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The Optimal Production of an Exhaustible Resource

When Price is Exogenous and Stochastic

ABSTRACT

This paper examines the optimal production of a resource such as oil

when its price is determined exogenously (e.g. by a cartel such as OPEC),

and is subject to stochastic fluctuations away frdm an expected growth

path. We first examine the dependence of production on extraction cost,

and show that the conventional exponential decline curve is indeed optimal

if marginal cost is constant with respect to the rate of extraction but is

a hyperbolic function of the reserve level. We next show that uncertainty

about future price affects the optimal production rate in two ways. First,

if marginal cost is a convex (concave) function of the rate of production,

stochastic fluctuations in price raise (lower) average cost over time, so

that there is an incentive to speed up (slow down) production. Second, the

"option" value of the reserve, i.e. the ability to withhold production

indefinitely and never incur the cost of extraction, provides an incentive

to slow down the rate of production.
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The Optimal Production of an Exhaustible Resource

When Price is Exogenous and Stochastic

1. Introduction

Suppose you owned reserves of an exhaustible resource such as oil. How

fast should you produce the resource if its price follows an exogenous growth

path, and how should your rate of production be influenced by uncertainty

over the future evolution of price?

Hotelling (1931) originally showed that with constant marginal extraction

costs, you would produce at maximum capacity or else not at all, depending on

whether price net of marginal cost (i.e. "rent") was expected to grow slower

or faster than the rate of interest. Thus market clearing would ensure that

rent grew at exactly the rate of interest, and producers would be indifferent

about their rates of production. But clearly the producers of most resources

in competitive markets today are far from indifferent over their production

rates, and resource prices (whether in competitive or monopolistic markets)

have usually not grown steadily over time as in the simple version of the

Hotelling model.

One reason for this is that marginal production costs for most resources

are usually not constant, but instead are likely to vary linearly or nonlinearly

with the rate of production, and to depend (inversely) on the level of reserves

as well. A second reason is that in most cases resource owners perceive the

future price of the resource as uncertain, and even if those owners are risk-

neutral, this can (as we will see) lead to a shift in behavior. In this paper

we focus on these two issues, but recognizing of course that there are a number

of other important factors that may also influence the rate of resource pro-

duction and the behavior of resource markets.l

We will examine the optimal production of a (nondurable) exhaustible

resource, e.g. oil, when its price follows an exogenous growth path, and may be
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subject to stochastic variation around that path. However we will not be

concerned with the determination of the expected price trajectory, or the

reasons for stochastic fluctuations around that trajectory. The reader

might like to assume (and it would be reasonable to do so) that the resource

price is controlled by a cartel (such as OPEC), and both the expected and

realized price trajectories reflect a mixture of rational and (to economists)

irrational behavior on the part of the cartel.4

We will see in this paper that uncertainty oer the future price of the

resource can affect the current production rate for two reasons. First, if

marginal extraction cost is a nonlinear function of the production rate, sto-

chastic fluctuations in price will lead (on average) to increases or decreases

in cost over time, so that cost can be reduced by speeding up or slowing down

the rate of depletion. Second, in-ground reserves of a resource can be

thought of as an "option" on the future production of the resource; if the

future price of the resource turns out to be much higher than the cost of

extraction, t may well be desirable to "exercise'; the option and produce the

resource, but if instead price falls so that production would be unprofitable;

the option need never be exercised, and the only loss is the cost of discovering

or purchasing the reserve.3 But this means that under future price uncertainty

the current value of a unit of reserve is larger than the current price net of

extraction cost, and as we will see, the greater the uncertainty the greater

is the incenL;ve to hold back production, aid keep the option.

In the next section we set forth a simple deterministic model of optimal

production in which price is assumed to grow exponentially at a rate less than

the rate of interest, and production costs may be a general function of the

rate of production and the level of reserves. The solution of that model is

straightforward, but it is useful to examine the characteristics of the pro-

duction trajectory under different assumptions about the cost function and the

III
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rate of growth of price. In Section 3 we introduce uncertainty by letting the

price'follow a stochastic process so that its future values are lognormally

distributed around the expected growth path, and its variance grows linearly

with the time horizon. We then solve the resulting stochastic optimization

problem, but first ignoring the "option" value of the reserve, i.e. by calculating

the expected value of the reserve based on the assumption that it is eventually

extracted. This will enable is to examine the relationship between price

uncertainty, the characteristics of extraction cost, and the rate of production.

