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0. INTRODUCTION 

0.1. In any given economy there must be a number of commodities that enter into pro- 
duction and which are used up, and whose available stock cannot be increased. Examples 
like fossil fuels come readily to mind. It would seem reasonable to argue that in the long 
run the limited availability of these commodities, together with their technological import- 
ance, would begin to act as a constraint on the economy's growth potential. In fact 
several recent studies have laid great emphasis on this possibility.3 Although the point 
is an obvious one, most economic studies of the properties of long-run plans neglect it.4 
In this paper, therefore, we explore in a rather preliminary way the problems that appear 
to arise naturally when the existence of exhaustible resources is incorporated into the 
study of intertemporal plans. 

It appears that questions in this area are hard to answer. For even in the simplest 
of environments where it is supposed that there is perfect foresight, one is concerned not 
merely with the optimal depletion of exhaustible resources but with the optimal rate of 
investment as well. The two must plainly be interrelated. The latter problem on its own 
is hard, and the combined problem is very complex. In fact it will appear in the course 
of the arguments that follow that intuition is not a very good guide for this joint problem. 
In any case, the assumption of perfect foresight is particularly dubious here since it would 
appear almost immediate that an investigation of intertemporal plans in the presence of 
exhaustible resources readily invites consideration of the possibilities of large-scale 
alterations in technology at dates in the future that are inherently uncertain. Moreover, 
it is clear that such extensive technological changes would not be achievable costlessly. 
In this paper, therefore, we attempt to demonstrate how one might, in a relatively simple 
manner, bring such considerations as these to bear on a set of questions that have generated 
a considerable amount of interest in recent years. 
0.2. It is plain of course that the mere existence of a resource that is exhaustible is not a 

1 First version received April 1973; final versioni accepted February 1974 (Eds.). 
2 Among the many to whom acknowledgement is due for their comments we would like to mention 

Christopher Bliss, Steve Glaister, Terence Gorman, Frank Hahn, Tjalling Koopmans, Bill Nordhaus, 
Robert Solow, Joseph Stiglitz, Niel Vousden and, in particular, Harl Ryder. 

3 We have in mind the works of Forrester [8] and Meadows et al. [20]. But see also Cole et al. [41 
for a penetrating commentary on the Forrester analysis; as well as the lively comments of Beckerman [3]. 

4 Thus the extensive literature on optimal planning is clearly concerned with horizons long enough 
for such constraints to become effective, and yet it rarely mentions them. Exceptions are Anderson [1], 
Ingham and Simmonds [15], Vousden [27], and the seminal and rather neglected work of Hotelling [14]. 
Professors Koopmans [18], Solow [25], and Stiglitz [26] have recently, and independently of us, explored 
different aspects of the question under review here. Their findings are complementary to ours and, in 
what follows, we shall have occasion to refer to the tasks that they have undertaken in their contributions. 
For a detailed survey of recent modelling experiences in the area of exhaustible resources, see Dasgupta [7]. 
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sufficient basis for apocalyptic visions. Even if we assumed away the possibility of techno- 
logical change, exhaustible resources would pose a " problem " only if they are, in some 
sense, essential in production. Intuition suggests that one regards a resource as being 
essential if output of final consumption goods is nil in the absence of the resource. Other- 
wise, call the resource inessential.' It is then natural to ask whether feasible output must 
eventually decline to zero in an economy that possesses an essential exhaustible resource. 
Rather surprisingly, perhaps, the answer turns out to be " no ", and this even if there is 
no technological progress.2 The point, of course, is that the possibilities open to such 
an economy depend crucially on the ease with which reproducible inputs can be substituted 
for the exhaustible resources. It follows, then, that the effect that the existence of an exhaust- 
ible resource will have on the characteristics of an optimal plan will depend on the extent 
of such substitution possibilities. In particular we demonstrate below that the elasticity 
of substitution between reproducible inputs and exhaustible resources plays an important 
and a rather direct role in the properties of an optimal plan. A related question that 
arises is whether one should, as intuition suggests, deplete an essential exhaustible resource 
slowly over the planning horizon, or whether one should exhaust it in finite time, closing 
down and living off the existing capital stock. In the same way one wants to know whether 
it is optimal to deplete an inessential exhaustible resource in finite time and, subsequently, 
rely solely on reproducible capital to continue production. In Section 1 we investigate 
this range of issues under the assumption that future technology is known with certainty 
to be the same as that available at present. As one would expect, the analysis will give an 
indication of the structure of relative prices that would sustain an optimal policy. 

While intuition suggests that the elasticity of substitution will be an important para- 
meter, it also suggests that it would be inappropriate to regard the technology of the 
economy as unchanging over time. Even if under present technological knowledge an 
exhaustible resource is judged essential it would be unwise to rule out the possibility of 
substitutes being discovered in the future. In one sense this is at the core of the controversy 
between Forrester and his critics. In their critiques of the results published by Forrester 
[8], both Maddox [19] and Nordhaus [21] argue that as an essential exhaustible resource 
is depleted its market price will rise, forcing entrepreneurs to search for cheaper substitutes. 
This argument clearly has force, though in the absence of a well-articulated intertemporal 
plan or a satisfactory set of forward markets it is not at all plain that market prices will 
be providing the correct signals.3 Moreover, there are some additional problems that 
arise in this context, for many of the difficulties that are involved in making policy recom- 
mendations about the rate of depletion of exhaustible resources stem from the fact that 
crucial aspects of this problem are inherently uncertain, and it is not clear that an adequate 
class of contingent markets exists. There is, of course, some uncertainty about the amounts 
of resources actually available at any given date, but one would be inclined to feel that 
this is not the most interesting source of uncertainty. Rather, it would seem plausible that 
the really important source of uncertainty is connected with future technology. There is, 
for example, a chance that the discovery of substitutes will render previously essential 
resources inessential. This has happened a number of times in the past, and one would 
expect that the best policy towards resource depletion would depend on the probability 
of such an occurrence. In Section 2 we attempt to analyse this aspect of the problem. 
We assume in particular that technical change is costlessly attained and that we know in 
advance the form of the technical change (i.e. the nature of future technology and resource 
availability) but that the date of its appearance is random. 

1 Later we shall note that this method of partitioning resources that are exhaustible is not as helpful 
as might appear at first sight. 

2 See Solow [25] for a demonstration of this. 
3 Stiglitz [26] and Dasgupta [7] have investigated the properties of a competitive system where futures 

markets do not exist and where expectations are not necessarily fulfilled. As would be suspected, it is 
very easy in such an economy to have a systematic over or under utilization of the resource: for an analysis 
of the manner in which they have actually allocated resources over time see Heal [10, 12]. 
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In point of fact, of course, substitutes are not obtained at zero cost. One would 
like (finally) to analyse a problem where resources are deployed in the search for substitutes 
and where, at the same time, there is no guarantee that the search will be successful. In 
such a situation the problem is not merely one of obtaining the optimal depletion rate 
for the exhaustible resources; it also involves finding the correct allocation of the resources 
used between the production of goods and expenditure on research. In a subsequent 
paper we shall analyse this aspect of the problem. 

The problems that we are considering in this paper arise from the implications that a 
finite earth has for intertemporal planning. In this context the treatment of population 
poses considerable difficulties. It would clearly be unreasonable to consider an exogen- 
ously given rate of population increase, because the very factors that we are attempting to 
allow for must eventually force a voluntary or involuntary reduction in rates of population 
growth on society. There is thus, in principle, a clear need for an optimal population 
policy, together with an optimum consumption and depletion policy. Professor Koopmans 
[18] has recently investigated a special form of this problem which consists in assuming 
a constant and given population size, with the interesting twist that the planning horizon is 
regarded as choice variable. The Koopmans problem in effect consists of locating an 
optimal depletion policy and the optimal survival period for an economy that contains 
a given and fixed population. It looks as though the population problem in its general 
setting is particularly complex and we have, so far, been able to obtain some preliminary 
results only.' In this paper, therefore, we assume a constant level of population through 
time. We are, then, analysing a world in which the objective of zero population growth 
has been acccepted and achieved. Such a device poses its own interpretive problems, since 
one has to assume away the existence of a level of consumption below which life cannot 
be sustained. We can, of course, by suitable assumptions, avoid zero consumption along 
the optimum programme. But in effect we shall be supposing that the subsistence level 
of consumption is nil. 

