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Abstract-The optimal  projection  equations for reduced-order state 
estimation are generalized to allow for singular (Le., colored) measure- 
ment  noise. The noisy and noise-free measurements serve as inputs to 
dynamic and static  estimators, respectively. The optimal  salution  is 
characterized by necessary conditions which  involve a pair of oblique 
projections corresponding  to reduced estimator  order  and singular 
measurement noise intensity. 

I. INTRODUCTION 

It has  recently  been  shown [l] that solutions to the steady-state reduced- 
order state-estimation problem can be characterized by means of a system 
of  modified Riccati and  Lyapunov equations coupled by an oblique 
projection. As  in classical Kalman  filter theory [2], however, this solution 
is  based on the assumption that all measurements are corrupted by white 
noise. When  the  measurement  noise is singular  (Le,,  colored), the optimal 
solution cannot be applied since the filter gains are given in t e r n  of the 
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inverse of the noise intensity matrix.  Hence,  it is not surprising that a 
sizable body  of literature has  been  devoted to  the singular measurement 
noise problem in  both continuous and discrete time [2]-[14]. For an 
overview of stochastic observer  theory, see [15]. 

Much of  the continuous-time singular estimation literature attempts to 
overcome the noise singularity by introducing new measurements 
obtained by differentiating noise-free measurements. The present note 
complements these results in the following way. For the available noisy 
and noise-free measurements we simultaneously design a reduced-order 
dynamic estimator  for the noisy measurements and a static estimator for 
the noise-free measurements. We are not concerned here with the 
question of  how the measurements are generated (e.g., via successive 
differentiation). Rather,  our goal is to develop a unified dynamic/static 
estimation design theory which permits full utilization of both noisy and 
noise-free measurements. Application of these results to previously 
proposed approaches to singular estimation involving differentiation and 
transformation should be an interesting area  for  future research. 

The results given herein directly generalize  the results obtained in [ 11. 
Specifically, the modified Riccati/Lyapunov equations are now coupled 
by a pnir of oblique projections. As in [l] the requirement for reduced 
estimator order gives rise to the projection 

72 = o p  (OF) (1.1) 

where ( ) #  denotes group generalized inverse and Q and P are rank- 
deficient nonnegativedefinite matrices analogous to the controllability 
and observability Gramians of the estimator. In addition, the presence of 
noise-free measurements 

A t )  = Czx(t) (1.2) 

leads  to the projection 

71 = QCT(C,QCl)-’C, (1.3) 

where Q is the steady-state error covariance. The contribution of the 
present note is a  concise, unified statement of the optimality conditions in 
a form which clearly displays the  role of the oblique projections 7,  and r2 
in explicitly characterizing optimal static/dynamic (nonstrictly proper) 
estimators. An additional feature of the present note is  the presence of 
state- and measurementdependent white noise in the plant model. This 
model  has  been studied in a  stateestimator context in [161-[18]  and has 
been justified as  an approach to robustness in [19]-[22]. 

In Section III of the note, we consider the case in  which the noisy and 
noise-free measurements are fed to  the dynamic and static estimators, 
respectively. In Section IV, we note that feeding the noisy measurements 
to  the static estimator results in  an ill-posed problem, and we consider the 
general case in which the noise-free measurements are fed  to  both the 
static and dynamic estimators. Optimality conditions now  lead  to the 
interesting disjointness condition 

0 = 7271 (1.4) 

concerning the relationship between  the static and dynamic estimators. 
The meaning of (1.4) for proposed singular estimation schemes will be 
explored in future papers. 

The goal of this note is confined to a rigorous development of necessary 
conditions for the optimal estimation problem. In support of this aim it 
should be noted that the usefulness of necessary conditions in optimization 
and optimal control has  been amply demonstrated by classical results such 
as the maximum principle and Euler-Lagrange theory.  For practical 
purposes, necessary conditions are largely free from restrictive special 
assumptions which invariably accompany sufficiency theory. Most 
importantly, success in addressing the problems of existence, sufficiency 
and  global  optirnality  is far more likely after the full elucidation of the 
necessary conditions has  been achieved. Indeed, sufficiency conditions 
are often obtained by strengthening necessary conditions by means  of 
additional restrictive assumptions. 

