S in $B(\mathfrak{H})$ with $||S|| \leq 1$. This follows from a well-known variation of the polar decomposition theorem: If $A^*A \leq B^*B$ define $S_0x = Ay$ for any x in \mathfrak{H} such that x = By. Then S_0 extends uniquely to an operator S in $B(\mathfrak{H})$ with $||S|| \leq 1$ such that A = SB. Let $T = aS^*S$. Then $0 \leq T \leq aI$ and

 $H^{1/2}THTH^{1/2} = (H^{1/2}TH^{1/2})^2 = (aH^{1/2}S^*SH^{1/2})^2 = H^{1/2}KH^{1/2}.$

Since H is nonsingular this implies that THT = K.

If H is invertible then $I \leq ||H^{-1}||H$ so that each operator in $B(\mathfrak{H})_+$ is majorized by a suitable multiple of H. In this case the solution to the equation THT = K is given by the formula $T = H^{-1/2} (H^{1/2} K H^{1/2})^{1/2} H^{-1/2}$.

Suppose now that $K \leq a^2 H$ for some a > 0. Then $H^{1/2}KH^{1/2} \leq a^2 H^2$. Since the square root function is operator monotone (see [1]) this implies that $(H^{1/2}KH^{1/2})^{1/2} \leq aH$ so that THT = K from the above. This completes the proof of the theorem.

References

1. G. K. Pedersen, Some operator monotone functions, Proc. Amer. Math. Soc. 36 (1972), 309-310.

2. G. K. Pedersen and M. Takesaki, The Radon-Nikodym theorem for von Neumann algebras, Acta Math. (to appear).

3. S. Sakai, A Radon-Nikodym theorem in W*-algebras, Bull. Amer. Math. Soc. 71 (1965), 149–151. MR **30** #5180.

4. M. Takesaki, *Tomita's theory of modular Hilbert algebras and its applications*, Lecture Notes in Math., vol. 128, Springer-Verlag, Berlin and New York, 1970. MR 42 #5061.

MATEMATISK INSTITUT, UNIVERSITETSPARKEN 5, 2100 COPENHAGEN, DENMARK

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024