0.3. In order to clarify ideas it will prove convenient to review briefly the simplest of the 
models that attempt to capture the presence of exhaustible resources. What we review 
here is a slight generalization of the well-known " cake-eating " problem analysed first 
by Hotelling [14] and later by Gale [9]. It would seem plausible that the " cake-eating " 
problem would be a basic building block of any production model that is to catch the 
issues that we are concerned with in this paper. In subsequent sections of this paper we 
shall establish the precise sense in which this claim is true. 

But for the moment assume that there is no production. The economy possesses, 
to begin with, a finite stock (inventory), S0, of a homogeneous consumption good. By 
an absence of production in this economy we mean that the social rate of return to invest- 
ment is zero. Our simple generalization consists of the supposition that a substitute for 
the resource is already available, in the sense that there is a steady flow of the consumption 
good that is fed into the economy at the rate M. Denote by Ct the rate of consumption 
at time t, and by U(CQ) the instantaneous utility of consuming C,. We assume, as is usual, 
that U( ) is monotonically increasing, strictly concave, and twice differentiable everywhere. 
We also suppose, as seems natural, that 

It U'(C) = + G,O 2 ... (O.1) 
C-o 

Write i(C) =-CU"(C)/U'(C), for the elasticity of marginal utility. We take it that 

+o> It (C) =- >0. ...(0.2) 
c-0 

1 For an analysis of optimum population policies in the presence of a fixed factor (land), and external 
diseconomies through large population sizes, see Dasgupta [5]. 

2 We follow the by now standard notation: *, = dxjldt and f'(x) = df/dx. In what follows we shall 
often drop the time subscript. This should not cause any confusion. 
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Social welfare over the interval [0, T] will be taken to be of a utilitarian form, yielding an 
amount 

T 

e-6tU(Ct)dt,, .. (0.3) 
0 

where 3 is strictly positive. 
One is therefore concerned with obtaining that consumption profile, Ct, which will 

maximize 

T e"tU(Ct)dt subject to 

St = M-Ct, 

where Ct, St> 0, M_0, anld where S0 is givenl 
In exploring the problem as presented in (0.4) the natural thing to do is to introduce 

multipliers for the various constraints and write down the Hamiltonian of the system as 

y = e-tU(Ct)+e-etpt(M-Ct)+e-tqtSt ...(0.5} 
where 

qt ?0 and qtSt = 0. ...(0.6) 

We have not explicitly introduced the multiplier associated with the non-negativity of 
Ct simply because we know in advance that given (0.1) the multiplier will throughout be 
zero. It is then immediate that for a programme to be optimal it is necessary that 

Pt = U'(Ct) ...(0.7) 
and also that Pt, the spot price of consumption, should satisfy the differential equation 

Pt =q, +P 6p,...(0.8) 
Using (0.7) in (0.8) one obtains 

c = - + qt *_0_9) 
C 4(C) j(C)U'(C) 

From (0.6) and (0.9) it is clear that there are two (possibly repeated) phases, namely: 
Phase A. During which St> 0 and hence 

c=- a(C) <0 ...(0.10) 

and Phase B. During which equation (0.9) holds with qt >0, so that St = 0. 
The solution to problem (0.4) for the case M = 0 is well known (see e.g. Heal [11]). 

Consequently we sketch the argument for the case M> 0. One begins by noting from 
equation (0.9) that phase A cannot continue for all t ? 0 along an optimal policy. For 
then by (0.2) and (0.10), given any s>0 and C0 there will exist a T such that Ct < e for 
t > T, and this would imply that St-* oo, which is plainly inefficient. From (0.4) it is 
clearly feasible to have C, > M for t _ 0. This suggests a policy of following phase A 
for an initial period [0, T] followed by phase B for t > T. During phase A equation 
(0.10) holds. Both C0 and T are determined by the requirements 

T 
Ctdt =So+MTand lt Ct=CT=M. 

J0 tT- 

For t > T (i.e. during phase B) we have Ct = M. Thus one sets q, = 0 for 0 ? t<T 
and 

3 
qt U for t2 T. 

U'(M) 
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The proposal satisfies the necessary conditions for an optimal policy. The Hamiltonian 
(0.5) is concave. It is also the case that along the proposed policy 

lt e- tp,S, = 0. 
t-+wo 

It follows that we have 

Proposition 1. An optimal policy for the problem (0.4) exists and it is uniquely given. 

Proposition 2. If M>0 the optimal policy consists of precisely two phases. It consists 
initially of phase A until a time T at which the stock, St, is nil. From T onwards the policy 
consists of phase B during which Ct = M. (Figure 1 illustrates the policy described in 
Proposition 2.) 

The following proposition is well known. 

Proposition 3. If M = 0, the optimal policy consists of only one phase, namely phase A. 
The initial consumption rate, C0, is so chosen that 

It St =0. (See Figure 1.) 
t- oo 

Ct 

Optimal Consumption Policy of 
Pr-oposition 2 

I Optimal Consumption 
Policy of 

B X Pr-oposition 3 

0 T t 

FIGURE 1 

It is an implication of both Propositions 2 and 3 that the consumption rate is a non- 
increasing function of time. Furthermore, Proposition 2 might suggest that if a resource 
is inessential the economy should not carry a positive inventory of it indefinitely. It turns 
out that neither of these implications necessarily carries over into a model with production. 

1. PRODUCTION 

1.1. The economy introduced in Section 0.3 was instrumental merely in fixing ideas and 
was in itself of limited interest, as there was no production. Consequently we introduce 
production now. But before introducing exhaustible resources into a production model 
in a fully-fledged way we present, in this sub-section, a quick review of a production model 
that incorporates one aspect of the economy discussed in the previous section-namely 
that a steady stream of a resource that enters in production is fed into the economy from 
outside. By this device we are, of course, assuming away the essence of the problem. 



8 REVIEW OF ECONOMIC STUDIES 

There are, nevertheless, two reasons why we shall wish to review such a model here. First, 
it will allow one to see the sharp differences in the properties of an optimal path in an 
economy that has no exhaustible resources, and one in which such a resource constraint 
bites in the long run. Second, we shall use the model presented in this sub-section in 
our discussion of the specific issues that arise when one considers technological change. 

We suppose now that there is a single non-deteriorating consumption good which,. 
in conjunction with the service provided by a perfectly durable commodity (e.g. an energy 
source), can reproduce itself. The quantity of the durable commodity providing service 
is given and cannot be augmented. It is assumed to provide service at the constant rate M. 
We can, if we like, assume that the flow of service from the durable good can be stored 
costlessly, but we shall wish to suppose here that at the start of the planning period there 
is no inventory of the service. 

Denote by Kt the stock of the reproducible composite commodity and by Zt the rate 
of utilization of the service at time t. Efficient output possibilities are represented by the 
production function G(K, Z). It is supposed that G is increasing, twice differentiable, 
strictly concave and that 

G(0, Z) > 0 ... (l.l a) 

lt -(K, M)<6 ...(1.lb) 
K-oo OK 

Gt 
- 

(K, M) > . ... (l.lc) 
K-*O 8K 

It follows that consumption possibilities can be predicted by the equation 

K = G(K, Z)-C. ... (1.2) 

Denote by V, the inventory of the service of the durable commodity at t. It follows that 
the rate, Zt, at which one utilizes the service can be predicted by the equation 

it = M-Zt, where Vt _ 0 all t > 0. ...(1.3) 

The problem we are interested in is one of obtaining time profiles of Ct and Zt which will 
maximize 

e-6tU(Ct)dt subject to equations (1.2), (1.3) and the constraints . (1.4) 

Ct, Zt, Vt, Ky O, and where Ko(>0) is given and V0 = 0. J 
The problem, though cast here in a rather unusual form, is a familiar one. Con- 

sequently we merely state the results and furnish no proofs. Write g(K) = G(K, M) 
and define K as the solution of g'(K) = 8. One has then 

Proposition 4. Problem (1.4) possesses a unique solution. Along the optimal policy 
Zt = M for all t > 0 (i.e. Vt = 0 for all t > 0), and the economy tends in the long run 
to the stationary-state consumption rate C = g(K), and therefore the capital stock level K. 
If Ko <K, then along the optimal path C>0 and K>0. If Ko >K then along the optimal 
path C<O andk<O. 