Even  without a complete resolution of questions pertairung to existence 
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and  sufficiency, the necessary  conditions fulfill several  immediate  needs. III. PROBLEM STATEMENT AND MAIN THEOREG 
Specifically, the structure of these conditions  provides  insight  into the 
properties  of the solution arising from optimality  considerations. This has Reduced-Order  State-Estimation Problem 
been  demonstrated for the closely  related  problem of reduced-order 
modeling for which  local  minima are characterized  in  terms of an Given the nth-order observed system 
eigensystem  decomposition [23]. Potentially more useful  than  insight for 
practical  applications are prospects for constructing  novel  computational 
algorithms  which  avoid  traditional  gradient search methods. Thus far, two 
distinct  algorithms  have been developed,  namely, an iterative  method 
which  exploits  the structure of  the  oblique  projection [23] and  a  homotopy 
algorithm  which  eliminates the need for eigensystem  calculations and 
provides the means for attaining  global  optimality 1241. For computational 
purposes it should also be noted  that  under an existence  assumption the 
necessary  conditions are ,wanteed to possess  a  solution to the problem, 
while  sufficient  conditions  may  fail  in th is  regard. 

II. 

A, A, 

K 

*(t)  

asymptotically  stable  matrix 
nonnegative-semisimple  matrix 
nonnegative-definite  matrix 
positive-definite  matrix 

Y2W = C2.w. (3.3) 

NOTATION AND DEFINITIONS 
real  numbers, r X s real matrices, E l r x 1 ,  expectation 
n X n  identity,  transpose, group generalized  inverse 125, p. 1241 
Kronecker sum, Kronecker  product [26] 
trace of  a square matrix Z 
I,  - 7,  7 E W""" 
positive  integers, 1 5 ne I n 
n+n,  
n, ne-dimensional  vectors 
II , 12, q-dimensional  vectors 
n x n  matrices; II x n  matrices, i = 1 ,  " * , p  
1, x nmatrix 
ne x ne,  ne X I], q X ne, q X I2 matrices 
unit  variance  white  noise, i = 1, - a ,  p 
n-dimensional,  Il-dimensional  white  noise  processes 
n X n  nonnegative-definite  intensity  of wo(t) 
il x II positivedefinite intensity of w l ( t )  
n X l1 cross intensity of wo(t ) ,   wl ( t )  
q X q positive-definite  matrix 
q X n  matrix 

ne X I2 matrix 

BeCI + KC2 A ,  O I  

L 'RL - L 'RDeC2 - C:D,TRL + C;D,TRDeC2 - L ~ R C , +  C;D,'RC~ 
- CTRL + CTRDeC2 CTRC, 

matrix  with  eigenvalues in open  left-half plane 
semisimple  (nondefective)  matrix  with  nonnegative  eigenvalues 
symmetric  matrix  with  nonnegative  eigenvalues 
symmetric  matrix  with  positive  eigenvalues. 

For arbitrary n X n 0, Q define: 



IEEE TRANSACTIONS ON AUTOMATIC COKTROL, VOL. AC-32. NO. 12, DECEhBER 1987 1 I37 

To guarantee  that J is  finite,  assume  that A is  asymptotically  stable  and 
consider  the set of  asymptotically  stable  reduced-order (i.e., fixed-order) 
estimators 

A & { ( A e ,  Be,  C,, De) : A,  is  asymptotically  stable}. 

Since the value  of J is  independent of the internal  realization  of the 
transfer  function  corresponding to (3.4) and (3.5), without loss of 
generality  we further restrict our attention to the set of admissible 
estimators 

A -  2 { ( A ? ,  Be,  C,, De) E A : (Ae,  Be) is controllable 

and ( A e ,  C,) is  observable}. 

An additional  technical  requirement  is  that (Ae, Be, C,, De) be confined to 
the  set 

a+ 2 { ( A e ,  Be,  C,, 0,) E A+ : 
C2(Ql - Ql2Q;lQ;)CT is  positive  definite}, 

where 

satisfies 

and Qz is  invertible since (Ae, Be) is controllable. The positive 
definiteness  condition  holds  when C2 has  full  row  rank  and Q is  positive 
definite.  As can be  seen  from the proof of Theorem 3.1, this  condition 
implies the existence of the projection  defined  below. 

