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This paper considers a service system with a single server, finite waiting room, 
and a renewal arrival process. Customers who arrive while the server is busy 
are lost. Upon completing service, the server chooses between two actions: 
either he immediately starts a new service, provided a customer is present, or 
he admits the newly arrived customer to the system, but delays service pending 
the next arrival, whereupon he again chooses between these two actions. This 
process continues until either the system is full or a new service is started. 
Once a service has been started, all customers who arrive while the server is 
busy are lost. We assume that at each decision epoch the server knows the 
arrival epoch of the first arriving customer. We show that there exists an optimal 
control-limit policy that minimizes the average expected idle time per customer 
served (equivalently, maximizes the average number of customers served per 
unit of time). The special case of Poisson arrivals leads to an explicit expression 
for this delay that generalizes exisiting results. 

T HE MODEL considered in this paper originates from the following 
problem. Consider a work station, situated along a conveyor, com- 

prised of a storage buffer of finite capacity and a machine served by an 
operator. Since the operator unloads the parts arriving on the conveyor 
and also performs the necessary operations on the parts, parts arriving 
during a service are lost. If the operator can always see the first oncoming 
part, the question arises as to which unloading policy will maximize the 
production rate of the work station. 

Our model is a service system with one server and finite waiting room. 
Customers arrive according to an ordinary renewal process. Upon ter- 
minating a service, the server notes the time that elapses until the next 
arrival. We assume that he immediately detects this time with certainty. 
Having observed this time, the server can choose between two actions: 
either instantaneously start a new service, provided a customer is present, 
or delay service until the next arrival and admit the newly arriving 
customer to the system. In the latter case he notes the arrival epoch of 
the subsequent customer, which has just become known to him, and 
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626 Nawijn 

again decides between delaying or starting a new service, and so on, until 
either the system is full or a new service is started. Once a service has 
been initiated, all customers who arrive while the server is busy are lost. 

Our aim is to develop a stationary policy that minimizes the server's 
long-run average expected idle time per customer admitted to the system. 
In fact, this policy will maximize the average number of customers served 
per unit of time. Special cases of this model have been considered in the 
literature on "Conveyor-serviced Production Stations" (see Beightler and 
Crisp [1968], Matsui and Shingu [1978], Nawijn and De Jonge [1981], 
and Nawijn [1983]). 

All these references used a priori policies without investigating the 
form of an optimal policy. In order to find an optimal policy, we will 
formulate the model as a Markov Decision Process and use an optimality 
theorem of Ross [1968]. 

The objective function to be minimized is the server's mean idle time 
per customer served or, in terms of the conveyor model mentioned above, 
the mean idle time per part produced, and this minimization problem 
yields the same optimal policy as the maximization of the average number 
of parts processed per unit of time (the production rate of the station). 

1. THE MATHEMATICAL MODEL AND SOME PRELIMINARIES 

The arrival process of customers is a renewal process with arrival rate 
A, 0 < X < oo, with interarrival time distribution A (t). The service times 
are i.i.d. with distribution function B (t), and are independent of the 
arrival process. We assume that ,B = f tdB (t) < oo. To minimize technical 
details, we also assume (i), that A (t) and B (t) are continuous on [0, oo) 
and (ii), that 0 < A (t) < 1 for finite t > 0, although the model can be 
solved for more general A(*) and B(-). Letting s = supIt:B(t) < 1} 00, 

we will let [0, s] denote the support of B(-). The maximum number of 
customers in the system is at most K + 1. To describe the way in which 
customers are admitted to the system, we let T2(n) for n 2 1 denote the 
termination epoch of the nth service time, and let T1 (n; j) for n > 1 and 
j - 1 denote the jth arrival epoch after T2(n). 

At epoch T2(n), the server can choose between two actions: either 
immediately start a new service, provided a customer is present, or delay 
service until the arrival epoch T1 (n; 1) and admit the arriving customer 
to the system. In the latter case, the server again either delays service 
until time T1 (n; 2), if the system is not full, or starts a new service, and 
so on. Once a new service has been started, say at epoch T1 (n; j), all 
customers arriving in the time interval (Tl (n; j), T2(n + 1)] are lost. 
Obviously, if at some epoch T2(n) the system is empty, the server will 
always wait for the next arrival. Let the sequence IT(n), n 2 1} denote 
the successive decision epochs. Moreover, let the state of the system at 
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Admission to a Single Server System 627 

epoch T(n) be defined by (Zn, Tn), in which Zn denotes the number of 
customers in the system at time T(n) + 0 and Tn denotes the time that 
elapses between T(n) and the first arrival epoch after T(n). Note that 
Tn is a residual interarrival time if T(n) E IT2(n)), or an ordinary 
interarrival time when T(n) is an arrival epoch. 

The state space of the process (Zn Tn), n 2 1} is S = 10, 1, ... 

