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Cell growth is a highly regulated, plastic process. Its control involves balancing positive
regulation of anabolic processes with negative regulation of catabolic processes. Although
target of rapamycin (TOR) is a major promoter of growth in response to nutrients and growth
factors, AMP-activated protein kinase (AMPK) suppresses anabolic processes in response to
energy stress. Both TOR and AMPK are conserved throughout eukaryotic evolution. Here, we
review the fundamentally important roles of these two kinases in the regulation of cell growth
with particular emphasis on their mutually antagonistic signaling.

An efficient homeostatic response to main-
tain cellular energy despite a noncontinu-

ous supply of nutrients is crucial for the survival
of organisms. Cells have, therefore, evolved a
host of molecular pathways to sense both intra-
and extracellular nutrients and thereby quickly
adapt their metabolism to changing conditions.
The target of rapamycin (TOR) and AMP-acti-
vated protein kinase (AMPK) signaling path-
ways control growth and metabolism in a
complementary manner with TOR promoting
anabolic processes under nutrient- and energy-
rich conditions, whereas AMPK promotes a cat-
abolic response when cells are low on nutrients
and energy. Both pathways are highly conserved
from yeast to human. This review summarizes
the cross talk between TOR and AMPK in dif-
ferent organisms.

TOR SIGNALING IN MAMMALS

TOR is a conserved Ser/Thr protein kinase
that belongs to the phosphoinositide-3-kinase
(PI3K)-related kinase (PIKK) family (Wull-
schleger et al. 2006; Laplante and Sabatini
2012). TOR was originally identified in the bud-
ding yeast Saccharomyces cerevisiae (Heitman
et al. 1991; Kunz et al. 1993), and in mammalian
cells shortly thereafter (Brown et al. 1994; Chiu
et al. 1994; Sabatini et al. 1994; Sabers et al.
1995). TOR exists in two conserved and struc-
turally and functionally distinct multiprotein
complexes, rapamycin-sensitive TOR complex
1 (TORC1), and rapamycin-insensitive TOR
complex 2 (TORC2) (see Table 1) (Loewith
et al. 2002; Reinke et al. 2004). Mammalian
TOR complex (mTORC)1 consists of three
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core components: the catalytic subunit mam-
malian TOR (mTOR), regulatory-associated
protein of target of rapamycin (RAPTOR),
and mammalian lethal with SEC13 protein 8
(mLST8). mTORC2 is comprised of four differ-
ent core proteins: mTOR, rapamycin-insensitive
companion of target of rapamycin (RICTOR),
mammalian stress-activated protein kinase
interacting protein (mSIN1), and mLST8.
mTORC1, whose localization is well character-
ized, is mainly on the lysosome when active
(Bar-Peled and Sabatini 2012). mTORC2 is at

mitochondria-associated endoplasmic reticu-
lum (ER) membranes (MAM) (Betz et al.
2013). For a detailed review of mTOR locali-
zation, the reader is referred to Betz and Hall
(2013).

Upstream Regulators of mTOR Signaling
mTORC1 is activated by a variety of upstream
signals, most importantly, nutrients, growth fac-
tors, and cellular energy. Branched chain amino
acids, in particular, leucine, are the most effec-
tive nutrient activators of mTORC1. Amino-

Table 1. TORC1, TORC2, TSC1/2, RHEB, and AMPK homologs across different species

Sc Sp Dd Ce Dm At Hs

TORC1 TOR1
TOR2

Tor1
Tor2

Tor TOR TOR TOR mTOR

Kog1 Mip1 Raptor DAF-15 RAPTOR RAPTOR1A
RAPTOR1B

RAPTOR

Lst8 Pop3 Lst8 C10H11.8 LST8 LST8-1 LST8-2 LST8
Tco89 Tco89 - - - - -

- Toc1 - - - - -
- - - - - - PRAS40
- - - - - - DEPTOR

TORC2 TOR2 Tor1 Tor TOR TOR TOR mTOR
Avo1 Sin1 RipA - SIN1 - SIN1
Avo2 - - - - - -
Avo3 Ste20 PiaA RICTOR RICTOR - RICTOR
Lst8 Pop3 Lst8 C10H11.8 LST8 LST8-1 LST8-2 LST8
Bit61 Bit61 - - - - PRR5

- - - - - DEPTOR
TSC1/2 - Tsc1 - - TSC1 - TSC1

- Tsc2 Tsc2 - TSC2 - TSC2
RHEB Rhb1 Rhb1 Rheb RHEB-1 RHEB - RHEB
AMPK Snf1 Ssp2 Ppk9 SnfA AAK-1

AAK-2
SNF1A KIN10 KIN11 AMPKa1

AMPKa2
Gal83
Sip1
Sip2

Amk2 PrkaB AAKB-1
AAKB-2

AMPKB1 KINb1
KINb2
KINb3

AMPKb1
AMPKb2

Snf4 Cbs2 PrkaG AAKG-1
AAKG-2
AAKG-3
AAKG-4
AAKG-5

SNF4Ag KINg

KINbg

AMPKg1
AMPKg2
AMPKg3

At, Arabidopsis thaliana; Ce, Caenorhabditis elegans; Dd, Dictyostelium discoideum; Dm, Drosophila melanogaster; Hs, Homo

sapiens; Sc, Saccharomyces cerevisiae; Sp, Schizosaccharomyces pombe. AMPK, AMP-activated protein kinase; DEPTOR, DEP

domain-containing mTOR-interacting protein; mTOR, mammalian target of rapamycin; RAPTOR, regulatory-associated

protein of target of rapamycin. RHEB, RAS homolog enriched in brain; RICTOR, rapamycin-insensitive companion of

target of rapamycin; TORC1, target of rapamycin complex 1; TORC2, target of rapamycin complex 2; TSC1/2, tuberous

sclerosis complex 1/2. (-) indicates that there are no shown/obvious homologs of the indicated proteins in the corresponding