We will see that price uncertainty leads to faster (slower) production if

marginal cost is a convex (concave) function of the rate of production. We

then consider the value of an in-ground unit of reserves as an "option" on

possible future production, and show that even if producers are risk neutral

this implies a slowing down of production if there is price uncertainty. Finally

we summarize our results and offer some concluding remarks in Section 4.

2. Optimal Production under Certainty

We assume that our resource producer begins with a known reserve level R,

and has a total cost of extraction C(q,R), with C >0 , C >O, , R O, C qR<O'

CqRR O, and C(O,R) = O. (For now we will assume that the inequalities hold for

all of these partial derivatives; shortly we will consider special cases where

some of the partials are equal to zero.) We also assume that the producer knows

that the price of the resource o will grow at the rate a, where O<r, and r is

4'
the rate of interest. The producer's problem, then, is:

co

max |lp(t)q(t)-C(qR)]e rtdt (1)
q(t)

such that R = -q, R(O) = R 0 (2)

p = ap, PO() = p0 (3)

and R(t), q(t) > 0.
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This is a straightforward optimal control problem. Define the Hamiltonian

H as usual, and maximize with respect to q to get the discounted rent, or

shadow price of a unit of reserves:

= (p-C )e-rt (4)

Now differentiate eqn. (4) with respect to time to get an expression for

X, substitute (2) and (3) for and R, substitute = -H/R = CRe- rt, and

rearrange to obtain the equation that describes the dynamics of production:

q = - C [(r-a)p - rC - Cqq + CR]
Cq *q qR R
qq

The optimal production and reserve trajectories are thus determined from

the simultaneous solution of the three differential equations (2), (3), and

(5), together with the two initial conditions for R(O) and p(O), and one

terminal condition. Since at the terminal time T, H(T) = 0, the terminal

condition will depend on the cost function C(q,R) and the rate of growth of

price. If CR = 0 or CR < 0 but CqR -a < as R-*O, the condition is q(T) = O,R(T) =

(>)o if p(T) - C q(T) > (=) O. This condition may also apply if CqR - as

R-O, but if price grows fast enough, q(t), R(t) and p(t)-C will all approach

zero asymptotically. Finally, note that the assumption that a<r is essential;

if 1x r there is no incentive to produce at all.

The behavior of production is easiest to understand by examining some

spe:ial cases. We begin,with the case in which marginal cost is constan. with

respect to the rate of production, i.e. Cq O0, but CR, CqR < O. This implies

a singular solution, so that eqn.. (5j no longer holds. Instead, maximization

of the Hamiltonian gives:

q max if (p-Cq) > Ae
rt (6)

q(t) = q*(t) if (-C ) = e 

0 if (p-Cq) < Bert

Ill
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If marginal cost did not depend on reserves, production would be set at either

qmax or O depending on a, but with C R<O, the interior solution q(t) may apply

for at least part of the time. We can determine the interior solution by differ-

entiating the condition (p-C ) = er t with respect to time and rearranging:
q

q*(t) = C (r-a)p - rCq + CR]
qR

Note that this implies that production is non-zero only if r(p-C q) > p-CR

i.e. the marginal profit from producing one unit must exceed the capitalized

value of future gains plus future cost savings from all units extracted if

the one unit were to be left in the ground.

Generally production will begin at either 0 or qmax and stay there until

p and R are such that the interior condition holds, and then production will

follow q*(t) for the remainder of the time. We can see this using as an

example C(q,R) = mq/R. Now eqn. (7) implies that p(t) = mr/(r-a)R3.

Differentiating this with respect to time and substituting ap for gives an

expression for q*(t):

q*(t) = 3R =(r-a)p (8)

so that when the interior solution applies, production is proportional to the

reserve level. In fact this gives the familiar exponential decline curve for

3a(t-t -
production, with the decline rate equal to 3a, i.e. q(t) = 3aRoe t 

Note that if a = O the interior solution never applies, and q = q throughout.

The optimal production and reservc trajectories are shown in Figure 1

for the situation where q = qmax initially, and in Figure 2 for the situation

where q 0 iitially. !n Figure 1 R and p are such that R > [mr/(r-a)p]l/3,

so that q = qmax until R falls and p rises to the point where R = [r/(r-a)p] /3,

after which q and R follow the interior solution given by eqn. (8). Note from

Figure 1 that as a becomes smaller, q remains at qmax longer, and the switch tomax
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the interior solution occurs at lower values of q and R. In Figure 2, R is

small relative to p0 and a, so that q = 0 until p rises to the point where

RO = mr/(r-a)p] 1/3, after which q and R again follow the interior solution.