K + 11x[O, oo). For the initial state, we assume that T(1) = 0, z1 = ii, T1 

= Ti; il E I0, 1, . . , K + 1}, 0 < Ti < Xo. We make the essential assumption 
that at all decision epochs T(n) the server is able to observe when the 
next customer after T(n) arrives, i.e., at epoch T(n) + 0 the state 
(Zn, Tn) E S is known with certainty. 

We wish to find a policy that minimizes the server's long-run average 
expected delay per served customer. To this end, we formulate the model 
as a discrete-time Markov Decision Process. Given that at some decision 
epoch the system is in state (i, T) E S, the action a (i, T) of the server is 
defined by 

a (i, T) = 0, if the server does not delay, 

= 1, if the server delays. 

Let D(i, T) denote the set of admissible actions la (i, T)} in state (i, T) 

E S. Then, by assumption, we have 

ill for i=0, T 2 0; 
D (i, T)= 0 1 for i = 1, 2, ***,K; T>0; 

LIo) for i=K + 1, T> 0. 

Given the state (Zn, Tn) = (i, T) and the action an = a(Zn, Tn) = k taken 
at time T(n) + 0, we can define the one-step transition probabilities by 

Prlzn+l = j, Trn+1 C t I Zn = i, T,n = T, an = k} = Qk(i, T; j, t), 

for (i,T), (j,t) E S and k E D(i,T). 

Q1(i, T; j, t) = bi+, jA(t) 

Qo(i, T; j, t) = bi-1jG (T, t), 

in which bij is Kronecker's symbol. The properties of the conditional 
probability distribution G(T, t) are given in the following Lemma. 

LEMMA 1. 

(a) G(T, t) = B(T) -B(T - t) + f 07dB(x) fx- [1T-A(x-T+t- 
u)] dM(u), T, t > 0, in which M(u) = Zol An*(u), where Afn* is 
the nth fold convolution of A with itself. 

(b) H(T) = T-r -f tG (r, dt) = -1A(1 -B (T)) -(1/A) fBT M(t - 
T) dB(t), T > 0. The function H(T) is continuous and monotone 
increasing on [0, s), and H(T) --> #(< oo) when T X.-> * 
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(C) f G(T, t) dA(T) = G(O, t), t > 0. 
(d) G(T1, t) - G(T2, t) A X(1 A(t))jH(Tr) - H(T2)}, Ti > T2 > 0 

t > 0. 
(e) limtoG(T, t) = 0 for all finite t - 0. 

Proof. Consider a decision epoch T(n) at which the next arrival occurs 
after a time T and at which the server has decided to start a new service. 
Then Tn+l is the residual lifetime at time x in a delayed renewal process, 
in which the first renewal occurs at time T, with renewal distribution A, 
where x is randomized with respect to the distribution function B (x). 

Distinguishing between the two cases x < T and x > T and using a well- 
known result for the distribution function of the residual lifetime (see, 
e.g., Cohen [1969], p. 109). We can easily derive part (a). The assertions 
(b), (c) and (e) are readily verified from (a). The proof of part (d) is 
straightforward, using integration by parts and the renewal equation. 

The direct "cost" Wk (i, T) incurred by making decision k in state (i, T) 

is defined by 

Wk(i, T) = T3k,l, 

that is, the direct cost is the idle time of the server between two 
consecutive decision epochs. 

Given an initial state (i, -) and a policy R, let an = a(Zn, T) be the 
decision taken at time T(n) and let wn = Wan(Zn, TO) denote the idle time 
of the server between T(n) and T(n + 1). 

Finally, let C denote the class of all policies. 

LEMMA 2. If T < oo, then 
(a) lim SUpn,o(l/n) EJ=, ERVI rT Z1 = i, T = T- < 00 

(b) lim SUpn 00(1/n) EJ=, ERI wj z1 = rT = - T} =dg(i, T) < oo for any 
i Ei 0, 1, ... , K + 1} and any policy R E C. 

Proof. The proof is straightforward. It is based upon the observation 
that, in general, every decision epoch is preceded by at most K + 1 
uninterrupted services and the inequality 

ER TnI Tn-1 = t, an-1 = * = +1 = 0, a1 = 1} 

< t+y, n- 1 j+ 1 > 2, 

where 
00 

z = (1/X) + (1/X) {M(t) - Xt} dB(t) < oo, 

which is finite since the mean service time is finite. 
Recall that at a decision epoch T(n), either a service completion occurs 

or a customer enters the system. Let these two types of epoch constitute, 
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respectively, two time sequences, IT2(n)} and {T, (n)}. Define Nj(n) = 
max{i: Tj(i) < T(n), i = 1, 2, , * n} forj = 1, 2, i.e., Nj(n) denotes the 
number of decision epochs of type j up until time T(n). 

LEMMA 3. Let z, = i, and Tr = r < oo. Then with probability one 

limn,,Nj(n)/n = '/2 for j = 1, 2 

for all (i, Xr) E S and any policy R used. 