organisms.
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acid sensing involves the RAG family of small
GTPases (Kim et al. 2008; Sancak et al. 2008;
Duran and Hall 2012; Jewell et al. 2013). The
Rags form heterodimers of RagA or RagB with
RagC or RagD. Amino-acid sufficiency pro-
motes the formation of the active form of the
Rag heterodimer (RagA/BGTP-RagC/DGDP),
which binds directly to RAPTOR, and thereby
recruits mTORC1 to the lysosome. Once on the
lysosome, mTORC1 encounters the small
GTPase RHEB (RAS homolog enriched in
brain), and the association of mTORC1 with
RHEB leads to mTORC1 activation. Under ami-
no acid starvation, the Rag heterodimers assume
an inactive configuration (RagA/BGDP-RagC/
DGTP), which is unable to recruit mTORC1 to
the lysosomal surface. Thus, mTORC1 remains
cytosolic and inactive. Multiple mechanisms

have been proposed to explain how amino acids
are sensed to activate mTORC1. For example,
amino acids could be sensed in the lumen of
the lysosome through an inside-out mechanism
that requires the v-ATPase (vacuolar-ATPase)
and RAGULATOR, a pentameric complex that
acts as a guanine nucleotide exchange factor
(GEF) and activates the RAG complex at the
lysosomal surface (Sancak et al. 2010; Zoncu
et al. 2011; Bar-Peled et al. 2012). Others have
proposed that at least leucine and glutamine are
sensed through glutaminolysis, which stimu-
lates mTORC1 via the production ofa-ketoglu-
tarate (Duran et al. 2012, 2013). These two mod-
els are not mutually exclusive as both may act on
the Rags and RAGULATOR (Fig. 1). Recently,
new regulators of the Rags have been charac-
terized. Two independent studies identified a
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Figure 1. The model shows the main components in cross talk between mammalian target of rapamycin
(mTOR) and AMP-activated protein kinase (AMPK). See the main text for details. Phosphorylation depicted
in green indicates an activation signal. Phosphorylation depicted in red indicates an inhibitory signal.
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multiprotein complex, termed GATOR, that in-
teracts with the Rags. GATOR is composed of
two subcomplexes: GATOR1 and GATOR2.
GATOR1 has GTPase activating protein (GAP)
activity for RagA/B and negatively regulates
mTORC1 signaling by promoting the inactive
RagA/BGDP conformation (Bar-Peled et al.
2013; Panchaud et al. 2013). GATOR2 is a neg-
ative regulator of GATOR1 (Bar-Peled et al.
2013). More recently, FOLLICULIN (FLCN)
and its binding partners folliculin-interacting
protein 1/2 (FNIP1/2) have been shown to
act as a positive regulator of Rag-mTORC1 sig-
naling by acting as a GAP for RagC/D to pro-
mote the active RagC/DGDP conformation (Pe-
tit et al. 2013; Tsun et al. 2013). It is unclear
whether GATOR and FLCN play a role in
amino-acid sensing.

Growth factors stimulate mTORC1 via the
PI3K-phosphoinositide-dependent kinase-1-
AKT (PI3K-PDK-1-AKT) pathway. AKT con-
trols mTORC1 signaling by phosphorylating
and inactivating tuberous sclerosis complex 2
(TSC2), TUBERIN (Fig. 1) (Dan et al. 2002;
Inoki et al. 2002; Manning et al. 2002). AKT
phosphorylates TSC2 on Ser939, Ser981,
Ser1130, Ser1132, and Thr1462. TSC2 associ-
ates with tuberous sclerosis complex 1 (TSC1),
HAMARTIN and TBC-1D7 to form the tumor
suppressor tuberous sclerosis complex (TSC),
which functions as a GAP for the small GTPase
RHEB (Garami et al. 2003; Inoki et al. 2003a; Tee
et al. 2003; Zhang et al. 2003; Dibble et al. 2012).
RHEB is anchored to the surface of the lysosome
(Saito et al. 2005) and in its active GTP-loaded
form provides an essential stimulatory signal to
mTORC1 (Long et al. 2005; Sancak et al. 2007).
Two recent reports suggest that translocation
of the TSC complex to the lysosome is a key
determinant of mTORC1 inactivation (Deme-
triades et al. 2014; Menon et al. 2014). Growth
factor signaling, although necessary, cannot ef-
ficiently activate mTOR when amino acids are
limiting (Hara et al. 1998; Kim et al. 2008; San-
cak et al. 2008). Nutrients are a key activator
of TORC1 already in unicellular organisms,
whereas growth factor signaling was grafted
onto the TOR pathway only later with the ad-
vent of multicellularity. This reflects the primor-

dial role of nutrients as a growth-regulating and
TORC1-activating input. The energy status of
the cell (AMP:ATP ratio) is signaled to mTORC1
through AMPK, a master sensor of intracellular
energy status (Inoki et al. 2003b; Gwinn et al.
2008). The mechanism by which energy status is
signaled to mTORC1 is discussed in detail be-
low. Apart from the above three inputs, mTOR is
also regulated by various other signaling path-
ways, such as Hippo, Wnt, and Notch, as re-
viewed in Shimobayashi and Hall (2014).

mTORC2 is involved in various cellular
and developmental processes, but its mecha-
nism of activation remains poorly understood.
mTORC2 is activated in a PI3K-dependent
manner by association with the ribosome (Zin-
zalla et al. 2011). Thus, mTORC2 activation is
responsive to growth factors, but independent
of nutrients and energy.