The following  factorization  lemma  is  needed for the statement  of the 
main  result. 

Lemma 3.1: Suppose n X n Q, P are nonnegative definite. Then QP 
is nonnegative  semisimple. If, in  addition,  rank QP = ne, then there exist 
ne x n G, ?? and ne x ne invertible A4 such  that 

Qp= G'Mr, (3.7a) 

rGT=Zne. (3.7b) 

Furthermore, G ,  M ,  and r are unique  modulo  a  change of basis in 
B"e. 

Proof: The result  follows from 127, Theorem 6.2.51. c 
Since QP is  semisimple  (diagonalizable)  it has a group generalized 

inverse (QP)$  = G r M - T  and 

72  2 OF(@)'=  G'r (3.8) 

is an oblique  projection. 
Theorem 3.1: Suppose A is asymptotically  stable  and (A?, Be, C,, 0,) 

E A + solves the reduced-order  state-estimation  problem.  Then there 
exist n X n nonnegative-definite  matrices Q, Q, and  such  that A, ,  B,, 
C,, and 0, are given by 

A , = r ( A - a V , ' C l ) G T ,  (3.9) 

C c = L ~ , , G T ,  (3.1 1) 

De=LQC:(C2QC:)-l (3.12) 

and  such  that Q, Q: and P satisfy 

O = A Q + Q A ' + ~  A , ( Q + & ) A ~ +  v ~ - Q ~ v , ' Q , T + ~ ? ~ ~ v ~ ~ ' s : ~ T ~ ,  
P 

, = I  

O = A Q + ~ A T + Q , V , ' Q : - ~ ~ , Q , V , ' Q , ' T T , ,  (3.14) 

O=A~+FA,+Tf ,LTRLT~~-TTLT:LLTRL711T21,  (3.15) 

rank &=rank F=rank Qp=n, (3.16) 

where 

7l & QC:(C2QC:)-lC2. (3.17) 

Remark 3.1: Several  special  cases can be recovered from Theorem 
3.1. For example,  when the observation  noise  is  nonsingular, i.e., when 
y2 is  absent, delete (3.12) and set 7, = 0 [22].  Deleting also the 
multiplicative  noise terms yields the Main Theorem of [l]. 

Specializing Theorem 3.1 to the full-order case ne = n reveals  that the 
Lyapunov  equation for P is superfluous. h this case G = r - I  and  thus G 
= r = I,, without  loss of generality. 

Corollary 3.  I :  Assume ne = n, A is asymptotically  stable and (Ae, Be, 
C,, De) E A - solves  the  full-order  state-estimation  problem.  Then there 
exist n x n nonnegative-definite  matrices Q and Q such  that A,,  Be, C,, 
De are given by 

A , = A - Q ~ V ; ' C ~ ,  (3.18) 

B,=Q,V,l ,  (3.19) 

Ce=Lr l , ,  (3.20) 

De=LQCT(C2QC:)-' (3.21) 

and  such  that Q and Q satisfy 

P 
O = A Q + Q A T + ~   A , ( Q + & ) A : +  V~-Q,V, 'Q: ,  (3.22) 

o=A&+&AT+Q,v;'Q:.  (3.23) 

t = I  

Remark 3.2: Note  that by setting A,  = 0,  C, = 0, i = 1 ,  . , p ,  it 
follows  that (3.22) and (3.23) are decoupled  and  (3.23) is superfluous, To 
recover the standard  Kalman Nter which  involves  nonsingular  noise, set 
C2 = 0, delete (3.21) and define T~ = 0. 

N. ADDITIONAL ESTIMATOR PATHS 

We now consider the more general estimator 

L(t)=A,x=(t)+B,yl(t)+Ky2(r) ,  (4.1) 

~ e ( 0  = Cexe+ D,y2(t) + KYI ( t )  (4.2) 

involving  the  additional  gains K and f?. 
Note  that  the  additional  path  introduced  in (4.2) implies  that J i s  infinite 

and thus the problem  is  meaningless. Hence, set I? = 0, and consider the 
additional  path  introduced by (4. l),  Le., filtering the noise-free  measure- 
ment. 