Proof. Since N, (n) - N2(n) gives the difference between the number 
of entered and departed customers during the time interval [0, T(n)], we 
have with probability one 0 N, (n) - N2(n) + i < K + 1 for n > 2. 
Since, moreover, N, (n) + N2(n) = n we obtain 

1 - (1/n) c (2/n)N,(n) c 1 + (K + 1 - i)/n (a.s.), 

from which the assertion follows. 

Using Lemma 2 and Lemma 3, we can easily verify 

LEMMA 4. 

lim supn,oERIj7=j wj/N2(n) I Z1 = i, T1 = T} 2gR(i, -T) <0?? (1) 

As optimality criterion, we wish to minimize the function 2gR (i, T). By 
Lemma 2 this function exists and is finite. If the ordinary limit in (1) 
exists, then 2gR(i, T-) represents the long-run average expected idle time 
per customer served, when the initial state is (i, T) E S and policy R is 
used. 

A policy R* is optimal if gR*(i, T) C gR(i, T) for all (i, z-) E S and any 
policy R E C. In order to find an optimal policy and to prove its existence, 
we apply the following optimality theorem, which provides sufficient 
conditions for the existence of an optimal stationary deterministic policy. 
The theorem is a special case of a more general theorem due to Ross as 
adapted to the Markov Decision Process considered here. 

THEOREM 1. Suppose there exist a finite number g and a set of Baire 
functions If1(i-), i = 0, 1, . .. , K + 1 defined for r > 0 that satisfy 

(a) f o fi(t) dA(t) and f f (t)G(r, dt) exist and are finite, i = 0, 1, 
K..+ 1. 

(b) g + fo(r) =T + f' f,(t) dA(t) 
(c) g + fi(7-) =minIT + f0 fi+I(t) dA(t), f 0 f-1I(t)G(r, dt)}, i = 1, 2 

,*-K. 
(d) g + fK+I (r) = I fK(t)G(, dt) 
(e) limnl 0(1/n)ER { fZ(Tn) = Zl = i, I= I = 0 for any R E C and 

all (i, -r) E S with T < m. 

Then, any stationary deterministic policy R* is optimal that, given a 
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state (i, T), prescribes an action a(i, 7) such that the right-hand side in 
(c) is minimized. Moreover, g = gR*(i, -) for all (i, T) E S, T < C, where 
the lim sup in Lemma 2 and (1) can be replaced by lim. 

2. AN OPTIMAL POLICY, ITS FORM AND EXISTENCE 

In this section we derive the form of an optimal stationary determin- 
istic policy and prove its existence. To this end, we will deduce a solution 
of the extremal equations (b)-(d) in Theorem 1 and prove that the 
solution satisfies the conditions of the theorem. For notational conveni- 
ence, letfi= f(t) dA(t) fori= 0, 1, K+ 1. 

Consider the functional equations, defined for Xr 2 0, 

fo(T) + g = -r + fi 

fA(r) + g = minf- + fj+ J9 fi_,(t)G(r, dt)4 mln1i- + J 0 i (2) 
i = 1, 2, ... K, 

00 

fK+l (r) + g = f fK(t)G(ri, dt). 

In order to show the existence of a solution to (2), let us introduce the 
functions 

hi(T) = fj(r) - Tr, Tr > O, i = O, 1, .. I * K + 1. (3) 

Then (2) is equivalent to 

ho(T) + g = (1/X) + hi, 

-(1l/X) +hi+, 

hi(-) + g =minm (4) 
{ J hi-_(t)G(-r dt) -Mr), 

for i-1, 2, *. K, 

hK+l(r) + g = f hK(t)G(&, dt) - H(T) 

where hi- f= hi(T) dA(T) i= o1, * *K + 1. 

Now observe that (4) belongs to a Markov Decision Process with the 
same state and action, space as the original problem in which the cost- 
function Wk(i, T) is replaced by 

Wk(, T) -H(T), k = 0 
= 1/A k 1. 

Since by Lemma 1 the function H(r) is bounded, the costs in the modified 
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problem are bounded. Now we can prove the existence of a solution to 
(4) along the lines of Ross. Let the functions Ihi"(T), i = 0, 1, *. . , K + 1} 
for 0 < a < 1 and the constant gay provide the solution to the extremal 
equations that correspond to the discounted version of this modified 
Markov Decision Process. (This solution exists by a theorem of Blackwell 
[1965].) From these equations, it is possible to show that {h a(T)} is a 
nondecreasing uniformly bounded equicontinuous family of functions. 
Then by Ross' Theorem 2, based on the Arzela-Aascoli theorem, there 
exist bounded continuous functions {hi(T)} and a constant g satisfying 
(4), which by (3) guarantees a solution to the equations in (2). 

REMARK 1. When we drop the assumption on the continuity of A, we can 
give the above proof using the monotonicity of the functions Ihia(T) and 
by applying Helly's selection theorem instead of the Arzela-Ascoli theorem 
(see Nawijn). 