Downstream Functions of mTOR Signaling

Downstream functions of mTORC1 include ac-
tivation of protein synthesis, ribosome biogen-
esis, lipogenesis, nucleotide synthesis, and in-
hibition of autophagy. Protein synthesis and
ribosome biogenesis are particularly important
readouts because they determine the growth
capacity of the cell and are extremely energy-
demanding processes. mTORC1 promotes pro-
tein synthesis by phosphorylating the eukaryot-
ic initiation factor 4E (eIF4E)-binding protein 1
(4E-BP1) and ribosomal S6 kinase (S6K) (Fig.
1) (reviewed in Ma and Blenis 2009; Huang and
Fingar 2014). The phosphorylation of 4E-BP1
prevents its binding to eIF4E, thereby enabling
eIF4E to promote cap-dependent translation.
The stimulation of S6K activity by mTORC1
leads to increased translation initiation and
elongation. mTOR controls ribosome biogene-
sis by increasing translation of ribosomal pro-
teins (reviewed in Mayer and Grummt 2006)
and transcription of ribosomal RNAs (rRNAs)
by Pol III (5S rRNA) or Pol I (the other three
rRNAs) (Goodfellow and White 2007; Kan-
tidakis et al. 2010). In addition, mTORC1 pro-
motes processing of pre-rRNA (Iadevaia et al.
2012). Furthermore, mTORC1 promotes lipo-
genic gene expression by activating the sterol-
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regulatory element-binding protein (SREBP)
transcription factors (for review, see Ricoult
and Manning 2013). mTORC1 stimulates nucle-
otide synthesis by phosphorylating carbamoyl-
phosphate synthetase 2, aspartate transcarba-
mylase, and dihydroorotase (CAD) through
S6K. CAD phosphorylation promotes its acti-
vation and thereby the de novo synthesis of
pyrimidines (Ben-Sahra et al. 2013; Robitaille
et al. 2013). mTORC1 inhibits autophagy by
phosphorylating the proautophagic kinase
Unc-51-like kinase 1 (ULK1) (Fig. 2) (Kim et
al. 2011). On activation by growth factors,
mTORC2 phosphorylates the AGC kinases
AKT, serum- and glucocorticoid-regulated ki-
nase (SGK), and protein kinase C (PKC) to con-
trol a variety of processes (for review, see Cybul-
ski and Hall 2009; Oh and Jacinto 2011).

AMPK SIGNALING IN MAMMALS

In eukaryotes, strict maintenance of cellular en-
ergy, as reflected in relative concentrations of
ATP, ADP, and AMP (adenosine tri-, di-, and
monophosphate), is of paramount importance
for the control of all energy requiring metabol-
ic processes. AMPK, activated on energy stress
(high intracellular AMP and ADP), plays a cru-
cial role in maintaining this energy balance (Yeh
et al. 1980; Oakhill et al. 2011; Gowans et al.
2013; Hardie 2014, 2015). Like TOR, AMPK
is a multiprotein complex comprising three
subunits: (1) the a catalytic subunit, (2) the b

subunit containing a glycogen-binding domain
(GBD) and binding sites for both the a and g

subunits, and (3) the g subunit, which contains
nucleotide-binding sites (Bateman domains)
(Bateman 1997). Table 1 summarizes the differ-
ent subunits of AMPK (for recent findings on
the structure of AMPK, the reader is referred to
Xiao et al. 2013; Calabrese et al. 2014).

Upstream Regulation of AMPK

Activation of AMPK requires phosphorylation
on Thr172 in the activation loop of the a sub-
unit (Hawley et al. 1996). Liver kinase B1 (LKB-
1) (Hawley et al. 1996; Sakamoto et al. 2006),
calmodulin-dependent protein kinase kinase

b (CaMKKb) (Hawley et al. 2005; Hurley
et al. 2005; Woods et al. 2005), and transform-
ing growth factor b–activated kinase (TAK1)
(Momcilovic et al. 2006) are known upstream
kinases of AMPK (Fig. 1). Although LKB-1 ac-
tivates AMPKwhen AMP or ADP levels are high
(energy stress), CaMKKb activates AMPK in
response to an increase in cytoplasmic Ca2þ

levels on, for example, ER stress (Davies et
al. 1995; Hawley et al. 1996, 2005; Hurley et al.
2005; Woods et al. 2005; Sakamoto et al. 2006).
Whether TAK1 activates AMPK directly or via
LKB-1 remains to be determined. A recent re-
port suggests that AXIN, originally discovered
as an inhibitor of WNT signaling (Zeng et al.
1997), is required for AMP-triggered AMPK
activation by LKB-1 at the lysosomal surface
(Zhang et al. 2013). It was also recently shown
that the small molecule A-769662 (and AMP)
can directly activate AMPK allosterically and
independently of upstream kinase signaling,
that is, in the absence of AMPK Thr172 phos-
phorylation (Scott et al. 2014).

Downstream Functions of AMPK

AMPK acts as a metabolic checkpoint by acti-
vating catabolic processes and inhibiting ana-
bolic processes, in part, by negatively regulating
mTORC1 signaling. Thus, mTORC1 and AMPK
work in opposing ways in the regulation of cell
growth and metabolism. The cross talk between
AMPK and mTOR signaling is discussed in
detail below. By virtue of its inhibitory effect
on mTORC1 signaling, AMPK inhibits protein
synthesis and promotes autophagy (Gwinn et al.
2008; Inoki et al. 2012). AMPK promotes au-
tophagy by directly phosphorylating and acti-
vating ULK1 (Fig. 2A) (Egan et al. 2011; Kim
et al. 2011). In addition, AMPK modulates
carbohydrate metabolism by increasing in-
tracellular glucose levels (Holmes et al. 1999;
Kurth-Kraczek et al. 1999; Barnes et al. 2002),
and reduces lipid synthesis by inhibiting and
acetyl CoA carboxylase 1 (ACC1) and acetyl
CoA carboxylase 2 (ACC2) (Ha et al. 1994), fatty
acid synthase (FAS) (An et al. 2007), glycerol-3-
phosphate acyltransferase (GPAT) (Muoio et al.
1999), and 3-hydroxy-3-methylglutaryl-CoA
reductase (HMGR) (Beg and Brewer 1982).