Replacing  (3.4)  by (4.1) and  optimizing  with  respect  to K yields 

o = CPQC:, (4.3) 

which  implies 

0=7271. (4.4) 

Using  (4.3), Q = qQ and P = PTZ [see (5.17)], the filter gains (3.9)- 
(3.15)  become 

A e = r ( A - Q ~ V , ' C l ) G T - K C 2 G T ,  (4.5) 
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v. PROOF OF THE MAIN THEOREM 

Using the notation  of Section II the augmented  system (3.1)-(3.4) can 
be written as 

where 
f ( t )  P [XT( t ) ,  x:(t)]T. 

To analyze (5.1) define the second-moment matrix 

Q(t)=z[f(t)fT(r)]. 

and the ne x n, ne x ne, ne X n matrices 

G P Q;’QL, M 6 Q2P2, I? P -P;IPL. 

To optimize (3.6) subject to the constraint (5.4) over A - ,  form the 
Lagrangian 
L(Ae, B e ,  C e ,  De, Q, 6, x) 

where the Lagrange multipliers X 2 0 and P E are not  both zero 
and Q and P a r e  viewed as arbitrary A X A matrix variables. Setting X./ 
a& = 0, X = 0 implies P = 0 since (Ae, Be, C,, 0,) E A +. Hence, 
without loss of generality, set X = 1. Thus, the stationarity conditions are 
given by1 

aL - - 
- = A Q + Q A T + C  A,QA,?+ P=O, 
ap 

P 

(5.6) 
I =  I 

P 

A PA@AA+CAj@Ai  
i= 1 

is asymptotically stable. 
Proof: The result follows from properties of the Kronecker product 

applied to partitioned matrices. See [22],  [26] for details. 0 
Hence, A stable assures 

Q P lim E [ f ( t ) f T ( t ) ]  
I-or 

exists. Furthermore, Q and its  nonnegativedefinite  dual P are unique 
solutions of the modified Lyapunov equations 

P 
o=AQ+ QAT+ &QAT+ v, (5.4) 

i = l  

P 
o=AV+FA+C A,?PA,+E. (5 .5 )  

i = 1  

Partition ti x A Q ,  Pinto n X n, n x ne, and ne X ne subblocks as 

P 

0=AQ12+QIC:B:+Q12A:+C A,QICLB:+ VolB:, (5.13) 
I =  I 

P 

O=B,CIQ:,+A,Q~+Q:,C:B:+Q~A:+C B,Cl;QICLB:+B,V,B,T, 

(5.14) 
i= I 

O=ATP~2+C:BTP2+P12A,-LTRCe+C~D:RC,, (5.15) 

O=ATP2+P2A,+C:RCe. (5.16) 

Note that the (1, 1) subblock of (5.7) characterizing P ,  has  been omitted 
from the above equations since the estimator gains are independent of P I .  

Note  that (5.8) implies (3.7a) and (3.7b). Since 

Q2P2=P;1”(Py2Q2P:’2)Pp, 

M is positive semisimple. Sylvester’s inequality yields (3.16). Note also 
that 

Q=72&, p=P72. (5.17) 

Next(3.10),(3.11),and(3.12)foIlowfrom(5.9),(5.10),and(3.11)by 

symmwic  arguments Q and P entails  a modification of (5.6) and (5.7). Since these 
’ As s h o w  in 1291. the formula for the derivative of a scalar function with respect to 

gradients  are being set to  zero,  however, the final result is identical. Alternatively, Q and 
P can be viewed (as we are  doing  here) as arbitrary matrix variables. Symmetry is 
imposed only aposleriori by the form of (5.4) and (5 .5)  and the stability of A. Hence, 
mathematically. the result of [29] is not required. 
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using the identities 

Ql=Q+O,  P , = P + P ,  (5.18) 

QI2=QI”, Plz=  -PGT, (5.19) 

Q~ = r Qr T ,  p2 = GPGT. (5.2Gj 

Substituting (3.10), (3.11), (3.12) and (5.18)-(5.20)  into  (5.12)-(5.16) 
and  using  (5.12) + GT(5.13)G - (5.13)G - (5.13G)T and 
GTI’(5.13)G - (5.13)G - (5.13G)r yields (3.13) and (3.14). Using 
I“G(5.15)r - (5.15)r - (5.15Qr yields (3.15). Finally, r(5.13)- 
(5.14) or G(5,15)-(5.16) yields  (3.9). ‘3 

Remark 5.1. Equations  (4.5)-(4.11) are derived  in  a  similar  manner 
with 2 replaced  by 2 in (5.1). 