Let us introduce the difference functions Vi(T) for i = 0, 1, ** , K and 
T > 0, defined by 

VO(T) = 0 

VA(T) = T + fi+1 - f fi-(t)G(T, dt), i = 1, 2, **-, K, 

in which the functions I fi(T) satisfy relation (2) for some finite g. 
Observe that 

f,(T) + g = T + f,+, - max(O, Vi(T)), (7) 
i = 1, 2, , K, T > O. 

Since the construction of the solution proceeds in several steps, we first 
give a brief outline of the procedure. 

First, we establish some properties of the functions fi(T) and 
Vi(T). Then we prove (cf. Theorem 2) that if there exist an index k E 
{1, 2, ... , K} and a finite positive number ck such that Vi(T) c 0 for i = 
O, 1, ...,k-1 and Vk(T) O0forO 0 TCkand Vk(r)>0forT>ck, 
then there exist finite positive numbers {cij for i = k + 1, *-., K 
such that Ck > Ck+1 > .... > CK >O and Vi(T) < 0 for 0 < r < ci, 
Vi(ci) =0, Vi(T)>0 forT>ci, i=k, k+ 1, ...,K. 

Having obtained this property, we then prove (cf. Theorem 3 and 
Lemma 6) that for every solution of (2) such an index must exist. We 
then show that k = 1 (cf. Theorem 4). The form of a solution to (2), 
given in Theorem 4, enables us to prove part (e) of Theorem 1. By then, 
we have fulfilled all conditions of Theorem 1, which then guarantees the 
existence of an optimal (critical value) policy. 

We begin the construction of the solution by observing that if I fi(T)) 
satisfies (2) for some number g, then { fi(T) + d I is also a solution, where 
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d is some arbitrary constant. Hence, we can assume without a loss of 
generality that fi(T) ' O for T > O and i = 0, 1, . . ., K + 1. 

LEMMA 5. If Vk 1(T) < 0 for T - 0, for some k E $1, 2, . . ., K}, then 
(a) Vk(T) is continuous and bounded for T >- 0, monotone increasing on 

[0, s) and constant when s < T < oo. 
(b) Vk(0) < 0. 

Proof. Since Vk_l(T) < 0 for T > 0, we obtain from (6) and (7) that 

Vk(T) = T - f tG(T, dt) + fk+ -fk + g. (8) 

Now, part (a) is an immediate consequence of Lemma 1, part b. To prove 
part (b), let us assume to the contrary that Vk(O) - 0. Consequently, 
Vk(T) : 0 for T > 0. We can easily verify from Vk(r) > 0 and Vkl_(T) < 

0, for all T > 0, that 
00 

2g= f tG(O, dt). (9) 

Moreover, since Vk(T) 2 0 and fk+1(r) + g < fo fk(t)G(T, dt), it follows 
that 

g + fk+1 < f fk(t)G(O, dt) < f tG(O, dt) + fk+l - g. 

Hence, by (9) 00 
fk(t)G(O, dt) = fk+1 + g. (10) 

Now from (8) and (10) we have, in view of Vk,l(T) < 0 and Vk(T) ?- , 

Vk(o) = fk(t)G(O, dt) - fk - f tG(O, dt) 

= I I fk-l(u)G(u, dt)G(O, dt) - fk - g- tG(O, dt) 

= f f uG(t, du)G(O, dt) - 4g 

= - IH(t) - H(O)IG(O, dt). 

The latter quantity, however, is strictly negative, as can be verified from 
Lemma l(b), which contradicts the hypothesis Vk(O) > 0. Hence, we 
necessarily have Vk(O) < 0 and the proof is complete. 
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Admission to a Single Server System 633 

This lemma leads to the following corollary: 

COROLLARY 1. 2g < fo tG(O, dt) = (1/X)- + (1/X) fC M(t) dB(t). 

We now turn to the key result on which most of the remaining results 
in this paper rest. It provides the basis for the form of the optimal policy. 

THEOREM 2. If there exist an index k E 1, 2, * * *, K} and a finite positive 
number Ck such that Vk(T) < 0 for 0 C T < Ck, Vk(ck) = 0, Vk(T) > 0 for 
T > Ck and Vj(T) < 0 for T-O, j = 0, 1, * k - 1, then there exist finite 
positive numbers tcij such that for i = k, *, K: 

(a) Vi(T) < O for O ' T < ci, Vi(ci) = 0, Vi(T) > 0 for T > ci; 
(b) cii > ci> 0 and ci <s; 

(c) Jf i (1 - A(t)) dVi(t) (1/X)-f -f Vi(t) dA(t) = fi + g - fi+i. 

Proof. Since Vk1,(T) < 0 for T > 0, Vk(T) is continuous and bounded 
for X - 0 and, moreover, strictly increasing on [0, s) by Lemma 5. Part 
(a) is trivially true by assumption for i = k. The first part of (b) for 
i = k is true when Ck-l is interpreted as infinity. To prove the second part 
of (b) for i = k, note that when s = 00 we trivially have Ck < s. When 
s < oo we have Vk(T) = Vk(s)=1im V(T) > 0 for T 2 s, which is easily 
verified from (cf. (8)). 