TOR and AMPK in Cell Growth Control

Cite this article as Cold Spring Harb Perspect Biol 2015;7:a019141 5

 on August 24, 2022 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


P
P

P

P

P
P

P

P

P
P

P

P
P

P

P

P

P

P

P

P

P

R
A

P
TO

R

m
TO

R
A

M
P

K

m
LS

T
8

R
A

P
TO

R

T
S

C
A

S
6K

T
S

C

A
M

P
K

S
31

7,
 S

46
7,

 S
55

5,
S

75
8 

T
57

5,
 S

63
7,

 S
77

7

α1
 S

36
0,

 T
36

8
β2

 S
48

6,
 S

48
8

γ1
 S

26
0,

 S
26

2

S
79

S
22

1

S
79

2,
 S

85
5,

S
85

9,
 S

86
3,

S
87

7

m
TO

R

m
LS

T
8

R
A

P
TO

R

m
TO

R

m
LS

T
8

S
es

tr
in

s

A
u

to
p

h
ag

y

U
LK

1

LI
P

IN
-1

S
6K

A
C

C
1

Fa
tt

y 
ac

id
sy

n
th

es
is

L
ip

o
g

en
es

is

S
37

2

S
34

2

S
15T

S
C

C
el

l-
cy

cl
e 

ar
re

st

pt
en

, t
sc

2,
 ig

f-
bp

3
se

st
rin

1,
2

T
S

C

A
M

P
K

B

C

P
P

2A

α4

p5
3

S
6K

M
D

M
X

S
es

tr
in

s
S

es
tr

in
s

S
R

E
B

P
-1

P

Fi
gu

re
2.

C
ro

ss
ta

lk
b

et
w

ee
n

m
T

O
R

an
d

A
M

P
K

si
gn

al
in

g
in

re
gu

la
ti

n
g

(A
)

au
to

p
h

ag
y,

(B
)

li
p

id
sy

n
th

es
is

,a
n

d
(C

)
p

53
in

re
gu

la
ti

n
g

th
e

ce
ll

cy
cl

e.

S.K. Hindupur et al.

6 Cite this article as Cold Spring Harb Perspect Biol 2015;7:a019141

 on August 24, 2022 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


EVOLUTION OF TOR–AMPK SIGNALING
FROM YEAST TO MAMMALS

TOR Signaling

Although almost all eukaryotes have a single
TOR gene, lower eukaryotes, such as S. cerevisiae
or Schizosaccharomyces pombe, have two TOR
genes. In budding yeast, TORC1 contains either
TOR1 or TOR2, but TORC2 is assembled from
only TOR2 (see Table 1) (Loewith et al. 2002;
Reinke et al. 2004). Rapamycin inhibits TORC1
and growth in most eukaryotes, with worms
(Caenorhabditis elegans) and plants (Arabidop-
sis thaliana) being exceptions (Long et al. 2002;
Mahfouz et al. 2006). In S. pombe, rapamycin
treatment is not sufficient to cause a growth
defect (Takahara and Maeda 2012). S. cerevisiae
lacks TSC homologs, but possesses an RHEB
homolog (Rhb1). However, Rhb1 in S. cerevisiae
does not seem to function upstream of TORC1
(Urano et al. 2000). In contrast, in S. pombe, Tsc1
and Tsc2 are present and regulate TORC1 via the
RHEB ortholog Rhb1 (Aspuria et al. 2007). The
slime mold Dictyostelium discoideum has ortho-
logs of TSC2 and RHEB, in addition to all the
core components of mTORC1 (Lee et al. 2005).
C. elegans contains RHEB-1 and the TORC1
components, but lacks TSC (Long et al. 2002).
In Drosophila melanogaster, like in mammals,
TORC1 signaling is regulated by TSC1, TSC2,
and RHEB (Oldham et al. 2000; Zhang et al.
2000, 2003; Gao and Pan 2001; Gao et al. 2002;
Saucedo et al. 2003; Stocker et al. 2003). A. thali-
ana contains TORC1, but is devoid of RHEB and
the TSC complex (Vernoud et al. 2003; Diaz-
Troya et al. 2008). Rag homologs are found in
all the above model organisms except A. thali-
ana. Thus, TORC1 is highly conserved yet flex-
ible in the composition of its upstream regula-
tors (see Table1).

AMPK Signaling

Like mammalian AMPK, S. cerevisiae AMPK
is heterotrimeric (nomenclature of mammali-
an AMPK subunits and its homologs in other
organisms are summarized in Table 1). The
AMPKa ortholog Snf1 is required primarily
for the adaptation to glucose limitation, but is

also involved in responses to other environmen-
tal stresses (reviewed in Hedbacker and Carlson
2008). Snf1 is activated on glucose or nitrogen
starvation and on sodium or alkaline stress (Or-
lova et al. 2006; Hong and Carlson 2007). The
activation of Snf1 requires the phosphorylation
of Thr210 within the conserved activation loop
(Thr210 in Snf1 corresponds to Thr172 in mam-
malian AMPKa) (Estruch et al. 1992). S. pombe
has two homologs of mammalian AMPKa:
Ppk9 and Ssp2 (see Table 1). Ssp2 is required
for the response to nitrogen starvation (Val-
buena and Moreno 2012). The AMPKa homo-
logs in C. elegans (AAK1 and AAK2) and D.
melanogaster (SNF1A) are activated by AMP
(Pan and Hardie 2002; Apfeld et al. 2004). In
D. melanogaster, AMPK is important for cellular
homeostasis and survival on energy deprivation
(Tschape et al. 2002; Lee et al. 2007; Spasic et al.
2008). In A. thaliana, the Snf1 and AMPKa ho-
mologs are the sucrose nonfermenting-1-related
protein kinase 1 (SnRK1) subfamily members,
KIN10 and KIN11. Plants also express two other
large plant-specific subfamilies, namely, SnRK2
and SnRK3 (reviewed in Polge and Thomas
2007; Ghillebert et al. 2011). However, unlike
KIN10 and KIN11 (Bhalerao et al. 1999), several
SnRK2 and SnRK3 family members do not com-
plement yeast snf1 mutations (Hrabak et al.
2003) and are, thus, not further considered in
this review. It is predicted that KIN10 and KIN11
require phosphorylation of Thr175 and Thr176,
respectively, for activation. These residues are
equivalent to Thr172 in mammalian AMPKa
(Bhalerao et al. 1999; Sugden et al. 1999). How-
ever, KIN10 is not allosterically activated by
AMP (Mackintosh et al. 1992). KIN10 and
KIN11 sense decreasing energy levels caused by
nutrient deprivation, environmental stress, or
alternate light–dark cycles (Polge and Thomas
2007; Baena-Gonzalez and Sheen 2008). Thus,
like TOR, AMPK is conserved from yeast to
human.