(Figure 2 presents a typical consumption profile of Proposition 4 for the more 
plausible case of Ko <K.) 
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Consider now a special case of the model just discussed. Assume that the production 
function G satisfies (1.lb)-(l.lc) but now strengthen (1.la) to the form 

G(O, Z)>O for Z>O. ...(1.la') 

Consider problem (1.4) for this economy, but with the difference that now Ko = 0 as well. 
That is, the economy begins with no capital stock and no inventory of the service. For 
completeness we express this special case of Proposition 4 as 

Proposition 4'. If G satisfies (1. l a') in addition to its other properties and if Ko = VO = 0, 
then Problem (1.4) possesses a unique solution. Along the optimal path Zt = M for all 
t > 0, (i.e. Vt = 0 for all t _ 0), and the economy tends, in the long run, to the stationary 
state consumption rate C = g(K), and therefore, to the capital stock levelK. Along the optimal 
path C>O andK>O. 

(Figure 2 presents a typical consumption profile of Proposition 4'.) 

Optimal Policy of 
Proposition 4 

/ Optimal Policy of Proposition 4' 

0 t 

FIGURE 2 

1.2. The economy discussed in the previous sub-section possessed no resource that was 
exhaustible. But it was suggestive, in that the technical possibilities in it were, albeit in 
a pristine form, the kind that one might be inclined to contemplate when reflecting on the 
circumstance that would prevail if, to take an example, some totally different source of 
energy (e.g. the sun) is harnessed. But presumably these are not the conditions that prevail 
as yet. Consequently we introduce exhaustible resources explicitly into production. 

We suppose now that there is a non-deteriorating composite consumption good 
which, in conjunction with an exhaustible resource in production, can reproduce itself. 
We continue to denote by K, the stock of the reproducible composite commodity at time t, 
but by R, the flow of the exhaustible resource into production at t. Efficient output 
possibilities are, therefore, represented by a production function F(K, R). It will be 
supposed that F is increasing, strictly concave, twice differentiable, and homogeneous of 
degree unity. Consumption possibilities are thus predicted by the condition 

Kt = F(Kt, Rt)-Ct. ...(1.5) 

One assumes that the economy begins with a stock, S0, of the exhaustible resource, and a 
stock, Ko, of the composite commodity. The planning problem then can be represented 
as being one of 
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maximizing { e6tU(Ct)dt subject to equation (1.5) and the constraint' 

T Rtdt < So, where t. ...(1.6) 

Ct, Kt, Rt > 0 and Ko(>0) is given 3 

As before, it would be pointless to introduce the multipliers associated with the 
non-negativity of C and K, since we have supposed (0.1). Consequently we express the 
Hamiltonian associated with problem (1.6) as 

H = e -tU(Ct) + e -tpt(F(Kt, Rt) - Ct) - ARt + e tptRt. . . .(1.7) 
where 

P-t > 0 and uetR, = 0 ... (1.8) 
and 

i. 0 Oand A (SO -j' Rtdt) = 0. ... (1.9) 

One expects (and this will be confirmed) that A>0. It should be noted that A is 
independent of time. Maximizing (1.7) with respect to C yields the condition 

Pt = U'(Ct). ...1.10) 

Likewise, maximizing (1.7) with respect to Rt yields the condition 

A = e- jt+PtOR 

Write FR = OFIOR, FK = OF/OK, etc. Equations (1.8) and (1.11) imply that when Rt>0 
along an optimal policy 

A= e-tptFR. ..p.(1.12) 

But when Rt>0, A denotes the present value shadow price of the exhaustible resource in 
utility numeraire. It follows that during an interval along an optimal path when Rt>0 
this present value shadow price remains constant. However, during this interval the 
price of the resource relative to the composite commodity numeraire is not, of course, 
constant, but equal to the marginal product of the resource. A question of importance 
is the behaviour of this relative price along an optimal programme.2 

1 We are thus supposing that extraction of the exhaustible resource is costless. Extraction costs do 
not appear to introduce any great problem, provided that we assume away non-convexities. One might 
for example, wish to assume that to extract the resource at a rate R when the remaining stock is of 
size S requires E(R, S) units of the composite good. One might suppose that E is a convex function and 
that, in particular, E(O, S) = 0, aE/SR>O and SE/IS 0 0, the last inequality indicating that one is, 
as it were, digging deeper when the stock has shrunk. To have an interesting problem one would, in 
addition, need to assume that lt aF/I9R> lt aEIMR. The planning problem (1.6) would in this event 

R O R+ 0 
be modified only to the extent that equation (1.5) would be replaced by the equation, 

k = F(K, R)- C-E(R, S). 
2 If extraction costs were introduced (see previous footnote) equation (1.12) would be replaced by the 

condition 
A = e pt[FR-ER]. 

Thus, in fact, during an interval when Rt>O the shadow price of the unextracted exhaustible resource 
relative to the composite commodity is the difference between the marginal product of the resource and its 
marginal extraction cost. But the price of the extracted resource relative to the composite commodity is 
of course its marginal product. The extraction cost could be regarded as a pure transport cost. We have 
found that even amongst professional economists there is often the belief that the price of an exhaustible 
resource should be its marginal extraction cost. It is, of course, rather obvious why this belief is false. 
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A related question is whether or not the exhaustible resource ought to be depleted in 
finite time. Towards this consider an economy for which 

It FR = Xl. ...(1.13) 
R-O 

It is an immediate implication of equation (1.11) that we shall have 

Proposition 5. If F(K, R) satisfies (1.13), then along an optimal policy, if one exists, 
Rt>O for all t ? 0. 

The sufficient condition (1.13) in Proposition 5 is, of course, unduly restrictive. One 
can relatively easily, as we shall presently, weaken it. But it is suggestive in that a condition 
that prohibits the depletion of the stock of the exhaustible resource in finite time rests 
not so much on whether the resource is essential (in the sense of output being nil in its 
absence), but rather on the behaviour of the marginal product of the resource for low 
rates of usage of the resource. To an economist this is very intuitive. 

Proposition 5 is analogous to Proposition 3 of the " cake-eating " problem. It is 
tempting to construct an analogue of Proposition 2. Towards this we complete the set 
of conditions necessary for optimality by noting that one must have as well that 

d (e-tp) -e-tpFK ...(1.14) 
dtK, 

or 
-pip =FK-3. ...(1.15) 

Now, equation (1.15), which is the familiar Ramsey condition can, in turn, be re-expressed 
on using (1.10) as 

- = (FK-b)I1q(C). ...(1.16) 

Consider now a time interval of positive measure, if one exists, during which it is optimal 
to set Rt>0. During this interval equation (1.12) is operative. It follows that on differ- 
entiating (1.12) with respect to time one obtains the condition 

a(FR) 1 _- +-p 
At FR P 

which, on using equation (1.15) reduces to the form 

A(FR) 1 E . (1.17) at FR- 

Condition (1.17) is really rather obvious, for it is a statement concerning the equality of 
the rates of return on the two assets (the exhaustible resource and reproducible capital). 

Write x _ K/R and f(x) _ F(K/R, 1). It follows from our assumptions on F that 
FK = f '(x)>0, FR = f(x)-xf'(x)<0, andf"(x)<0. Thus one has as well that d(FR)Idx> 0, 
for x>0. Write 

-f'(x)(f(x) - xf'(x)) (0 >U> 
xf(x)f"(X) ( 

for the elasticity of substitution between K and R. It is then immediate that equation 
(1.17) reduces to the form 

x _ f(x) ...(1.18) 
x x 
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Equations (1.16) and (1.18) govern an optimal programme, if one exists, during an interval 
when R,>0. Moreover, we have already established (Proposition 5) that if F satisfies 
(1.13) then equations (1.16) and (1.18) govern an optimal programme for all t 2 0. 

It is remarkable that the conditions governing an optimal programme of aggregate 
consumption and resource depletion should be so simple in form. In particular, equation 
(1.18) makes the role of the elasticity of substitution very clear. The capital-resource 
ratio changes at a percentage rate equal to the product of the elasticity of substitution 
and the average product per unit of fixed capital. The former gives an indication of the 
ease with which substitution can be carried out, and the latter can be regarded as an index 
of the importance of fixed capital in production. Thus, the easier it is to substitute, and 
the more important is the reproducible input, the more one wants to substitute the repro- 
ducible resource for the exhaustible one. 

We have already established that if F satisfies (1.13) then along an optimal policy, 
if one exists, R,>0 for all t ? 0. The following Lemma yields considerable information 
regarding the broad characteristics of an optimal depletion policy. 