00 
Vk(T) = T tG(i, dt) + fk+j - fk + g, T ?O (11) 

using Lemma 1, part (b). Hence, since V(ck) = 0, Ck < s. 
To prove part (c) for i = k, observe first that 

f (1 - A(t)) dVk(t) =-Vk(O) + f Vk(t) dA(t), 

noting that Vk(oo) < oo and A(0) = 0. Hence, using (11) we have 

00 

{ (1 - A(t)) dVk(t) 

= J tG(O, dt) - fk+l + fk - g (12) 

+ I {T X tG(T, dt) + fk+l - fk + gf dA(T) = 1/x, 

applying Fubini's theorem and Lemma 1 part (c). Integrating (7) for 
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i = k with respect to A(T) yields 
00 

fk + g - (1/X) + fk+i - f max(O, Vk(t)) dA(t) 
0 (13) 
00 

- (1/X) + fk+1 - Vk(t) dA(t), 
Ck 

since Vk(t) c 0 for t c ck and Vk(t) > 0 for t > Ck, by hypothesis. By 
partial integration, we obtain 

(1 - A(t)) dVk(t) = Vk(t) dA(t), (14) 

since Vk(ck) = 0 and Vk(oo) < oo. The proof of part (c) for i = k now 
follows by combining the relations (12), (13) and (14). 

In the sequel we will use the following recurrence relation between 
Vi+i(T) and VA(T) 

Vi+1(T) = T - tG(T, dt) + max(O, Vi(t))G(T, dt) 
0 0 (15) 

+ fi+2 - fi+1 + 9, i = O, 1, K - K1 

which is easily verified by substituting (7) in (6). 
Since Vk(T) > 0 if and only if T > Ck, (15) implies that 

Vk+l(T) = T - f tG(T, dt) + F Vk(t)G(T, dt) 0 "Ck (16) 

+ fk+2 - fk+1 + g- 

We now wish to prove that Vk+1(T) > Vk(&) for T : 0. Consider the 
difference 

Vk+l(T) - Vk(T) = Vk(t)G(T, dt) + fk+2 - 2fk+1 + fk (17) 
c, 

which is easily found from (11) and (16). Since the integral in (17) 
is positive, we wish to show that fk+2- 2fk+l + fk 2 0, in order that 
Vk+1(T)> Vk(T), T 0. By part (c) for i =k, we have 

fk fk+1 + g = (1/X) - f Vk(t) dA(t) (18) 

Moreover, observe from (2) that 

rT + fk+2) 0 < T < Ck 

fk+1(T) + g < 
o d 

I fk(t)G(T, dt), T > Ck 
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Integrating both sides with respect to A(T) and using (6), we obtain 
00 

fk+1 - fk+2 + g C (1/X) - f Vk+l (t) dA(t). (19) 
Ck 

Hence, in view of (18) and (19) 
00 

fk+2 -2fk+il + fk 2 J {Vk+1(t) - Vk(t)) dA(t). 
Ck 

Inserting (11) and (16) in the right-hand side, we obtain, after rearranging 
terms, 

A(ck)I fk+2 -2fk+1 + fk} 2 f J Vk(t)G(T, dt) dA(T) > 0, (20) 
Ck Ck 

hence 
fk+2 - 2fk+l + fk > 0 (21) 

and, consequently, in view of (17), 

Vk+1(T) > Vk(T), T > 0. (22) 

We now show inductively that for i = k, k + 1, , K 

(i) VA(T) is continuous and bounded for T - 0 and increasing on 
[0, s); 

(ii) Vi(O) < 0; 
(iii) Vi(T) > Vj_.(T), T > 0(i > k + 1); 
(iv) Jfo (1 -A(t)) dVi(t) = (1/X) - fo Vi(t) dA(t)-fi + g - fi. 

Observe that the assertions (i)-(iv) together with the fact that Vk(ck) = 
O and Vk(T) > 0 for T > ck imply the assertions (a), (b) and (c) of the 
theorem. The assertions (i)-(iv) have been proved for i = k. Assuming 
that we have proved the assertions (i)-(iv) for i = k, k + 1,.*-, 
n(n < K), we advance the induction to n + 1. The proof is given below. 

(i) Since Vn(T) < 0 for T < cn, we have from (15) 

Vn+l(T) = T - tG(T, dt) + f Vn(t)G(T, dt) o cn (23) 

+ fn+2 - fn+1 + g. 