EVOLUTION OF CROSS TALK BETWEEN
TOR AND AMPK SIGNALING

TORC1 and AMPK are both important nutrient
sensors that have broadly opposing effects on
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metabolism. The cross talk between TORC1 and
AMPK signaling can be grouped into two cate-
gories. We refer to the situations in which
AMPK and TORC1 regulate each other directly
as “direct cross talk,” and if they converge to
regulate downstream functions as “indirect
cross talk.”

Direct Cross Talk

AMPK Regulation of TORC1

mTORC1 was shown early on to be inhibited by
the AMPK activator AICAR (5-amino-1-b-D-
ribofuranosyl-imidazole-4-carboxamide) (Bol-
ster et al. 2002; Kimura et al. 2003). However, the
molecular mechanism of mTORC1 inhibition
by AICAR was not well understood. Interesting
mechanistic insights came from observations in
nutrient-starved mouse embryonic fibroblasts
(MEFs), in which AMPK was shown to phos-
phorylate and activate the TSC complex, and
thereby to inactivate RHEB and mTORC1 sig-
naling (Fig. 1) (Inoki et al. 2003b). AMPK phos-
phorylates TSC2 on Thr1227 and Ser1345, res-
idues corresponding to Thr1269 and Ser1387
in human TSC2, respectively. AMPK-mediated
phosphorylation of TSC2 primes TSC2 for sub-
sequent phosphorylation by glycogen synthase
kinase 3b (GSK-3b) on Ser1337 and Ser1341
(Ser1379 and Ser 1383 in humans, respectively).
This phosphorylation by GSK-3b, although not
absolutely essential, further stabilizes the TSC
complex to enhance the inhibitory effect of
AMPK on mTORC1 signaling (Fig. 1) (Inoki
et al. 2006). Although the AMPK sites in TSC2
are conserved in vertebrates, they are not present
in D. discoideum or S. pombe (Huang and Man-
ning 2008; Serfontein et al. 2011; van Dam et al.
2011). Moreover, the TSC complex is absent in
S. cerevisiae, C. elegans, and A. thaliana. Thus,
not all eukaryotes use an AMPK–TSC axis to
regulate TORC1 signaling.

AMPK activation (treatment with 2-deoxy-
glucose, AICAR, or phenformin) can still cause
partial inhibition of mTORC1 in TSC2-deleted
MEFs (Hahn-Windgassen et al. 2005; Gwinn
et al. 2008), indicating that AMPK can also in-
hibit the mTORC1 pathway in a TSC-indepen-

dent manner. A breakthrough was the identifi-
cation of RAPTOR as an AMPK substrate
(Gwinn et al. 2008). AMPK phosphorylates
RAPTOR on Ser722 and Ser792, thus inhibiting
mTORC1 directly (Fig. 1). Although Ser722
and its flanking residues in RAPTOR are con-
served only in vertebrates, Ser792, along with the
critical flanking residues, are conserved from
yeast to mammals (Gwinn et al. 2008), sug-
gesting that AMPK-mediated phosphorylation
of RAPTOR could be a highly conserved cross
talk mechanism between AMPK and TORC1
(Fig. 1). However, it is not clear whether the
AMPK site is present in Kog1 (the S. cerevisiae
RAPTOR ortholog) because of a low degree of
sequence conservation of the AMPK target site
(Hardie 2011). The significance of these in-silico
predictions remains to be experimentally con-
firmed. A recent report suggests that Snf1 is
required for TORC1 inactivation under glucose
starvation conditions (Hughes Hallett et al.
2014), but it remains unclear whether this is a
direct or indirect effect of Snf1 on TORC1.

TORC1 Regulation of AMPK

Insulin signaling inhibits AMPK in a variety of
tissues, including cardiomyocytes, adipocytes,
and hepatocytes (Witters and Kemp 1992; Gam-
ble and Lopaschuk 1997; Kovacic et al. 2003;
Clark et al. 2004; Horman et al. 2006). This de-
crease in AMPK activity was attributed to inhib-
itory phosphorylation of AMPKa1-Ser485 or
AMPKa2-Ser491 by AKT (Kovacic et al. 2003;
Horman et al. 2006; Berggreen et al. 2009; Ning
et al. 2011; Valentine et al. 2014). However, a
study in mouse hypothalamus showed that lep-
tin signals through the mTORC1 effector S6K to
phosphorylate these sites (Dagon et al. 2012),
suggesting that these sites are phosphorylated
by different kinases in different tissues (Fig. 1).
As mentioned earlier, phosphorylation of
Thr172 is required for AMPK activity. Two stud-
ies showed that inhibitory phosphorylation
of AMPKa1-Ser485 or AMPKa2-Ser491 does
not lead to loss of Thr172 phosphorylation, sug-
gesting that the inhibitory phosphorylation
of AMPK serves as an off switch that inhibits
AMPK even when AMPKa is phosphorylated
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at Thr172 (Dagon et al. 2012; Valentine et al.
2014). However, in some other studies, Ser485/
491 phosphorylation is associated with a de-
crease in Thr172 phosphorylation (Kovacic et
al. 2003; Horman et al. 2006; Berggreen et al.
2009). A recent report supports the notion that
AKT-mediated phosphorylation of AMPKa1
at Ser485 reduces Thr172 phosphorylation.
Interestingly, the equivalent site on AMPKa2
(Ser491) is not an AKT target, but is phosphor-
ylated by AMPK a2 itself (Hawley et al. 2014).

In mouse liver, rapamycin promotes phos-
phorylation of AMPKa on Thr172, which, in
turn, leads to an increase in AMPK activity
(Chaveroux et al. 2013). A similar effect of ra-
pamycin was observed in S. cerevisiae, in which
rapamycin induced phosphorylation of Snf1
on Thr210 (Orlova et al. 2006). Nomura et al.
(2010), however, did not observe an increase of
Snf1 phosphorylation on Thr210 after rapamy-
cin treatment. This difference could be caused
by Snf1 overexpression in the former study.
These observations suggest that, at least in bud-
ding yeast and mammals, TORC1 may also neg-
atively regulate AMPK by decreasing phos-
phorylation of Thr172 (mammals) or Thr210
(S. cerevisiae) in an indirect fashion.