Nota that if a is made larger, q remains at 0 longer, and the interior solution

implies higher values of q and R. Letting T2 be the time at which q switches

fron 0 to q(t) > 0, note that T2 as a - r.

We observe, then, that even if marginal cost is constant with respect to

the rate of output, dependence on the reserve level will imply an interior

solution for the optimal production rate that will hold for at least part of

the time. Furthermore, if marginal cost varies hyperbolically with the reserve

level (which is at least approximately the case for many oil and gas reserves),

the interior solution is the conventional exponential decline curve for production.

Now consider the alternative special case where cost is independent of

reserves, i.e. CR = CqR = 0, but C > O. In this case an interior solution

always applies, and eqn. (5) simplifies to:

q= - C [(r-a)p - rC ] (9)
C q
qq

The characteristics of the solution in this case will depend on both a and

the shape of the marginal cost curve, and in particular the sign of C . Suppose
qqq

a = . Then clearly < 0 to exhaustion. Furthermore, if C O, < 0
qqq

throughout as well. If C < 0 and is sufficiently large in magnitude,'q
qqq

will be positive at first and later will t - - and remain negative until exhaustion.

These possibilities are shown as trajectories A and B in Figure 3.

Now suppose a > . In this case the sign of q is not clear, at least

during the initial period of production. With CR = O, discounted rent X must

be constant over time, so that if price is growing fast enough, production may

be initially increasing. In such a case, will change sign (q must fall to
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zero as R-O since H(T) = 0), and can change sign only once. To see this, note

that

1 2 rt 2 at (10)
C [ 0 0 (10)
qq

so that q is negative always, or else q is positive initially, and turns negative

later. Thus if ct is large, optimal production can also follow trajectories C or

D in Figure 3.

3. Production when Price is Stochastic

To introduce uncertainty over future values of price, we assume that price

fluctuates from ts expected growth path according to a stochastic process with

independent increments. In particular, we replace eqn. (3) with

dp = apdt + opdz : apdt + ape(t)it (11)

where £(t) is a serially uncorrelated normal random variable with zero mean and

unit variance (i.e. z(t) is a Wiener process).5 Eqn. (11) implies that uncer-

tainty about price grows with the time horizon, and that fluctuations in price

occur continuously over time.

We assume that producers are risk neutral, so that the dynamic optimization

problem is now:

max EJ [p(t)q(t) - C(q,R)] e rtddt= Eo Id(t)dt (12)

O 0

subject to the ordinary differential equation (2), the stochastic differential

equation (11), and R(t), q(t) > 0.

Our approach is to first solve this problem under the assumption that pO

b and a are such that q(t) > 0, and that q(t) > 0 over the entire planning

horizon (i.e. up to the point where exhaustion occurs or Cq = p). This can be
q



-8-

done using stochastic dynamic programming, and although it ignores the possi-

bility of withholding all production (perhaps indefinitely), it will allow us

to determine how the effect of price uncertainty on current production depends

on the characteristics of cost. Afterwards we will consider the ability of

the producer to withhold production (of perhaps currently uneconomical reserves),

while maintaining the option of producing in the future should price unexpectedly

rise rapidly. As we will see, this leads to a quite different effect of price

uncertainty.

We begin, then, by looking for an interior solution to the optimization

problem set forth above. To do this, define the optimal value function:

J = J(R,p,t) = max E tJntId()dt (13)
q(T)

t

Since J is a function of the stochastic process p, the fundamental equation of

optimality is:

O = max {Id(t) + (l/dt)E dJI
q(t)

= max {I d(t) + Jt - qJR + PJp + J } (14)
q(t)

Maximizing with respect to q gives:

an/aq = J (15)

i.e. the usual result that the shadow price of the resource should always equal

the incremental profit that could be obtained by selling an additional unit.