This relation can be written, using integration by parts, as 

Vn+ () = T - tG(T, dt) - G(T, t) dVn(t) 
0 cn (24) 

+ fn+2 - fn+1 + g + Vn(oo), 

since Vn(cn) = 0 and Vn(o)-< oo.< - 
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From Lemma 1, the uniform convergence of the second integral, and 
the continuity of A and B, we can see that Vn+d(T) is continuous for 
T > 0. Moreover, V,+,(T) is bounded for T > 0 in view of Lemma 1 and 
the finiteness of the second integral. Now consider the difference V,+d(Tl) 
- Vn+l(T2) for T1 > T2 ' O. Using (24) and part (d) of Lemma 1, we can 
verify 

Vn+l(Tl ) - Vn+l (T2) 

> {1/i - (1 - A(t)) dVn(t)}tH(Ti) - H(T2).( 

Using partial integration and (iv) for i = n, we can write the first factor 
on the right as 

rCn 

J (1 - A(t)) dVn(t) > 0, 

since s > cn > 0 and Vn(t) is strictly increasing on [0, s). The second 
factor is positive since the function H(T) is increasing on [0, s) in view 
of Lemma 1, part (b). Hence, Vn+(i-) is increasing on [0, s), which finally 
proves (i) for i = n + 1. Further, note that Vn+i(T-) is nondecreasing for 
T > S in case s < oo. 

(iii) To prove assumption (iii) for i = n + 1, observe that 

Vn+i (T) - Vn(T) = f Vn(t)G(T, dt) - f Vn-1(t)G(T, dt) 
1n cn l (26) 

+ fn+2 - 2fn+l + fn. 

By the same argument as that used in deriving (20), we obtain 

A(cn) I fn+2- 2fn+l + fn} 

(27) 

> I dA() { Vn(t)G(T, dt) -J Vn-.(t)G(T, dt) 

Hence, fn+2 - 2fn+l + fn > 0 since cn-1 > cn > 0 and Vn(t) > Vn-1(t) for 
t > 0. Consequently, for the same reason, (26) implies that 

Vn+l (T) > Vn(), T > -0 (28) 

which proves (iii) for i = n + 1. 
(ii) From (23) we obtain 

Vn+1(O) =- tG(0, dt) + F Vn(t)G(O, dt) 
?10 C(29) 

+ fn+2 - fn+1 + g. 
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Moreover, from (2), Lemma 1, and Fubini's theorem, we have 
00 

fn+2 + g f f fn+1(t)G(O, dt) 

= J tG(0, dt) - max(O, Vn+l(t))G(O, dt) + fn+2 - g. 

Applying this inequality to (29), we obtain 
00 

Vn+1(0) c J $Vn(t) - Vn+l(t)}G(O dt) 
cn 

-J max(O, Vn+l(t))G(O, dt) + fn+2 - fn+l-g 

noting that Vn+1(t) > Vn(t) - 0 for t > cn in view of (28), which for the 
same reason implies that 

Vn+1(0) < fn+2 - fn+ g (30) 

Now, suppose to the contrary, that Vn+1(O) - 0. Then by the usual 
argument, (7) and the fact that Vn+(-) >- 0 since Vn+1(O))- 0, implies 
that 

00 

fn+l - fn+2 + g = (1/X) - Vn+l(T) dA(T). (31) 

Moreover, 

f Vn+1(r) dA&() = Vn+1(0) + f (1 - A(T)) dVn+1&() 
O ? ~~~~~~~~~~~~~~(32) 

= Vn+1(0) + 1/X, 

by the same argument as that used for i = k (cf. (12)). Combining (31) 
and (32), we obtain Vn+1(O) = fn+2 - fn+l- g, which contradicts (30). 
Hence we must have Vn+1(O) < 0, which proves (ii) for i = n + 1. 

Having advanced the inductive step to i = n + 1, we know that the 
assumptions (i)-(iii) hold for i = k, k + 1, *.-, K. Finally, assumption 
(iv) can be established in exactly the same way as was done for i = k (cf. 
(12), (13) and (14)). The proof is complete. 

In view of Lemma 5 and the fact that VO(T) = 0, we either have V1(T) 
c 0 for T > 0 or V1(T) < 0 for 0 c T < cl < s and V1(T) > 0 for T > C1. In 
the latter case, we can apply Theorem 2, whereas in the former case we 
can again apply Lemma 5. Repeating the argument results in the follow- 
ing theorem. 

THEOREM 3. If the functions Ifi(r), T > 0; i = 0, 1, * , K + 1} satisfy (2) 
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for some finite number g then for some integer k 8 I0, 1, * K , 

f(T) + g = T + fi+, T >-O, for i =O, 1, ., k, 

and f .i-) + g = fT + fi+1, 0C T c cj, and fi(T) + g 
|oIfi- f-(t)G(Tj dt), T > Ci, 

for i = k + 1, * .,K, where s >Ck > Ck+l > ... > CK > O? 

LEMMA 6. Under the conditions of Theorem 3, there exist an index 
k E 1, 2, *. . , KI and a corresponding finite positive number Ck such that 
Vk(T) < O for O C T < Ck, Vk(Ck)= 0, and Vk(T) > O for T > Ck. 