Cross Talk between mTORC1 and AMPK
at the Lysosomal Surface

A recent report suggests that, on glucose star-
vation, the v-ATPase-RAGULATOR complex
binds AXIN/LKB-1 to promote AMPK phos-
phorylation and activation at the lysosomal
surface. Concurrently, AXIN inhibits GEF ac-
tivity of RAGULATOR toward Rags, causing
mTORC1 inactivation (Zhang et al. 2014).
This regulation seems to occur only under glu-
cose starvation conditions because AXIN is not
required for mTORC1 inactivation on amino-
acid starvation (Zhang et al. 2014). Thus, it ap-
pears that v-ATPase-RAGULATOR, known to
be involved in mTORC1 activation by amino,
acids, is also required for AMPK activation un-
der glucose starvation at the lysosomal surface.
Although this intriguing model awaits further
confirmation, these observations suggest that
lysosomal surfaces may represent a key plat-

form, in which nutrients are sensed in a recip-
rocal manner by both mTORC1 and AMPK.
Thus, the presence of AMPK, TSC, and
mTORC1 on the surface of the lysosome could
facilitate AMPK-mTORC1 cross talk via
AMPK-TSC and AMPK-RAPTOR interactions.

Indirect Cross talk

Opposing Roles of TORC1 and AMPK
in Controlling Autophagy

Autophagy is a process in which cytoplasmic
components, including macromolecules and
organelles, are degraded in the lysosome during
periods of low nutrient availability. Although
rapamycin was long known to induce autoph-
agy in mammals (Blommaart et al. 1995), the
underlying molecular mechanism remained
elusive. The identification of ULK1 as a direct
target of both mTORC1 and AMPK was an im-
portant step toward understanding how nutri-
ent sensors regulate autophagy. On nutrient
stimulation, mTORC1 prevents autophagy by
phosphorylating ULK1 on Ser758, there-
by inhibiting its interaction with AMPK
(Hosokawa et al. 2009; Kim et al. 2011). On
nutrient stress, AMPK, on the one hand, inhib-
its mTORC1 to prevent Ser758 phosphoryla-
tion on ULK1, leading to ULK1-AMPK inter-
action and, on the other hand, phosphorylates
ULK1 on multiple sites (Ser317, Ser467, Ser555,
Thr575, Ser637, and Ser777) to activate ULK1
and autophagy (Fig. 2A) (Egan et al. 2011; Kim
et al. 2011). As another level of regulation,
ULK1 exerts a negative feedback signal on
both mTORC1 and AMPK. ULK1 phosphory-
lates RAPTOR on residues Ser855, Ser859,
Ser863, Ser877, and Ser792. This phosphoryla-
tion inhibits mTORC1 activity by weakening
the interaction of mTORC1 with its substrates
(Dunlop et al. 2011; Jung et al. 2011). ULK1
also phosphorylates all three AMPK subunits,
AMPKa1 (S360/T368), AMPKb2 (S486/
T488), and AMPKg1 (S260/T262) (residues re-
fer to rat AMPK), to dampen AMPK activation
(Fig. 2A) (Loffler et al. 2011). Thus, ULK1 not
only induces, but also down-regulates autoph-
agy. In S. cerevisiae, inhibition of TORC1 results
in dephosphorylation of Atg13, which leads to
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phosphorylation of the proautophagic kinase
Atg1 (ULK1 ortholog) and activation of au-
tophagy (Kamada et al. 2010; Kijanska et al.
2010; Yeh et al. 2010; Kraft et al. 2012). Whether
TORC1 also directly phosphorylates Atg1 re-
mains to be shown. ATG1 and ATG13 were iden-
tified as multicopy suppressors of the glycogen-
deficient phenotype of cells lacking Snf1. Au-
tophagy is impaired in snf1 mutant cells starved
of nitrogen or entering stationary phase. Thus,
it was proposed that Snf1 is a positive regulator
of autophagy, probably, via Atg1 (Wang et al.
2001). However, further investigation is re-
quired to elucidate the mechanisms by which
Snf1 controls autophagy.

TORC1 inhibition promotes autophagy in
S. pombe (Takahara and Maeda 2012), D. dis-
coideum (Otto et al. 2003), C. elegans, D. mela-
nogaster, and A. thaliana (Scott et al. 2004; Han-
sen et al. 2008; Liu and Bassham 2010), and the
respective ULK1 ortholog in each organism has
been shown to be required for induction of au-
tophagy (Tekinay et al. 2006; Kohda et al. 2007;
Scott et al. 2007; Egan et al. 2011; Suttangkakul
et al. 2011). Whereas the role of AMPK in au-
tophagy needs to be shown in S. pombe and
D. discoideum, AMPK activation has been
shown to trigger autophagy in C. elegans, D.
melanogaster, and A. thaliana (Diaz-Troya et al.
2008; Lippai et al. 2008; Egan et al. 2011). In
these cases, it is likely that AMPK mediates
its effect on autophagy via phosphorylation
of ULK1 orthologs. Interestingly, in C. elegans,
UNC-51 (ULK1 ortholog) has two conserved
AMPK sites (Ser555 and Ser574), indicating
that UNC-51 could be a conserved AMPK tar-
get (Egan et al. 2011). However, difficulties in
aligning the poorly conserved Ser/Thr-rich do-
main in ULK1 and its homologs makes it diffi-
cult to assess whether the residues are conserved
in other eukaryotes.

