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THE OPERATOR EQUATION THT = K

GERT K. PEDERSEN AND MASAMICHI TAKESAKI!

ABSTRACT. Let H and K be bounded positive operators on a
Hilbert space, and assume that H is nonsingular. Then (i) there
is at most one bounded positive operator T such that THT=K;
(ii) a necessary and sufficient condition for the existence of such T
is that (HY2KH?)''<aH for some a>0, and then ||T| Za; (iii)
this condition is satisfied if H is invertible or more generally if
K =a*H for some a>0; (iv) an exact formula for T is given when
H is invertible.

If H is a selfadjoint positive nuclear operator on a Hilbert space $,
then the map ¢:A—Tr(4H) is a normal positive functional on the von
Neumann algebra B($). If 0OSK=H then the functional y:4—Tr(4K)
is majorized by ¢. By S. Sakai’s noncommutative Radon-Nikodym
theorem [3] there is therefore a positive operator T with |T|=1 such
that y(A4)=g@(TAT) for all 4 in B($). Moreover, by [4, Lemma 15.4] the
operator T is uniquely determined. Since the correspondence between
normal positive functionals and positive nuclear operators is bijective
this implies that THT=K. The purpose of this paper is to give a necessary
and sufficient condition for the existence of a positive solution to the
operator equation THT=K, with arbitrary # and K in B($),. Applica-
tions of the result to noncommutative integration theory can be found in
[2].
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THEOREM. Let H and K be selfadjoint positive operators in B($H), and
assume that H is nonsingular. There is then at most one positive operator
T in B($) such that THT=K. A necessary and sufficient condition for the
existence of such T is that (H*2KH?)'\*<aH for some a>0; and then
| Tl £a. This condition will be satisfied if H is invertible or, more generally,
if K=a*H for some a>0.
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PROOF. Suppose that S and T are positive operators in B($) such
that SHS=THT. Put A=H2S and B=H"2T. Then A*4A=B*B and
from the polar decomposition 4= UB, where U is a partial isometry such
that U*U is the range projection of B. Thus

H2SH1/2 = AHY?2 = UBHY?2 = UHY2TH/2,

But H'/2SH'/* and H'/*TH?”? are both positive and since the polar de-
composition (of HY/2SH'/%) is unique this implies that U is the range
projection of H'/*T. Thus A=B and since H is assumed to be nonsingular
this implies that S=T. It follows that the equation THT=XK can have at
most one positive solution.

If THT=K with T in B(%), then

(Hl/2KH1/2)1/2 — (H1/2TH1/2H1/2IH1/2)1/2 = Hl/2TH1/2 < ” T” H.

Conversely, if (H2KH?)?<aH for some a>0 then (H/2KH/?)/A=
a'’2SH'/2 for some S in B($) with | S|| =1. This follows from a well-known
variation of the polar decomposition theorem: If 4*4 <B*B define Spx=
Ay for any x in $ such that x=By. Then S, extends uniquely to an operator
Sin B($) with ||S|| =1 such that A=SB. Let T=aS*S. Then 0=T=<al and

HY:THTH'Y? = (H'2TH'?)? = (aHV2S*SH'/?)? = H*KH/2,

Since H is nonsingular this implies that THT=K.

If H is invertible then /<|H-!|H so that each operator in B(%), is
majorized by a suitable multiple of H. In this case the solution to the
equation THT=XK is given by the formula T = H~V2(HY2KH?)1/2H-1/2,

Suppose now that K=<a?H for some a>0. Then H2KH*=Za*H?2.
Since the square root function is operator monotone (see [1]) this implies
that (H/2KH'/?)'/2<aH so that THT=K from the above. This completes
the proof of the theorem.
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