Proof. Suppose to the contrary that such an index does not exist. Then, 
according to Theorem 3, 

fi(i-) +g= T+ f+i, i= 0, 1, *,K. (33) 

Hence, from (2) and (33) we find by the usual argument that 
00 

fK+1 + g = f i- + fK+l - g}G(O, dt). 

However, this result yields 2g = f tG(O, dt), which contradicts Corollary 
1. Consequently, (33) is impossible and in view of Theorem 3 there must 
be an index k E {1, 2, *., K) such that Vk(r) > O for T > Ck >0, and 
Vi () < 0 for T > 0 (i = 0, 1, *. . , k - 1). The proof is complete. 

We are now in a position to state the form of a solution of the extremal 
equations (2). 

THEOREM 4. If the functions {fi(r), i = 0, 1, *, K + 1 } satisfy the 
extremal equations (2) for some finite number g, then 

fo(T) + g = T + fi, T>O, 

f1(i-) + g = Tf fi-(t)G(T, dt), T > Cj, (i = 1, 2, * , K), (34) 

fK+1(T) + g = f fK (t)G(r, dt), T > 0, 

and 2g = (1/X) - ,B + f A(t) dH(t), (35) 
Cl 

where oo?s>Cl>c2> ... >CK >O- (36) 

Moreover, Vi(ci) = 0 (cf. (6)) and fi + g = (1/X) + fj+j -f' Vi(i-) dA(i-), 
1, 2, * **, K. 

Proof. According to Lemma 6, there is an index k E {1, 2, * *, K) such 
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that Vi(r) C O for i = 1, 2, * * *, k- 1 and Vk(T) < O0for O c T < Ck, Vk(Ck) 

= 0, Vk(r) > 0 for T > Ck. In view of Theorem 2, we have Ck < s. When 
k =-1, the theorem follows directly from Theorem 2. To prove (35) when 
k -1, note that in this case V1(T-) = H(r) + f2- fA + g, so that V1(oo) = 

/ + f2- f + g. Combining this result with 
00 

fl + g = (1/X) + f2 V1(T) dA(T) 
Ci 

00 

- (1/X) + f2 - V1(oo) + A(T) dV1(T), 

leads simply to (35). 
Now we will prove that k = 1 is the only index for which Lemma 6 can 

be true. Suppose to the contrary that k > 2. Since Vk-2(T) C 0 and fk-l + 

g = (1/X) + fk, it is easy to verify from (7) that 

Vk-1(T) = H(T) + 2g - (1/X) 

and hence Vkl(oo) = fi-(1/X) + 2g. 

Analogously to (35), we find 00 
2g - (1/X) + /3-f A(t) dVk(t) > 0, 

Ck 

since Ck < s. Hence, Vkl(oo) > 0, which contradicts the hypothesis that 
Vk-l(T) C 0 for T > 0. Consequently, k > 2 is impossible. The proof is 
complete. 

COROLLARY 2. Under the conditions of Theorem 4 
00 

(1/X) -1 fi< 2g < (1/X) + (1/X) f M(t) dB(t). (37) 

Proof. This result follows immediately from (35) and (36). 

THEOREM 5. There exist continuous functions Ifi(T), i = 0, 1, ** , K + 1} 
and a finite constant g satisfying the extremal equations (2). Moreover, 

limn-(1/n)ER1fin(-rn) I Zl = i, = =T = 0, for all (i, T) E S (38) 

and any policy R E C, with T <oo. 

Proof. From Theorem 4, we deduce that 

ER$ftzn(Tn) I Zl = i Tl = TI 

Z i=o fj+l PrR$Zn = iz1 = i, T1 = T- g 

+ ER{Tn I Zl = i, Ti = T} 

+ $(1/X) + fK+1 - g}PrR$Zn = K + 1 |-zj = i, Tr = Ti. 

Hence, by applying Lemma 2, we can easily see that (38) holds. 
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Now we finally have 

THEOREM 6. There exists a unique optimal stationary deterministic policy 
R* such that 

aR* (i, T)=1 if 0 c T c ci- (39) 
=0 if T > Ci, 

where the critical numbers Ici} for i = 1, 2, ** , K satisfies s > cl> C2 > 
* > CK> O. 

Proof. Clearly in view of Theorem 5, all the premises of Theorem 1 are 
fulfilled. Hence, there exists a stationary deterministic policy R * such 
that g = gR*(i, T-) = minR gR(i, T) for all (i, T-) E S, with T < oo. Since any 
solution of (2) is of the form given in Theorem 4, the optimal policy R* 
is a control-limit policy satisfying (39). It remains to prove that the 
critical numbers $cj} are unique. 

We can verify from Theorem 2 and relation (15) that 

fn + g = fn+1 + (1/X) - Vn(oo) + f A(T) dVn(T) 
cn 

and Vn(??) = fi + A+i- fn + g + Vn-1(4o). 