Now differentiate eqn. (14) with respect to R:

a:d 2 22
DR + Rt - qJRR + apJRp P Rpp = 0, (16)



-9-

and by Ito's Lemma note that this can be re-written as:

and/aR + (1/dt)Etd(JR) = 0 (17)

To eliminate J from the problem, apply the operator (/dt)Etd( ) to both sides

of (15), and combine the resulting equation with (17) to yield:

(l/dt)Etd(ald/3q) = - and/aR- (18)

Eqn. (18) is just a stochastic version of the well-known Euler equation from

the calculus of variations. In its integral form it says that the marginal

profit from selling 1 unit of reserves should just equal the expected sum of

all discounted future increases in profit that would result from holding the

unit in the ground.

Our objective is to obtain an equation analogous to eqn. (5) to explain

the expected dynamics of production. To do this, substitute aId/aq = [p(t)-C le-rt
q

-rt
and and /aR = CRe into eqn. (18):

-r[p(t)-C] I + (/dt)Etdp - (/dt)EtdCq CR (19)

Now note that Edp = pdt, and expand dCq using Ito's Lemma:

dC = C dq + C dR + C (dq)2 + o(t) (20)
q qq qR 2 qqq

where o(t) represents terms that vanish as dt-+O. Along an optimal trajectory

q q (R,p), so that

Etdq2 2 2 2
E k(dq) 2 p q dt + o(t) (21)

where q is the (unknown) response of optimal production to a change in price.

Now substituting eqns. (20) and (21) into (19) and rearranging, we obtain the

equation, analogous to eqn. (5), that describes the expected dynamics of'

production:
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- 1 12 2 2
-Edt 1- + C+t E dq = Cl (r-sa)p - rC -CqR q + CR+ 2-a P q Cqqq (22)qq

Eqn. (22) tells us that the expected rate of change of production differs

from the certainty case when marginal cost Cq is a nonlinear function of the

rate of production. In particular, we see that when production is falling,

price uncertainty causes it to fall faster (slower), so that production begins

at a higher (lower) level, when marginal cost is a convex (concave) function of

q. This deviation from the certainty case is easily understood by recognizing

that stochastic variations in price imply changes in expected future marginal

costs if C !q O. To see this, suppose C > 0, and random increases and

decreases in price occur that balance out, leaving price unchanged on average.

Clearly such fluctuations will have the net effect of raising marginal cost

over time, since corresponding increases in optimal production will raise

marginal cost more than corresponding decreases will lower it. This in turn

implies an incentive to speed up production, and thereby reduce these expected

increases in cost over time. If, on the other hand, C < 0, just the opposite
qqq

holds, and there is an incentive to slow down production.

We see then that if marginal cost increases nonlinearly, price uncertainty

will lead to changes in the expected rate of production. Does this mean that

if marginal cost is constant or rises linearly with the rate of production,

price uncertainty should have no effect on expected production? The answer is

no, as we seeif we remember that producers need not produce at all. This

means that if current or expected price is below extraction cost for any

marginal unit of the resource, the owner can keep the unit in the ground

indefinitely but maintain the option of extracting it at some future time in

the event that there is a ufficient (random) increase in price. Alternatively,

suppose that production of a unit would be profitable, but just barely so.

Then with future price sufficiently uncertain there is an incentive to keep

"I1
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the unit in the ground, since if price were to fall the only loss would be

the snall (unrealized) profit, whereas if price were to rise, extraction

could then yield a relatively large profit.

This means that uncertainty over future price creates an incentive to

slow down production. To see this, assume that C (O,R) > 0, and suppose for
q

simplicity that C = CR = 0. Now consider the present value of a marginal

unit of reserves that can be extracted at some time t. Under certainty that

value is

V = max{ O,(p-C )e r } (23)

i.e. extraction of the unit would occur only if p(t) > C. Further, it is

easy to see from (23) that the value is constant over time, i.e. dV/dt = 0.

Now suppose future price is uncertain. The present value of the marginal

unit is then just the expected value of the right-hand side of eqn. (23). Now

consider the expected rate of change of that value. Since the right-hand side

of (23) is a convex function of p, we have by Jensen's inequality:

(l/dt)EodV = (/dt)Eomax{O,d[(p-C )e rt ] }

(24)
-rt

> (1/dt)max{O,Eod[(p-Cq)e rt] = 0

Thus under uncertainty it is preferable not to extract the marginal unit that

under certainty would have been extracted at time t, since that unit is now

expected to rise in value over time. This means that given any particular

current price (nd given any expected rate of price increase a), production

should be lower the greater the uncertainty over future price.