Lemma. Along an optimal programme, if one exists, an interval during which R = 0 
cannot be followed by an interval during which R > 0. 

Proof. Recall that d(FR)Idx>0. Assume that sup (f(x) - xf'(x)) is finite (for if not, 
the Lemma is trivially true in view of Proposition 5). Suppose then the contrary and 
let there be a change in phase at T. Assume first that the interval during which R = 0 
is non-degenerate and that RT>0. Then since K, is continuous one has 

lt (f(xt)-xlf'(x,)) = sup (f(X)-Xf'(X)) > (f((XT)-XTrf'(XT))- 
t-T- 

But lt e-tpt = e-6TPT. Such a phase change, therefore, is impossible since, given 
t-T- 

equations (1.11) and (1.12), one must have 

It e 
- 

(t + pt(f(x) -xtf '(xt)))=e = TPT(f(XT) - XTf (XT)), 
t-T- 

with jti ? 0. 
The other possibility is that RT = 0 but that during an interval (T, T1) one sets Rt>0. 

But if this is so then during (T, T1) equation (1.18) holds, and in order for (1.18) to hold 
it must be the case that lt Rt >0. In other words, there must be a discontinuity in R 

t--T+ 

at T. Thus f(XT)-XTf'(XT)> lt (f(xt)- x1f'(xA)). One argues now, as earlier, that 
t-T + 

such a phase change is impossible since equations (1.11) and (1.12) dictate that 

e6T(PT + PT(f(XT) - XTf '(XT))) = lt e tpt(f(xt) - xtf '(xt)) 
t-T+ 

and uT > 0. f 
The Lemma is powerful in its implications, for we can now assert 

Proposition 6. Along an optimal policy, if one exists, Rt is a continuous function of 
time. Furthermore, either R, > Ofor all t ? 0 or there exists a finite T(> O) such that R, >O 
for 0 ? t<Tand Rt = Ofor t > T. 

Proof. The second part (with the exception of the demonstration that T>0) of the 
proposition is a direct implication of the Lemma, and a simple argument (as in the proof 
of the Lemma) showing that we cannot have Rt=0 for 0 < t < T and Rt > 0 for t>T. 
Therefore we begin by proving that Rt must be continuous if T>0. Thus if Rt>0 for 
all t _ 0 then the continuity of Rt is trivially true since xt must satisfy (1.18) for all t ? 0 
and since K, must be a continuous function. Suppose then that there exists a finite T(> 0) 
at which there is a phase change from R>0 to R = 0. During the interval [0, T) equation 
(1.18) holds. Since x >0 during [0, T), lt xt exists. But it cannot be finite. For suppose 

t-eT- 
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it is. By hypothesis XT = OO. This implies that we would violate the condition necessary 
at the switch point, namely that 

lt e -p,(f(xt) -xtf (xt)) = e { T+PT[(XT) XTf (XT)]}, 

where PT > 0- 

It follows that during [0, T), xt increases continuously to oo. That is lt xt = XT= ?? 
t-T- 

Since Kt >0 for all t > 0 this implies that It Rt= RT = 0. 
t--T- 

What remains to be proved is that T>0. So suppose on the contrary that the phase 
change occurs at t = 0. That is, assume T = 0 (i.e. that Rt is a 3-function). Once again 

we appeal to the assumption that d (f(x) - xf '(x)) > 0 and note that if there is a singularity 
dx 

at t = 0 one would violate a condition necessary at this switch point, which is 

P0{f(x0)-xof'(xo)} = lt e6tpt{f(xt) - xtf'(xt)} + Utu 

where ut _ 0, xo = 0 and lt xt= oo 
t o0+ 

We are now in a position to construct a proposition analogous to Proposition 2 of 
the previous section. Towards this consider an economy for which 

It (f(X)-xf'(x))=y<oo 
xa ..o.(1.19) 

and 
F(K, 0)>O for K>O. 

It is then simple to confirm that it cannot be optimal to maintain Rt >0 for all t > 0 
in an economy that satisfies (1.19). For suppose the contrary. From (1.18) one has 
xt - oo. Furthermore, from the second part of (1.19) it follows that 

lt f(x)/x= It f'(x)= p>0. 
X- Coo X-+Cxo 

Therefore, from (1.14) one has that the present value price of consumption (e-tpt) goes 
to zero, and from the first part of (1.19) the fact that the marginal product of the exhaustible 
resource is bounded above by y. But these would contradict the requirement that the 
economy satisfies (1.12). Thus one has 

Proposition 7. If F(K, R) satisfies (1.19) then along an optimal policy, if one exists, 
Rt>0 for 0 < t<T where T is finite and Rt = O for t > T. Moreover Rt is continuous 

for all t ? 0.1 

1.3. The arguments of the previous sub-section were fairly general, and were concerned 
with glancing at the conditions that an optimal programme must necessarily satisfy. In 
particular, we noted the rather direct way in which the elasticity of substitution enters 
into the characterization of an optimal programme during a phase when Rt>0. In this 
section we parametrize the economy somewhat further to obtain some definite answers 
to questions that one would like to ask. One would, for example, like to know under 
what circumstances an optimal programme exists, and whether the rate of consumption 
along an optimal policy necessarily falls if the resource is essential and indeed, whether 
the rate of consumption necessarily rises if the resource is inessential. Furthermore, one 

1 An example of an economy, satisfying (1.19) is one wheref(x) = p(l +x + (x)) with p > 0, #(O) = 0, 
sb'(x) > O, +"(x) < 0 and It +(x) < oo. One should note that we have avoided the case f(x) = p(l + x) (i.e. 

F(K, R) = (K+ R) p, a = oo) by our assumption of strict concavity of F(K, R). We shall have occasion to 
comment on this case in Section 1.4. 
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would like to know if the optimal utilization rate of the resource is non-increasing over 
time, as well as conditions under which the capital stock ought to be built up over time. 

Towards this we turn to the simplest laboratory that might provide answers, namely 
the class of production functions for which the elasticity of substitution is constant. It 
might seem plausible that the class of CES production functions captures the variety of 
the issues under review. In fact, the CES production functions (with the exception of 
those for which a = 1 and ao) have rather unusual properties at the " corners ". Con- 
sequently some of the characteristics of an optimal policy in a CES world are, at first 
blush, counter-intuitive. It will be plain that one can establish rather easily conditions 
under which an optimal programme exists for a much larger environment than the CES 
world provides. Since the arguments turn out to be rather similar to the ones that we 
shall provide for the CES case, we do not elaborate on them here. 

Recall that the CES production functions is of the form 

F(K, R) = [flK(a 1)/a + (1 -Pf)R(a 1)Ia]aI(cr 1), 

where 0<,B < < and so > a _ 0. 
The analysis of the previous sub-section implied that one is particularly interested 

in the properties of the production function for R = 0. It is convenient, then, to catalogue 
the following properties: 

If a = 1 (i.e. the Cobb-Douglas form) 

F(K, 0) = 0 ...(1.20a) 

lt f '(X)= lt 0 ...(1.20b) 

lt (f(x)-Xf'(x)) = It f(x) = . ... (1.20c) 

If 0 _ v< 1 then 
F(K, 0) = 0 ... (1.2a) 

lt f'(x)= lt f(x)= ...(1.21b) 
X_ 00 x-+ 00 x 

lt (f(x)-xf'(x))= lt f(x)= (1-f3YI(c-l). ... (1.21c) 

If oo >a> 1 then 
F(K, 0) = p(f1)K ... (1.22a) 

lt f'(x)= lt f(x) - pf/-1)>o .. .(1.22b) 

lt (f(X)-xf'(x)) = lt f(x) = co. ...(1.22c) 
x-+ 00 x-+ 00 

An exhaustible resource is essential to production only when a ? 1. Otherwise it 
is inessential. The pair (1.22c) and (1.21c) are curious: an inessential resource is infinitely 
valuable and an essential resource is finitely valuable at the margin when the rate of utiliza- 
tion of the resource is zero. Only the Cobb-Douglas form may be said to have properties 
that are reasonable at the corner. 

From (1.20c) and (1.22c) and Proposition 5 it is immediate that when co > Cr 1, 
along an optimal policy, if one exists, Rt>0 for all t > 0. We demonstrate now that 
this must be true for the case 0< a < 1 as well. Recall Proposition 6. Assume that there 
exists a finite T(>0) such that Rt=O for t > T. During the interval [0, T) equation 
(1.18) must be satisfied. Moreover Rt must be continuous at T. But this is impossible, 
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for the constancy of a and condition (1.21c) imply that x cannot increase to infinity via 
equation (1.18) in finite time.' 