REFERENCES 

D. S. Bernstein and C. D. Hyland, “The optimal projection equations for reduced- 
order state estimation.” IEEE Trans. Automat.  Contr., vol. AC-30, pp. 583- 
585, 1985. 
H. Kwakernaak and R. Sivan, Linear Optimal  Control  Systems. New York: 
Wiley, 1972. 
A. E. Bryson and D. E. Johansen, “Linear filtering for time varying systems using 
measurements containing colored noise,“ IEEE Trans. Automat.  Contr., vol. 
AC-IO, pp. 4-10, 1965. 
E. Fogel and Y. F. Huang. “Reduced order optimal state estimator for linear 
systems with partially noise-cormpted measurements,” IEEE Trans. Automat. 
Contr., vol. AC-25, pp. 994-996, 1980. 
Y. T. Ju  and V. B. Haas,  “A duality principle for state estimation with partially 

U. Shaked, “Optimal nearly singular estimation of continuous linear stationary 
noise-cormpted measurements,” Int. J. Contr., vol.  37, pp. 1039-1056, 1983. 

V. E. Haas, “Reduced order state estimation for a linear system with exact 
uniform rank systems,” Int. J. Contr., vol. 38,  pp. 275-317, 1983. 

U. Shaked, “Explicit solution to the singular discrete-time stationay linear 
measurements.” Automatica, vol. 20,  pp. 225-229, 1984. 

filtering problem.” IEEE Trans. Automat.  Contr., vol. AC-30, pp. 34-47, 
1985. 
V. B. Haas, “Minimal order Wiener filter for a system with exact measure- 

J. M. Schumacher, “A geometric approach to the singular filtering problem,” 
menu,” IEEE Trans.  Automat. Contr., vol. AC-30. pp. 773-776, 1985. 

IEEE Trans  Automat.  Contr., vol. AC-30. pp. 1075-1082, 1985. 
F. W. Fairman and L. Luk. “On reducing the order of Kalman filters for discrete- 
time stochastic systems having singular measurement noise,” IEEE Trans. 
Automat.  Contr., vol. AC-30, pp. 1150-1152, 1985. 
Y. Hatevi and 2. J .  Palmor, “Extended limiting forms of optimum observers and 
LQG regulators.” Int. J. Contr., vol. 43. pp. 193-212, 1986. 
U. Shaked and B. Priel, “Explicit solutions to the singular discrete finte-time 
linear estimation problem.” Int .  J. Contr., vol. 43, pp. 285-303, 1986. 
W .  M, Haddad and D. S .  Bernstein, “The optimal projection equations for 

white noise.“ Syst.  Contr.  Lett., vol. 8. pp. 381-388, 1987. 
reduced-order. discrete-time state estimation for linear systems with multiplicative 

J .  O’Reilly, Observers for  Linear Systems. New York: Academic, 1983. 
P. 1. Mchne,  “Optimal linear filtering for linear systems with state-dependent 

R. B. Asher and C. S .  Sims, “Reduced+rder filtering with state dependent 
noise,” Int. J.  Contr., vol. IO, pp. 42-51, 1969. 

noise,” in Proc. Joint Amer.  Contr. Conf., 1978. 
M .  J. Grimble. “Wiener and Kalman filters for systems with random parame- 

D. S .  Bernstein and D. C. Hyland, “The optimal projectiodmaximum entropy 
ters,” IEEE Trans. Automat.  Contr., vol. AC-29, pp. 552-554, 1984. 