Uncertainty over future price therefore affects current production in two

different ways. First, if marginal cost is a nonlinear function of the rate

of production, future price uncertainty creates a cost-based incentive to
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alter the current rate of production -- speeding it up if the marginal cost

function is convex, and slowing it down if it is concave. Second, whatever

the characteristics of marginal cost, the fact that any in-ground unit has

value as an option to extract -- or not extract -- in the future implies

that future price uncertainty will cause a slowing down of production. Of

course if the marginal cost function is convex, the net effect is ambiguous.

4. Concluding Remarks

Models of resource production often contain severe simplifying assump-

tions about the characteristics of cost and about knowledge of future price,

and we have seen in this paper that such assumptions may lead to highly mis-

leading results. For example, for most resources, and certainly for oil and

gas, extraction cost is in fact usually not constant with respect to the

reserve level and the rate of production as often assumed, and this means

that resource owners should be far from indifferent about their rate of

production. In particular, if marginal cost can be roughly characterized as

a hyperbolic function of the reserve level, then the conventional exponential

decline curve often used by petroleum engineers will apply.

It is also a fact that there is considerable uncertainty about the

future prices of most resources. This is particularly true today for oil and

other energy resources, where price determination by a politically unstable

cartel makes market evolution highly unpredictable. We have seen that even

if resource owners are risk neutral, ucertainty over future price will alter

their current rates of production, in a way that depends on the characteristics

of arginal cost.

In this paper price was viewed as exogenous, and we did not consider

market equilibrium. This is reasonable in the case of oil, where price is

now controlled (rationally or irrationally) by a cartel. The earlier paper by
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this author (1980) examined the effects of future demand and reserve uncertainty

on the evolution of competitive market price, but made the assumption that

marginal cost is constant with respect to the rate of production, and ignored

the value of in-ground reserves as an option (that need not be exercised) on

future production. In so doing it found that with constant marginal cost,

under demand and/or reserve uncertainty the expected rate of change of rent,

i.e. the competitive market price net of marginal cost, would still equal the

rate of interest. It is easy to see from eqn. (24), however, that because of

the option value of in-ground reserves, this is in fact not the case, and in

expected value terms rent should rise at less than the rate of interest, since

otherwise the expected present value of in-ground reserves would rise over time.
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FOOTNOTES

1. For example, Pindyck (1978b) discusses the interrelationship between

the rate of production and the rate of exploration and reserve accumu-

lation, Levhari and Pindyck (1980) show how the durability of some

resources affects their production and market price paths, and Newbery

(1980) examines the implications of alternative market structures for

production rates. Also, in an earlier paper Pindyck (1980) examined

the effect of demand and/or reserve uncertainty on the expected evo-

lution of the competitive market price, but that paper made simplifying

assumptions about the characteristics of extraction cost, and also

ignores the possibility that producers might withhold production that

is currently uneconomical until (and if) price unexpectedly rises.

2. An earlier paper by this author (1978a) examined the optimal price

behavior for an exhaustible resource cartel, taking non-cartel supply

behavior as exogenous (and not dynamically optimal). For models in

which the price and output behavior of both the cartel and the

"competitive fringe" are dynamically consistent (i.e. Nash-Cournot

models), see Salant (1976) for the case in which all producers face

identical costs, and Newbery (1980) for the more general case in which

there are differences in costs and/or discount rates.

3. The option value of an in-ground reserve is discussed in a recent paper

by rourinho (1970), who uses the standard Black-Scholes option pricing

model to show how the value of the reserve grows as the degree of future

price uncertainty grows.

(continued)
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FOOTNOTES

(continued)

4. Whether price is determined in a quasi-competitive market or is set by

a cartel, we would expect it to grow at a rate less than r as long as

extraction costs are positive.

5. Eqn. (11) is the limiting form as hO of the discrete-time difference

equation p(t+h) - p(t) = ap(t)h + ap(t)e(t)Aif and E[dp/p] = dt, and

Var[dp/p] = a2dt. Note that p(t) is lognormally distributed, with

(12) and = 2
E log(p/t)/p(O)) = t, and Var[og(p(t)/p))] t. For an

introduction to stochastic differential equations of the form of (11),

see Cox and Miller (1965).

6. We use the notation JR = aJ/3R, etc. (1/dt)Etd( ) is Ito's differential

generator. For a discussion of the techniques used in this paper, and

in particular the use of Ito's Lemma, see Kushner (1967), Merton (1971),

or Chow (1979). Also, the approach here follows closely that used in

this author's (1980) earlier paper on this subject.
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