We have yet to demonstrate that an optimal programme exists. To keep the presenta- 
tion simple we restrict ourselves to the case of utility functions that are iso-elastic. That 
is, assume n(c) = 11>0. Write 

p = It f'(x)= It f(x) and St= So- Rzdr. 
xeoo 00 x_+0 x O 

We can then establish 
Proposition 8. If a(oo > a>0) is constant, i(> 0) is constant, and 3 > p(l - 1), a unique 

optimal policy exists and it satisfies equations (1.5), (1.16) and (1.18)for all t _ 0. More- 
over, the optimal programme (Ce, k, t, Xt St) satisfies the following asymptotic properties: 

It x = oo ... (1.23) 
t-4coo 

lt e = lt K =oo if p>6 ... (1.24) 
t-4c.xo t-coo 

lt C = lt K = 0 if p<6 ...(1.25) 

It C = lt K = p 3 ... (1.26) 

it - =p+ ... (1.27) 
t- oo K 

it I t z = P~ $ p<0 . (.8 
t-o 00 t-x oo s 

it U p-+ 
b- >O. ... (1.29) 

-o S 11 

Proof. It has already been established that the conditions necessary for optimality 
are that equations (1.16) and (1.18) must hold for all t ? 0. Condition (1.23) is then 
immediate from (1.18). From equation (1.18) one recognizes as well that for any pair of 
paths x(l) and x(2) one has X(1)>X(2) for all t>0 if X(1) >X(02). From (1.16) it follows that 
C(1)>C2)if, andonlyif, C(l)(C), Xo)>C(2)(C(2) xo). Now write equation (1.5) as 

K f(x) C ...(1.30) 
K x K 

It follows from (1.30) that K"')(C1)', xo)<K 2)(C(2), x0) if, and only if, C(1)> C(2). 
Write y = C/K, and use equations (1.16) and (1.30) to obtain 

y + f'(x) _ f(x) ...(1.31) 
Y fl 17 x 

Recall that Ko and S0 are given and that we are to choose optimally C0 (i.e. yo) and 
R0(i.e. x0). The point is to observe that these choices can, in principle, be separated out 

1 It is now immediate that Proposition 5 can be generalized to 
Proposition 5'. Along an optimal policy, if one exists, R,>0 for all t _ 0 if either F(K, R) satisfies 

(1.13) or F(K, 0) = 0. 

Since the sufficiency conditions in Propositions 5' and 7 are not merely mutually exclusive but exhaustive 
as well, it follows that these two Propositions cover all the cases. 
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conveniently. We have, of course, assumed (>0. Then, using (1.23) it follows from 
(1.31) that for large t 

Y y-_ (6 P )_p. ...(1.32) 
y ?I 

It follows from (1.31) and (1.32) that given xo, if C0 (i.e. yo) is chosen large enough, then 
yt(xo)->oo as t- oo. But this entails from (1.30) that the feasibility requirement, Kt > 0, 
is violated in finite time. It follows as well from (1.31) and (1.32) that given xo, if C0 (i.e. yo) 
is chosen positive, but low enough, then yt(x0)-*0 as t-*oo. 

Thus let C0(xo) = sup [C0 I yt(CO, x0) > 0 for t > 0]. From (1.32) it is immediate 
that 

lt Yt(Co(XO), x0) = p + (3 -p)/ > 0, 
t-+0o 

confirming (1.27). From (1.16) and (1.30) condition (1.26) follows directly. 
One can now verify that 

it d(e-"tptKt)/dt _ P-6 _ p<0, and thus that It e -tptt = 0. ...(1.33) 
t-* 00 e PtKt 17 t-+ oo 

But AIR = KI/K-/x. On using (1.26) and (1.18) it is immediate that 

lt = p _ <0. ... (1.34) 
t-*oo R 

It follows from (1.34) that S(x0) { R,(C0(x0), xo)dt is well defined. It follows as well 

that we can choose x0 large enough (i.e. Ro small enough) so that S(x0) <S0, and x0 small 
enough (i.e. Ro large enough), so that S(x0)> S0. The former would be inefficient and the 
latter choice unfeasible. Thus write 

XO-sup {x0 I S(x0) < S0}* 
Then 

St= | r(Co(Xo), xO)dT and It St = 0. 
Jt t-+oO 

But S/S = - R/S. Hence 

it ?/3 = it -R/3- it R/R = (p-3)q-p<0, 
t-* o* t- oo t-+to0 

and conditions (1.28) and (1.29) are confirmed. Plainly 

It Iz3t = 0. ... (1.35) 
t- oo 

Conditions (1.24) and (1.25) are implied immediately by (1.26). 
Finally, the Hamiltonian (1.7) is strictly concave. The two transversality conditions 

(1.33) and (1.35) have been verified. The proposition is thus established. 11 
Having established the main proposition of this section we present some specific 

commentaries in the following sub-section. 

1.4. The case 0<ca< 1 is at once the simplest and the most pessimistic of all.' As total 
output is bounded if v< 1, it is plain that feasibility dictates that Ct -0 as t-o cc. Since 
p = 0 it is clear that an optimum exists if 3>0. This is so, even if U( ) is unbounded 
above (i.e. 0< il < 1). Given (1.23), the shadow price of the exhaustible resource relative 
to the composite is monotonically increasing. Given (1.21c) in addition, it is clear that 

1 We have, of course, assumed away the case a = 0 by our assumptions on F. It is not a case that 
presents any special problems of analysis but as its analysis calls for some extra notation, we do not 
discuss it here. 



DASGUPTA & HEAL OPTIMAL DEPLETION 17 

this shadow price tends in the long run to the value (1 - p)GI1(fl- ) (see equation (1.12)). 
This is mildly surprising, given that the resource is essential. 

The Cobb-Douglas case is particularly interesting since the analysis can relatively 
easily be taken further. To begin with, since p = 0, an optimum exists if 3 >0. Further- 
more, given (1.20c) and (1.23), the price of the exhaustible resource relative to fixed capital 
is increasing and tends to infinity with time. Let f(x) = x' with 0< a <1. Professor 
Solow [25] has demonstrated that consumption can be unbounded if o> 1/2, but that 
feasible consumption must tend to zero if c< 1/2. But from (1.25) we have that for all 

oc O<oc< I.1-, CtO . 

Ct 

0 t 
FIGURE 3 

Now integrate (1.18) to obtain 

LX=[(-)t + x0O-)1(-)..1.6 
and thus that in the long run the price of the exhaustible resource relative to the composite 
commodity should be approximately 

(I _ LX) 1 Al- a) tal(l-a). 
It is also the case that in the long run the percentage rate of change in the rate of depletion 
of the exhaustible is approximately equal to - 3/ij (see (1.28)) and, in particular, the rate 
of depletion, as a fraction of the then existing stock of the resource, is 3/ij (see (1.29)). 

Using (1.36) in equation (1.16) and integrating, the optimal consumption profile is 

P- C, -/n [(I- L)t + g(l -)]a/n(l-a)e(-6/n)t. (... .1.37) 

From (1.37) it would appear that if the initial stocks Ko and S0 are " large " the optimal 
rate of consumption will, during an initial period, be rising, and will in fact be single 
peaked, with a maximum at T where 1 

T = 0~ T = 
l - 

_ 

3(1-cc) (1-cc) 

A typical consumption profile is presented in Figure 3. It is routine to show that 

Al= C0oa'1[(l-cc)t + aj 
1 It should, of course, be evident that T is not independent of q, since To is dependent on -. Professor 

Solow ([25], appendix) considers the case where c> 1/2 and 8 = 0. This last ensures that our existence 
theorem is not applicable to his case. He shows, in effect, that if -q is large enough, then T = co. For 
this limiting case of 8 = 0 he assumes, therefore, that ,> 1/2 to ensure that consumption can be unbounded 
and large enough X to ensure the existence of an optimal policy. 

B-SYM 17 
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from which 

sign (R,) = sign [ -(1 - - 1-a] 

It follows that while Ri<0 for all t ? 0 and At>0 for large enough t, one would have 
R, <0 for an initial period for large values of Ko and S0, yielding a time profile of resource 
utilization as in Figure 4. 