Hence, 
00 

2g + (1/X) + Vn-1(oo) -f A(T) dVn(T) = 0, n= 1, 2, *..,K, 

i.e., cn is a zero of the function Fn(x) defined by 
00 

Fn(x) = 2g + f-(1/X) + Vn-1(o) - A(T) dVn (r), x > 0. 

In view of the properties of Vn(.), Fn(x) is continuous and increasing on 
[0, s). Taking n = 1 and noting that Vo(T) = 0, we obtain 

F1(x) = 2g + 3 - (1/X) - f A(T) dH(T), X - 0. 

Since gR*(i, T) = g for any optimal policy R*, the critical number cl must 
be unique. Now suppose that cl, - *, cn1 (n c K) are unique. Observing 
that Fn(x) depends only on cl, *. , Cn we can see that the only root cn 
of Fn(x) = 0 is also unique, and the proof follows by induction. 

REMARK 2. We have focussed our attention on the minimization of the 
long-run average expected idle time per customer served, leading to the 
extremal equations (2). The more natural optimality criterion is the number 
of customers served per unit time. The extremal equations for the corre- 
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sponding semi-Markov Decision Process read 

fo(T) = 1 + f/ - gT 

fA(T) = maxf1 + fj+ - jr( 1..IK 
lfr fi-,(t)G(T, dt) - f (i 1, 2, ** , K) 

fK+ 1 () = f fK(t)G(T, dt) - gj 

and it is possible to show that both formulations yield the same maximal 
production rate. 

3. POISSON ARRIVALS 

In this section we will apply our results to the case of a Poisson arrival 
process. 

Since the renewal function is given by M(t) = Xt for t > 0, Lemma 1, 
part (a) implies that 

G(T, t) = B(T) -B(T - t) + A(t)(1 -B(T)), T > 0, t > 0. 

Inserting this result into Theorem 4 we can easily show that 

T + fj+j O c T C Cj, 
fi (T) + g = r (40) 

(1- B(T))fi-l + J fi-1(- t) dB(t), T > Ci, 

fori= 1, 2, *,K. 
Using the fact that 

fi(r) + g = - + fi+l for 0 -cr T , i= 1, 2,* , K 

we obtain from (6) and (40) that 

Vi() =f(1-B(u)) du 

- (fi-, - fi + g)(1 - B(T)) + fi+j - fi + g, (41) 

0 C T C Ci-1- 

By straightforward calculations, using (41) and noting that Vi(c1) = 0, 
we can verify from Theorem 2 part (c).that 

fi- i+ 

( -bi) (fi- - fi)/Ai - (1 - A) J (1 - B(u)) du/Ai 
0 (42) 

+ (1/X)$1 + (1 - Ai)/Ai - (1 -i)/Ail 

- g{1 + 2(1 - Ai)/Ai - (1 -(i)/Ail, 
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in which 
rCi 

Ai = 1 - e`ci and (D = f (1 - B(u)) dA(u), 
0 

i= 1, 2, *. , K. 
Moreover, from (2) we have 

fo- f = (1/X)-g and fK-fK+1 = g, (43) 

since G(O, t) = A(t). 
Solving the recurrence relations (42) and (43) for g, we obtain 

2g = (1/X)-nK-o fn (1 - B(u)) du, (44) 

where 
n= (1 - An+1) Jk=n+2 I(1 - 4k)/Ak}/An+1, (45) 

n = 0,1, 1 . * *, K- 1 

and IK can be found from = 7rn = 1. (The empty product in case n = 

K - 1 is to be interpreted as having value one). 
Observe that (44) and (45) hold for every deterministic critical number 

policy with c1 > C2 > ... > CK> 0. Relation (44) generalizes results of 
Beightler and Crisp and Nawijn and De Jonge. Beightler and Crisp 
considered the case c1 = C2 = *.. = CK= c and B(c) = 0 (in fact, they 
considered a Bernoulli arrival process). Nawijn and De Jonge derived a 
special case of (44); in particular, they assumed that B(ci) = 0 for i = 1, 
2, *.., K, in which case the process {zn, n - 0} is an ergodic Markov 
chain. 

For the optimal policy, the critical numbers ICrJ satisfy the simulta- 
neous equations (42), (43) and Vn(cn) = 0, i.e., 

rCn 

(1-B(u)) du - (fn- -fn + g)(1 -B(cn)) + fn+l -fn + g = 0 (46) 

n= 1,2, ...,K. 

In the special case of large service times, (46) becomes 

cn = [n-I - fn+1 n = 1, 2, *.. , K. (47) 

and (42) becomes 

An(fn-fn+- ) = (1 - An)(fn1 - fn) -(1 - An)cn + An/X - g. (48) 

From (43), (47) and (48), we can verify that the critical numbers satisfy 
the set of equations 

Xcn = Xcn+l + e-Xcn+l e`cn-l n = 1, 2, *.., K, (49) 

with co = oo and CK+1 = 0. 
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