Opposing Roles of AMPK and TORC1
in Controlling Lipid Metabolism

AMPK and mTORC1 show opposing effects on
lipid metabolism. Two basic building blocks of
membranes, fatty acids and sterols, are under
control of the SREBP transcription factors

(Foretz et al. 1999; Shimano et al. 1999; Shimo-
mura et al. 1999). mTORC1 activates SREBPs
and lipid synthesis via two mechanisms. First, in
an S6K-dependent fashion, TORC1 regulates
the maturation of SREBPs to promote de novo
lipid synthesis (Porstmann et al. 2008; Duvel
et al. 2010). Second, in an S6K-independent
fashion, mTORC1 directly phosphorylates the
phosphatidic acid phosphatase LIPIN-1 (a neg-
ative regulator of SREBP-1), preventing its
translocation into the nucleus and, thus, pro-
moting SREBP transcriptional activity (Fig. 2B)
(Peterson et al. 2011). Conversely, AMPK acti-
vation by AICAR or 2-deoxyglucose inhibits
nuclear accumulation of SREBP-1 (Porstmann
et al. 2008). AMPK phosphorylates SREBP-1
on Ser372 to prevent its nuclear translocation,
leading to inhibition of lipogenesis and lipid
accumulation (Li et al. 2011). Yet another way
by which AMPK inhibits lipogenesis is by phos-
phorylating and inactivating the acetyl CoA
carboxylases ACC1 and ACC2 on Ser79 and
Ser221, respectively (Fig. 2B) (Munday et al.
1988). Rapamycin promotes phosphorylation
of ACC1 on Ser79 in mouse liver (Chaveroux
et al. 2013). It would be of interest to determine
whether this increase in ACC1-Ser79 phosphor-
ylation is mediated by AMPK.

In S. cerevisiae, Snf1 phosphorylates and in-
activates Acc1 (Mitchelhill et al. 1994; Woods
et al. 1994). However, the phosphorylation sites
in Acc1 remain to be determined. snf1 mutant
cells have a higher amount of fatty acids under
glucose-limiting conditions (Usaite et al. 2009;
Zhang et al. 2011). Thus, the role of AMPK in
the regulation of lipogenesis seems to be evolu-
tionarily conserved. Furthermore, in cells lack-
ing the PP2A-like phosphatase Sit4, lipid drop-
let content is reduced possibly because of the
hyperactivation of Snf1 (Bozaquel-Morais et al.
2010). Two independent groups showed that
deletion of SIT4 leads to a constitutive increase
in phosphorylation of Snf1 on Thr210 (Boza-
quel-Morais et al. 2010; Ruiz et al. 2011). Be-
cause Sit4 is negatively controlled by TORC1
(Di Como and Arndt 1996; Jacinto et al. 2001;
Rohde et al. 2004), these results suggest a con-
nection between TORC1 and AMPK in regulat-
ing lipid droplet biogenesis (Bozaquel-Morais
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et al. 2010). Further studies are required to elu-
cidate the cross talk between TORC1 and Snf1
in lipid droplet formation.

Opposing Roles of TORC1 and AMPK
in Controlling Aging

Aging is defined as an accumulation of cellular
damage over time, resulting in disease and
death of the organism. Genetic and chemical
inhibition of TORC1 have been shown to in-
crease the life span of mice (Harrison et al.
2009; Miller et al. 2011), C. elegans (Vellai
et al. 2003; Jia et al. 2004; Pan et al. 2007; Korta
et al. 2012), D. melanogaster (Kapahi et al. 2004;
Bjedov et al. 2010), and S. cerevisiae (Kaeberlein
et al. 2005). Dietary restriction (DR) also ex-
tends life span and appears to act largely
through inhibition of TORC1. DR is unable to
further increase life span when TORC1 is inac-
tive in D. melanogaster (Kapahi et al. 2004; Bje-
dov et al. 2010) and S. cerevisiae (Kaeberlein
et al. 2005). The mutual antagonism of TOR
and AMPK is also present in controlling aging.
For example, in rats, it was observed that AMPK
activity declines with age (Ljubicic and Hood
2009), and activation of AMPK leads to life span
extension (Anisimov 2010). Furthermore, met-
formin increases life span and activates AMPK
in mice (Martin-Montalvo et al. 2013). Activa-
tion of AMPK also extends life span in C. elegans
(Apfeld et al. 2004; Curtis et al. 2006; Schulz
et al. 2007), D. melanogaster (Lee et al. 2010),
and A. thaliana (Thelander et al. 2004; Baena-
Gonzalez and Sheen 2008). Taken together,
these observations indicate important and op-
posing roles of AMPK and TOR signaling in
controlling aging. However, in S. cerevisiae,
the role of AMPK and TOR in controlling aging
seems to differ from what is known in other
organisms. In S. cerevisiae, cells lacking Sip2
(one of the b subunits of AMPK) have a short-
ened life span and this phenotype has been at-
tributed to an increase in Snf1 activity (Ashrafi
et al. 2000). Lu et al. (2011) recently proposed
that as yeast cells age, Sip2 becomes deacety-
lated, thus reducing the inhibition of Snf1 and
inducing aging via phosphorylation of the
TORC1 substrate Sch9. Snf1 would directly ac-

tivate Sch9 by phosphorylating residues differ-
ent from those targeted by TORC1. Further ex-
periments are required to determine how Snf1 is
involved in aging in budding yeast.

Aging is accompanied by an inhibition of
autophagy (Cuervo 2008; Mizushima et al.
2008). DR and rapamycin could extend life
span by activating autophagy because an au-
tophagy deficiency leads to a decrease in turn-
over of cellular components and accumulation
of defective organelles within the cell. Further-
more, reduced autophagy affects various essen-
tial processes in mice, such as immune regula-
tion (Levine et al. 2011), lymphocyte survival
(Miller et al. 2008), maintenance of fetal hema-
topoietic stem cells (HSCs) (Mortensen et al.
2011), and various liver functions (Zhang and
Cuervo 2008), ultimately decreasing life span. A
brain-specific knockout of the autophagy gene
Atg5 or Atg7 in mice causes accelerated neuronal
degeneration and shorter life span (Hara et al.
2006; Komatsu et al. 2006). Furthermore, inhi-
bition of autophagy by B-cell lymphoma-2
(BCL-2, an antiapoptotic protein) binding to
BECLIN1 (Bcl-2-interacting protein, autoph-
agy related protein) allows tumor formation,
leading to a shorter life span (Pattingre et al.
2005; reviewed in Pattingre and Levine 2006).
The above findings suggest an important role
for TOR- and AMPK-regulated autophagy in
determining life span.