Rt- 

0 t 
FIGURE 4 

The case a> 1 is one in which exhaustible resources are not a fundamental problem, 
since they are inessential in production. Given (1.23) the shadow price of the exhaustible 
resource relative to fixed capital is monotonically increasing, but given (1.22c) one does 
have the surprising result that this price tends to infinity with time. Since p >0 it is plain 
that 3 >0 is not sufficient for the existence of an optimum policy. But if U( ) is bounded 
above (i.e. 11>1) an optimum exists for 3 ? 0. As conditions (1.24) and (1.25) make 
clear, whether or not it is optimal to have a growing economy in the long run depends on 
whether p is greater than, or less than 3, a condition that is intuitively plain. 

The case, a = oo, though silly, merits a brief glance, though we have so far assumed 
it away. Assume then that f(x) = p(l + x), where p >0. It satisfies (1.19). But since f 
is linear, Proposition 7 is not strictly operative. Nevertheless, it is an easy matter to 
confirm that if 3> (1- - )p an optimal programme exists and that the optimal depletion 
rate, R, is a Dirac-b-function with the singularity at t = 0. The point is that since the 
marginal product of the resource is constant, it does not pay to leave the resource lying 
idle. As we have imposed no costs of extraction one can, in principle, use up the entire 
initial stock, S0, instantaneously to build up the capital stock, which is, in fact, the 
optimal strategy.1 

2. TECHNICAL CHANGE AND UNCERTAINTY 
2.1. Technological progress is, as usual, hard to model. We are concerned now with 
those situations where technical change causes a resource that was previously essential 
to become inessential. In practice this is most likely to be due to the discovery of a syn- 
thetic substitute (for example, being able to harness solar energy or nuclear fusion), and 
it is this type of alteration in the technological possibilities that provides the motivation 

1 The reader can easily check that if 8 > (1- ) p then a unique optimum exists if the production function 
f(.) is of the form given in the footnote to Proposition 7. Given Proposition 7, the optimal depletion 
function, RA, is continuous for this case, but the entire stock is exhausted in finite time. 
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for the discussion that follows. In such situations, although one may not know in advance 
exactly what the substitute will be like, there will probably be general information about 
its likely characteristics. Industrial research directed towards innovation is, after all, 
not carried out aimlessly. A more important source of uncertainty seems to be the exact 
timing of the availability of the substitute. It would seem reasonable to argue that we are 
much more uncertain about when, if ever, such an event will occur, than we are about the 
characteristics it will have if it does occur, and we shall focus attention on this aspect 
of the problem. Consequently we suppose that we know exactly the nature of the technical 
change that will occur, but we treat the date at which the event occurs as a random variable. 
In this paper, however, we suppose that the distribution of the random variable is exo- 
genously given. 

The basic framework that we shall present appears to us to be fairly robust in that it 
can accommodate quite diverse characterizations of the technological breakthrough. 
Furthermore, it would seem that one could, in principle, extend the analysis quite directly 
to allow for the possibility of a finite sequence of such events in the future. But it seems 
most interesting to conceive of the event as being the discovery of a substitute for an 
exhaustible resource which releases the economy from the resource constraints. More- 
over, for the sake of simplicity we take it that only one such event is to be considered. 
Towards this we amalgamate the production model considered in Sections 1.1 and 1.2 in 
a sequential manner. 

Assume that the economy is endowed initially with a stock, Ko, of the composite 
consumption good, and a stock, SO, of an exhaustible resource. Production possibilities 
until the date of the technological breakthrough are represented, as in Section 1.2, by 
the production function F(K,, Re), where, as before, R, is the flow of resources into pro- 
duction at t. Suppose the technological breakthrough occurs at date T>O. Then the 
constraints that limit the choice of consumption till T can be denoted by the conditions 

T 

Kt = F(Kt, Rt)-Ct, 0 < t ? T; Rtdt < So and Ko and So are given. ...(2.1) 

We characterize the technological innovation as being the discovery of a perfectly 
durable commodity which provides a flow of service at the constant rate M. But it would 
seem hard to think that the production possibilities after the event would remain the same 
as those before. It is here that we revert to the economy discussed in Section 1.1, and 
suppose that the production function after the innovation can be regarded as being 
G(Kt, Z), where Zt is the rate of utilization of the service at date t. Now, there is of 
course nothing to suggest that the service provided by the durable commodity is a perfect 
substitute for the exhaustible resource in the production function, G. In fact there is every 
reason to suppose that it is not. Nevertheless, for the moment, to keep the presentation 
simple we suppose that they are perfect substitutes. It follows that the constraints that 
limit the choice of a consumption profile for the period beyond T are represented by the 
conditions 

K = G(K, Z)-C I 

V=M-Z I 
where Zt, Kt, Ct, Vt > 0 and VT= So- Rtdt 

and KT given 3 

The date T, is assumed unknown. In fact suppose that T is random number with a 
probability density function Cot. Thus we suppose that 

)t > ? and | otdt = 1. ...(2.3) 
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The second condition in (2.3) supposes that the substitute source will certainly be discovered 
sometime in the future. One might wish to allow for the possibility of it never being 
discovered. Nothing substantial seems to emerge by supposing so. Therefore we suppose 
(2.3).1 

00 

We take it that the valuation function for planning is E { e"tU(C)dt, where E is 

the expectation operator. An important question then arises as to what penalty one would 
wish to attach to depleting completely the exhaustible resource before the substitute is 
discovered. It would seem most interesting to formulate the problem in such a way as 
to make the penalty infinite. Thus we impose the restriction that along a feasible strategy 
the probability of being caught short with none of the exhaustible resource before the 
substitute is discovered, is nil. 

Define W(KT,VT) = maximum value of { e-a(t-T)U(Ct)dt subject to (2.2). It 
JT 

follows that 

E { e-tU(C)dt = JC OT {f e6tU(C)dt+ W(KT, VT)e6t} dT. . . .(2.4) 

Write Qt = f dr, and integrate the RHS of (2.4) by parts to obtain 
t 

00 a 
E { e6tU(C)dt= 3 e6t{U(C)Ot+co,W(Kt, Vt)}dt. ... (2.5) 

o Jo 
The problem then reduces to one of 

maximizing expression (2.5) subject to the constraints' 

K=F(K, R)-C . (2.6) 
S=-R 

where Vt = St and Kt, Ct, Rt, St > 0 

It is as well to point out that the optimal policy is to pursue the solution path of 
problem (2.6) only until the substitute is discovered. At the date the substitute is discovered 
there is a switch in regime and the optimal policy from then on is to follow the policy which 
yields W(KT, VT).2 

In order to analyse (2.6) it is convenient to express the Hamiltonian of the system as 

H = e8t{U(C)0T+cotW(Kt, V,)}+e-etpt{F(K, R)-C}-e tqtRt+e-+tntRt+e+ etytSt, 
...(2.7) 

where ;rt > 0 and ;tRt = 0 ...(2.8) 
and yt > 0 and ytSt = 0 

We shall assume W(Kt,Vt) to be bounded and differentiable. The former can be 
justified if we assume that U(-) is bounded above, and we shall assume that this is so. 
The concavity of W follows from assumptions that we have already made. From (2.1) 
it is plain that e`tpt is the present value price of the composite consumption good and 
that e-"tt is the present value price of the exhaustible resource. One notes as well from 
(2.8) that yt>O implies that 7rt>O. 

1 For simplicity of exposition we shall take it, in fact, that co > 0 for t 0 0, though this is not at all 
essential. 

2 The solution to (2.6) is thus a conditional strategy, conditional upon the substitute not having been 
discovered. 
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For a programme to be optimal it is then necessary that it satisfies the following 
conditions 

p = Q2U'(Q ... (2.9) 

PFR = q-7t ... (2.10) 

p = 6p-otW-pFK ...p(2.11) 
and 

c = bq-otWv-yt, .. .(2.12) 
where 

WK = -W etc. 

Now Wv ? 0 and WK ? 0. It follows from (2.10) to (2.12) that if F satisfies (1.13) then 
we shall have Rt>0 for all t > 0 along an optimal policy. We suppose, therefore, that 
this is so. Consequently yt = zt = 0 for all t > 0. 