Proc. 24th IEEE Conf. Der.  Conrr., Fon Lauderdale, FL. Dec. 1985, pp. 745- 
approach to designing low-order, robust controllers for flexible smchlres,” in 

752. 
D. S. Bemstein and S. W .  Greeley, “Robust controller synthesis using the 
maximum entropy design equations,” IEEE Tram.  Automa?.  Contr., vol. AC- 
31. pp. 362-364, 1986. 
D. S .  Bernstein and S. W. Greeley, “Robust output-feedback stabilization: 

Seattle, WA, June 1986, pp. 1818-1826. 
Deterministic and stochastic perspectives,” in Proc.  American  Contr.  Conf., 

D. S .  Bernstein and D C. Hyland, “The optimal projection equations for reduced- 
order modelling, estimation and control of linear systems with multiplicative white 

D. C .  Hyland and D. S.  Bernstein, “The optimal projection equations for model 
noise.” J.  Optimiz.  Theory Appl. ,  to be published. 

reduction and the relationships among the methods of Wilson, Skelton and 

S. Richter. “A homotopy algorithm for solving the optimal projection equations 
Moore.” IEEE Trans. Automat.  Contr., vol. AC-30, pp. 1201-1211, 1985. 

for fixed-order dynamic compensation: Existence. convergence and global 
optimality.” in Proc.  Amer.  Contr.  Conf., Minneapolis, MN! June 1987, pp. 
1527-1531. 
S. L. Campbell and C. D. Meyer, Jr., Generalized Inverses of Linear 
Transformations. London: Pitman, 1979. 

[261 I. W .  Brewer, “Kroneckerproducts and matrix calculus in system theory,” IEEE 

[271 C. R. Rao and S.  K. Mitra, Generalized Inverse of MatriceS and Its 

[28] L. Arnold, Stochastic Differential Equations: Theory and Applications. 

1291 J .  W.  Bres,er,  “The gradient with respect to a symmetric matrix.” IEEE Trans. 

Trans. Circuits S J J ~ ~ . ,  vol. CAS-25, pp. 772-781, 1978. 

Applications. New York Wiley, 1971. 

New York: Wiley, 1974. 

Automat. Confr., vol. AC-22, pp. 265-267, 1977. 

The Optimal Projection Equations for Static and 
Dynamic Output Feedback: The Singular Case 

DENNIS S.  BERNSTEIN 

Dedicated  to the memory of Professor Violet B. Haas 
November  23,  1926-January  21, 1986 

Absfmct-Oblique projections have been shown to arise naturally in 
both static and dynamic optimal  design problems. For static controllers 
an oblique projection was inherent in the early work of Levine and 
Athans, while for dynamic controllers an  oblique projection was 
developed by  Hyland and Bernstein. This note is motivated by the 
following natural question: What is the relationship between the oblique 
projection arising in optimal static output feedback and the oblique 
projection arising in optimal fixed-order dynamic compensation? We 
show that in nonstrictly proper optimal output feedback there are, 
indeed, three distinct oblique projections corresponding to singular 
measurement noise, singular control weighting, and reduced compensator 
order. Moreover,  we  unify the Levine-Athans and Hyland-Bernstein 
approaches by rederiving the optima1 projection equations  for  combined 
statiddynamic (nonstrictly proper) output feedback in a form which 
clearly illustrates the role of the three projections in characterizing the 
optimal feedback gains. Even when the dynamic component of the 
nonstrictly proper controller is of full order, the controller is character- 
ized by four matrix equations which generalize the standard LQG result. 

I. INTRODUCTION 

The optimal static output-feedback  problem [I] ,  [2] and the  optimal 
fixed-order  dynamic-compensation  problem [3], [4]  have  been  exten- 
sively  investigated. A salient feature of the  necessary  conditions for each 
of these  problems is the presence of an oblique  projection  (idempotent 
matrix)  which arises as a  direct  consequence of optimality. For the static 
problem  with  noise-free  measurements (i.e.. singular  measurement  noise) 
the  necessary  conditions  involve  the  projection  [2] 

71 = QC‘(CQC?-lC 

where Q is the steady-state  closed-loop  state covariance. The dual 
projection 

T*=B(B‘pB)-’B‘p 

arises analogously  in the corresponding  problem  involving  singular 
control  weighting. Furthermore. for fixed-order dynamic compensation 
with  noisy  measurementss,  it  has  recently  been  shown [4] that  the 
necessary  conditions give rise to the projection 

7 3  = QF(QP)* 

wvhere ( )# denotes group generalized inverse and Q and P are rank- 
deficient  nonnegative-definite  matrices  analogous to the  controllability 
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