Opposing Roles of TORC1 and AMPK in the
Control of Transcription Factors

p53, SREBP-1 (discussed above), HIF1a, Gln3,
and Msn2 are some of the important tran-
scription factors regulated by both AMPK and
TORC1. The tumor suppressor p53 is a sensor
of genotoxic stress that protects cells from DNA
damage by inducing cell-cycle arrest. AMPK
and mTORC1 regulate p53 in opposite ways.
Although AMPK phosphorylates p53 on Ser15
to stabilize it (Jones et al. 2005), mTORC1 in-
hibits this phosphorylation (Fig. 2C). mTORC1
does this by directly phosphorylating the a4
subunit of the PP2A (protein phosphatase 2A)
phosphatase, thereby activating it to dephos-
phorylate phospho-Ser15 and destabilize p53
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(Kong et al. 2004; Feng 2010). In addition,
AMPK directly phosphorylates MDMX on
Ser342, thereby protecting p53 from ubiquity-
lation (He et al. 2014). Conversely, p53 activates
AMPK and inhibits mTORC1 signaling by in-
creasing expression of SESTRINS (SESTRIN1
and SESTRIN2). SESTRINS are highly con-
served proteins encoded by genes whose expres-
sion is up-regulated in cells exposed to a variety
of stresses, such as DNA damage, oxidative
stress, and hypoxia. SESTRINS activate AMPK
via an unknown mechanism. Active AMPK
leads to activation of TSC2 and a decrease in
mTORC1 activity (Budanov and Karin 2008).
Recent reports suggest that SESTRINS also in-
hibit mTORC1 in an AMPK-independent man-
ner through the GATOR complex (Chantranu-
pong et al. 2014; Parmigiani et al. 2014) or via
RagA/B (Peng et al. 2014), thus preventing
mTORC1 lysosomal localization in response
to amino acids. Furthermore, p53 inhibits
mTORC1 by increasing expression of genes
that negatively regulate mTORC1, such as igf-
bp3 (insulin-like growth-factor-binding protein
3), pten, and tsc2 (Fig. 2C) (reviewed in Buda-
nov 2011). Thus, the interplay between AMPK,
mTORC1, and p53 balances the growth-inhib-
iting response to cellular stress versus a commit-
ment to cell growth.

Under hypoxic conditions, many organisms
show a conserved transcriptional response me-
diated by the heterodimeric transcription factor
hypoxia inducible factor 1 (HIF1) (Wang and
Semenza 1993). HIF1, composed of a and b

subunits, regulates a gene- expression program
required for adaptation to decreasing concen-
trations of oxygen (hypoxia). HIF1a subunits
have a very short half-life under normoxic con-
ditions. However, under hypoxic conditions,
the degradation of HIF1a is delayed (reviewed
in Weidemann and Johnson 2008). Although
mTORC1 up-regulates HIF1a protein synthesis
(Hudson et al. 2002), depletion of AMPKa
leads to elevated HIF1a levels in MEFs (Shack-
elford et al. 2009; Faubert et al. 2013). In addi-
tion, inhibition of mTORC1 signaling reduces
HIF1a levels in AMPKa-null cells (Faubert
et al. 2013). Besides the positive signals from
mTORC1 to HIF1a, HIF1a shows a negative

feedback loop on mTORC1 signaling by stabi-
lizing and activating the TSC complex via the
transcriptional activation of REDD1 (regulated
in development and DNA damage responses 1)
(Brugarolas et al. 2004; DeYoung et al. 2008).
These findings show the intricate network be-
tween energy-sensing signals (AMPK) and
growth-inducing signals (mTORC1) in regulat-
ing HIF1a in opposing ways.

In S. cerevisiae, TORC1 and Snf1 converge
in the regulation of the two transcription fac-
tors Gln3 and Msn2. Gln3 mediates activation
of nitrogen catabolite-repressible (NCR) genes.
TORC1 and Snf1 control the phosphorylation
status of Gln3 in response to nitrogen and glu-
cose, respectively (Beck and Hall 1999; Bertram
et al. 2002). Although TORC1 phosphoryla-
tion keeps Gln3 in the cytoplasm, Snf1-depen-
dent phosphorylation correlates with increased
accumulation of Gln3 in the nucleus. The op-
posing effects of the two different phosphory-
lation events suggest that TORC1- and Snf1-
dependent phosphorylation occur at distinct
sites (Bertram et al. 2002). However, these
sites remain to be identified. The TORC1 and
Snf1 pathways also regulate the subcellular lo-
calization of Msn2, a transcriptional activa-
tor of stress-response-element (STRE)-regulat-
ed genes. Active Snf1 kinase prevents nuclear
localization of Msn2 in response to TORC1 in-
hibition by rapamycin. Thus, Snf1 and TORC1
may act at similar steps in the regulation of Msn2
(Mayordomo et al. 2002). Finally, TORC1 and
Snf1 phosphorylate Hcm1 to inhibit and stim-
ulate, respectively, nuclear translocation of this
transcription factor (Rodriguez-Colman et al.
2013). The nuclear translocation of Hcm1 leads
to a shift in metabolism from fermentation to
respiration. Based on these findings in budding
yeast, AMPK and TORC1 may also participate in
the regulation of the subcellular localization of
nutrient-related transcription factors in higher
eukaryotes.

FUTURE DIRECTIONS

AMPK and mTOR are energy sensors and met-
abolic regulators that integrate multiple inputs
to mediate cellular homeostasis. Cellular energy
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and nutrient status dictate whether mTORC1
signaling drives anabolic processes or, converse-
ly, whether AMPK is activated to redirect cell
metabolism toward catabolic processes, such
as autophagy. An increasing number of metab-
olites and signaling intermediates are being
shown to regulate AMPK and TOR signaling.
Further understanding of the relationship be-
tween TOR and AMPK in coordinating amino-
acid and energy-sensing pathways in mammals
and other model organisms will provide new
insights into the regulation of whole body en-
ergy homeostasis. The precise spatiotemporal
coordination of TOR and AMPK in the cell
remains unclear. The lysosomal surface appears
to serve as a platform in which both mTORC1
and AMPK could interact in response to nutri-
ent availability. Finally, the complex interplay
of AMPK and mTOR in regulating cellular en-
ergy balance is rapidly gaining clinical rele-
vance in diabetes and cancer. Novel therapies
for metabolic disease may emerge from phar-
macological or nutritional manipulation of this
interplay.
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