Write T[t = ctw/Qt, for the conditional probability of the substitute being discovered 
at t given that it has not been discovered earlier. From equations (2.9) and (2.11) one 
has 1 

C FK-6 J +Tt{( WK - U'(C))/ U'(C)} . . .(2. 13) 
C 4(C) 

Differentiate (2.10) with respect to time and use equations (2.12), (2.13) and the production 
constraint in (2.6) to obtain 

x = af(x)jI + fWKTt} + Wvf U .. .(2.14) 

where x, a andf(-) are as in Section 1.2.2 Equations (2.13) and (2.14) govern the solution 
to the problem expressed in (2.6). The nature of the path they define is far from obvious 
except in some special cases. We turn to these. Now the technology G subsequent to 
the technological breakthrough is likely to be considerably different from that prior to T. 
The simplification that we introduce lies in the supposition that at T (the date of the 
discovery), the then existing stocks of capital and the exhaustible resource come to have 
no economic value. This is, of course, a terribly strong assumption, but not totally un- 
reasonable. It seems, for example, very likely that if fusion reactors ever become a 
commercial proposition, turning water into an abundantly available substitute for fossil 
fuel, then power stations generating electricity from fossil fuels will be rapidly phased 
out. Both the capital equipment that they comprise and the remaining fossil fuel stocks 
will have little economic value as sources of energy, although of course fuels would have 
value as sources of organic chemicals. This assumption implies 

WK = WV = . ...(2.15) 

Given (2.15) we shall certainly have to suppose that G(0, Z)>0 for Z>0 (see condition 
(1.la')). Using (2.15) we note that equations (2.13) and (2.14). reduce to the forms 

C = f'(x) -(c+'P) .. .(2.16) 
C nC 

and 
xc = af (x)...(17 

Assume that the utility function is iso-elastic. Having already assumed that U(*) 
is bounded above, this implies that , > 1. But the conditions (2.16) and (2.17) which an 

1 As one would expect, equation (2.13) reduces to equation (1.16) when T, = 0. 
2 As would be expected, (2.14) reduces to (1.18) if T, = 0. 
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optimal policy must satisfy differ from (1.16) and (1.24) only by the addition of an amount 
'T to the discount rate. Thus the optimal policy is to suppose that the substitute will 
never be discovered and to pursue the solution described in Section 1.4 with the single 
proviso that it be assumed that the utility rate of discount is not merely 6 but 6+Tt. 
Since Tt>0, one is in effect discounting at a higher rate in this uncertain problem than in 
the problem of Section 1.3. This is intuitively very reasonable. If, at T, the substitute 
appears, the economy switches regime and the optimal policy is to pursue the programme 

Ct 

g(FC) - - 

JL 

A 

D 

0 T t 

FIGURE 5 

described in Proposition 4'. In fact Proposition 4' is precisely what is required since 
assumption (2.15) entails a total break with the past at T. At T the economy is totally 
new, with no existing capital stock and no inventory of the resource. The break with the 
past is complete.' In Figure 5 we present the optimal consumption profile for this 
economy. ABD describes in broad terms the consumption profile of Figure 3. Throughout, 
however, the rate of discount is higher than 6 by an amount Tt. LM is the optimal con- 
sumption policy described in Proposition 4'.2 We have then 

Proposition 9. Consider the two following problems: 

maximize f [U(C)K1+wotW(Kt, St)]e tdt } 

subject to k = F(K, R)-C ... (2.18) 
S -R 

Ct, Kt, R1, St 2 0 and Ko, SO given 
and 

maximize f e-tU(C)dt 

subject to the same constraints as in (2.18), ... (2.19) 

where y is a discount rate which is independent of the path followed by the economy. 

1 In effect, then, condition (2.15) reduces the model to one where the economy faces an uncertain 
terminal date, a case that has been explored in another context by Yaari [28]. 

2 As would be expected, there is generally a discontinuity in consumption at T. By assumption (2.15) 
the height TL is independent of the value taken by T. 
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Then, necessary and sufficient conditions for Problems (2.18). and (2.19) to have identical 
solutions are 

(i) WK= WS= Ofor all K, S. 
lot 

(ii) Vt = 5t+ f Prd. 

Proof. Sufficiency is obvious. To establish necessity note that the conditions that a 
solution of problem (2.19) must satisfy are 

C _ (FK-Y) ...(2.20) 

C C(C) 

and that -= f(x). ...(2.21) 

It follows that if equation (2.13) is identical to equation (2.20) we must have VK = 0. 
But if (2.14) is identical to (2.21) we must have 

of(x)WKTP WvT =_ 

U'(C)f'(x) Xf"(x)U'(C) 

But since WK= 0 it follows that Wv = 0. 11 
What is interesting about Proposition 9 is that it gives a precise statement of a set of 

conditions under which we can allow for uncertainty merely by solving a certain problem 
with a suitably chosen discount factor depending only on the nature of the uncertainty (a 
kind of certainty equivalent result), and where the equivalent certain problem is independent 
of the expected supply of the substitute. The amount Tt that has to be added to the utility 
discount rate, 3, is of course generally time variant and equals the conditional probability 
of the substitute arriving at t, given no previous occurrence. We need hardly point out that 
non-constancy of Tt, does not imply that the optimal policy is intertemporally inconsistent. 
In general one suspects that the conditional probability distribution is complex, but possibly 
single peaked. For example, it has been suggested that the conditional probability of 
harnessing nuclear fusion will rise to a peak at about the end of this century but will then 
fall, the argument being that expectations, though rising over the near future, will diminish 
if the discovery is not made by the turn of the century. A conditional distribution having 
such attributes would result if wt were log normally distributed. For the simple case 
where wt = 7re 7t (i.e. wt, is a Poisson distribution) Tt is constant and equal to 7t and the 
planning problem becomes still easier. 

Proposition 9 yielded a sufficient and necessary set of conditions under which the 
optimal depletion problem could be solved by pretending that the substitute will never 
appear and solving for the optimal depletion problem by a simple increase in the utility 
discount rate. Raising the utility discount rate to handle uncertainty has much intuitive 
appeal. Proposition 9 implies that an error will be committed in doing this if the conditions 
do not hold. It is then,.naturally interesting to ask whether we have any reasons for 
believing that the error is as likely to go one way as the other. In- fact, it is possible to 
establish the following proposition about the nature of the errors introduced if the 

certainty equivalent " problem is used as a guide to decision-making when it should not be. 

Proposition 10. If we suppose WK= WV = 0 and solve the certainty equivalent problem, 
when in fact WK= 0 but Wv >0, then the values of Ro and CO thus chosen will be greater 
than or equal to their correct values, and at least one will be strictly greater. 

2.3. The results established in the previous sub-section may seem to be dependent upon 
some of the unpalatable simplifying assumptions used there-a one-sector economy, a 
homogeneous capital stock, etc. The point of this section is to observe that in fact similar 
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results hold in a far more general situation. In order to see this point, it is helpful to 
consider an economy whose evolution is characterized by three functions of time, C, K 
and S, which are respectively mappings to R1, R' and Rn: C, is the consumption vector 
at t; Kt the vector of capital stocks, and St the vector of remaining resource stocks. Over 
any finite period [0, T], and given the initial values KO and So, there exists a set 'T of triples 
TO Kt, St) such that a triple is in 6% if and only if it describes an evolution of the economy 

from 0 to T which is feasible given the technology and initial conditions. Associated with 
each such path over [0, T] is another triple (CT, KT, ST) giving the terminal values of 
consumption, stocks of capital and resources. For such an economy, we consider the 
following finite-horizon problem: 

T 
maximize U(f)et +e-TW(KT, ST) 

subject to 5 KO, St) E 6T. 

This involves maximizing a utility integral and a terminal stock valuation function, subject 
to the usual technological constraints. It is assumed that a solution to this problem exists 
for each T. 

Now suppose that the horizon T is a random variable with density function (OT, 

and that planners seek a path of the economy which will maximize the expected value of 
the utility integral plus stock valuation function over this random horizon-i.e. they 
seek to 

maximize f U {J'U(e)e -tdt+e-ITW(IT, ST)} dT. 

To make this a well-defined maximization problem, it is necessary to specify the operative 
constraints. A reasonable formulation would be to require the programme adopted to 
be feasible whatever the horizon should turn out to be: if OT > 0 for all t, this gives 
as a constraint 

(CT, KT, ST) E_ (?? 

where 6o is the set of programmes feasible ad infinitum, given the technology and initial 
conditions. We can now prove the following simple but useful result: 

Proposition 11. The solution to the problem. 

Maximize X J {f U(C)e-'tdt+e- IT W(KT, ST)} dT 

subject to (Ct, Kt, St) E ,0 

is identical to the soluttion to 

maximize U(C)e Sold?dt+ Iwte -tW(K, S)dt 
o o 

subject to the same constraint, where 

1100 
T'r = wOr l )tdt. 

Proof. Consider the term 



DASGUPTA & HEAL OPTIMAL DEPLETION 25 

Defining Qt == w(rd- and integrating by parts, this equals 
t 

m U({Q{te-`tdt. 
0 

Now Qft =-Ct)t so that n tIOt =- tI,t Q t- -t. Hence on integration 

Proposition 12. Consider the problems 

maximize I O co J;U(C)e-'tdt +e -6TW(KT, ST) dT 

subject to (Ct, Kt, St) c- (goo and 

maximize o U(reni t dt subject to threla mean constraint. 

Then a sulicient condition for these two problems to have the same solution is that 

(i) W(KT, ST) should be independent of KThandST for all values of these variables, and 
t 

(ii) at = bt + Tlrd-. 
o 

Proposition 12 is clearly a generalisation of Proposition 9, in that it states a set of 
conditions under which it is possible to replace an uncertain problem (which is clearly 
a generalisation of the problem of the previous sub-section), by a certain problem derived 
from it by a modification of the discount rate that makes use solely of the probability 
function.' 

3. CONCLUDING REMARKS 

In this paper we have attempted to answer some questions that appear to arise rather 
naturally when one thinks of intertemporal planning in the presence of exhaustible resources. 
Since many of these questions are, in fact, independent of one's exact notion of inter- 
generational equity we have posed them within the context of the, by now standard, 
utilitarian framework.2 In Section 1.2 we presented a simple production model with 
no uncertainty. While it is plain that the characteristics of an optimal depletion policy 
depend crucially on whether or not the resource is essential to the production of final 
goods, it is not a priori plain as to what constitutes essentiality. The analysis led rather 
naturally to a simple articulation of this notion, namely the sufficiency conditions in 
Proposition 5 (see footnote 1, p. 15): that is, that either the marginal product of the 
resource is unbounded or that ouput of final goods is nil in the absence of the resource. 
It is intuitively clear that the elasticity of substitution between reproducible capital and 
exhaustible resources is an important determinant of the characteristics of an optimal 

1 The " certainty equivalent " problem that we have discussed here should not be confused with the 
problem of determining the optimal depletion rate where it is supposed that the substitute will become 
available at its expected date of arrival. That the latter problem may, in some case, yield a bias towards 
excessive depletion rates is intuitively clear, and it is this issue that is discussed by Henry [13]. In spite of 
its shortcomings the certainty equivalent approach (of either variety) is adopted explicitly or implicitly in 
much of the more empirically oriented literature in this type of problem. On this see Posner [24]. 

2 Dasgupta [6] and Solow [25] have explored some of these questions within the context of alternative 
notions of intergenerational equity. 
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policy. It turned out that the parameter enters in a natural and in fact strikingly simple 
way in the intertemporal plan (viz. equation (1.18)). One would judge that for the near 
future at least, one will have to resort to simple production models (such as, say, the 
class of CES functions) to obtain numerical results. It is partly for this reason (and partly 
also for pedagogic ones) that we have presented our existence theorem (Proposition 8) 
for a world that has a production function that is of the CES form, and a utility function 
that is iso-elastic. It is in fact relatively simple to extend Proposition 8 to cover the case 
of production functions that are not of the CES variety as well as utility functions that are 
not iso-elastic. We need hardly point out that one would need to make appropriate 
assumptions (such as (0.2)) about the behaviour of the elasticity of marginal utility for 
low and high rates of consumption and that it is these asymptotic values of the elasticity 
of marginal utility that would enter into the condition that guarantees the existence of an 
optimal policy, namely that (3>p (1-1). If, in particular (3>p, then we would be inter- 
ested in the value of the elasticity of marginal utility as consumption tends to zero. Like- 
wise, if p > ( then we would be interested in the value of the elasticity of marginal utility 
as consumption tends to infinity. 

The main novelty that exhaustible resources introduce in a planning exercise is that 
one has to be particularly conscious about the properties of production functions at the 
"corners " The banality of this observation is matched only by the problems this poses 
in obtaining empirical estimates. Certainly it is possible that we live in a world where 
for " moderate " values of the capital-resource ratio, the elasticity of substitution between 
capital and the resource exceeds one.' The point of concern, of course, is its behaviour 
for large values of the capital-resource ratio, given that large values cannot be avoided in 
the long run.2 For the purposes of planning one is particularly interested in the conditions 
under which it is optimal to spread the exhaustible resource thinly over the distant future 
and thereby never to exhaust it completely. In a very general sense the analysis of Section 
1.2 has been re-assuring to intutition in that the conditions under which it is optimal to 
exhaust the resource in finite time are really rather stringent (see Proposition 7). Certainly, 
if we wish to rely on the working hypothesis that the elasticity of substitution is constant 
then irrespective of its value (except for the case where it is infinite, which is, of course, 
just silly) we should not exhaust the resource in finite time. But the analysis does suggest 
that if a ? 1 but a is not unduly large, the price of the exhaustible resource relative to 
output ought to be rising rather rapidly. Experience does not suggest that this has been 
the case.3 

In Section 2 we presented a model incorporating technical progress under uncertainty. 
It seems entirely reasonable to suppose that the important uncertainty concerns the date 
of arrival of new knowledge. Furthermore, it seemed to us that for the kind of problem 
that we have in mind here, it would not be very appropriate to make use of the law of 
large numbers (as say, would be implicitly the case for models such as those of Arrow [2] 
and Kaldor and Mirrlees [16]) to generate technical progress in a continuous fashion. 
Rather, we are here trying to envisage it as coming in a discrete manner. The event (or 
perhaps we should say " Event " !) can, of course, be quite anything. It can, for instance, 
be the discovery of a new stock of the same resource (e.g. new beds of oil or natural gas). 
But in this event exhaustible resources would remain a fundamental problem if they were 
initially so. Certainly the discussions that are currently conducted amongst energy experts 
suggest that what they have in mind is the possibility of discovering a source that will 
provide, for all practical purposes, an unlimited flow of energy. It is for such reasons 
that we have explored the problems that arise if technological change consists in the 
economy being provided by a steady stream of an alternative resource which can replace 

1 The important work by Nordhaus and Tobin [22] suggests that this may be true. 
2 Either this or one runs down capital sufficiently rapidly as well, in which event consumption trivially 

goes to zero in the absence of technical progress. 
3 For an analysis of the behaviour of oil prices in particular, see Heal [12]. 
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a resource that was previously essential. The date of the discovery we have supposed 
uncertain, but in this paper we have supposed that the random variable is uninfluenced 
by policy; that is, that the acquisition of knowledge is costless. 

While it appears to be customary in practice to cope with uncertainty by raising the 
rate of discount by an amount that merely reflects the uncertainty, it is generally recognized 
that it leads to errors. In Section 2.2 we explored the conditions under which no such 
error will in fact be committed. It emerged that this is so only when both the existing 
stock of capital and the stock of the exhaustible resource is judged totally devoid of value 
at the date of the technical change (Proposition 9). It appeared, not surprisingly perhaps, 
that in this instance the model bears a strong resemblance to one where the economy faces 
an uncertain terminal date; a case that has been explored at some length by Yaari [28]. 
That one will, in general, commit an error by this simple method of coping with uncertainty 
is not surprising. But it is not plain that there will be a bias. In fact, one can say something 
specific about such biases, and we have presented the result in the form of Proposition 10. 

Finally, and at a more primitive level, while one can take the view (reflected in the 
model economy of Section 2) that even though exhaustible resources may be essential 
currently they will not remain so over the indefinite future, it is not plain that it is a 
particularly comforting view. The model of uncertainty that we have presented here 
certainly articulates the view that the probability of the new source being discovered some- 
time over the indefinite future is precisely one. But it may well be a long while coming. 
If in fact major discoveries occur only at a great distance in the future, the intervening 
generations will naturally be that much worse off. In particular, one can argue that one's 
conception of intergenerational justice ought to be influenced by the likelihood of the 
arrival of technological change. This may well be an appropriate view. In this paper 
we have not attempted to face this set of difficult questions. Our purpose has been to 
explore some of the immediate implications of the existence of exhaustible resources. 
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