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1
Introduction

Today, high-tech development is faster than most people’s imagination. A typical represen-
tative is the most sophisticated mechanical system presently available which is the stages of
wafer scanners used in the semiconductor industry [1]. Figure 1.1 shows the development of
the lithography machines of ASML. Within just 20 years, the resolution has been enhanced
from 1𝜇𝑚 to 20 𝑛𝑚. This transformation, which is like transformation from toddling to
dancing on the tip of knifes, allows the Moore’s law [2] to continue.

Figure 1.1: Overview of lithography machines from ASML [3]

In order to achieve this kind of extraordinary task, precision positioning technology
plays an important role inside. To ensure the high quality of productions, nano-precision
controllers with high bandwidth and stability are required in these applications.
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2 1. Introduction

The PID controller is by far the most dominating form of feedback in use today [4]. It
is versatile and widely used in general cases of motion control applications because of sim-
ple structure and tuning rule. However, when higher bandwidth and accuracy are required
while maintaining stability margin in precision systems, it becomes harder to fulfill the
requirements only using conventional PID controllers. Because of their linear nature, fun-
damental limitations of linearity such as water-bed effect and bode gain phase relationship
[5] restrict PID especially in high precision instruments. Although many non-linear control
theories have been developed to overcome these limitations, most of them have complex
structure and their tuning methods are very complicated. Among them, reset controllers
have attracted a lot of attention from academic institution and industry due to their simple
structures [6], [7], [8], [9], [10].

Reset control is a novel kind of nonlinear control strategies which has been developed
since 1958. A traditional reset element resets its own state to zero every time the input
signal crosses the zero point. Clegg first proposed the concept of reset by applying reset
control strategy on a linear integrator in [11]. From Describing Function (DF) analysis in
[12], Clegg integrator has a similar gain behavior with the basic linear integrator while it
reduces the phase lag from −90∘ to −38∘. After the inspiration of Clegg integrator, First
Order Reset Element(FORE) and Second Order Reset Element(SORE) were developped
[13][14] which makes it possible to apply reset controllers on more complex systems and
get benefit from it.

Unlike linear controllers, the sequence of different parts in non-linear controllers has
effects on performance of the systems because of high order harmonics. While the reset
control has been used in a wide range of applications, the influence of different sequences
is not found in literature to the best of authors’ knowledge.

This thesis aims to find the best sequence of controllers when there is a reset element
among them. Although DF is widely used to analyze and tune reset controllers in frequency
domain, this method does not consider high order harmonics which affect the performance
of the systems. In order to investigate the influence of high order harmonics in general
non-linear systems, Nuij proposed the concept of high order sinusoidal input describing
functions (HOSIDFs) in [15]. Based on that theory, Kars developed HOSIDOFs for reset
elements in [16]. In order to find the optimal sequence of controllers when there is a reset
element, HOSIDOFs tool is used in this study.



2
Literature Review

This chapter presents the literature review part of the thesis in paper format. Firstly, the fun-
damental knowledge of reset control is introduced. Secondly, high order harmonics within
reset elements and the problems they caused are investigated. Finally, different strategies
of applying reset elements in literature are shown and discussed.
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Literature review:

Reset control and influence of high order harmonics
Chengwei Cai, A.A. Dastjerdi, and S.Hassan HosseinNia

Abstract—Linear PID controller is one of the most
widely used controllers in industry owning to simplicity
and ease of tuning. However, new control requirements
due to the development of technology is now pushing
PID and other linear controllers to their limitation.
To overcome the limitations such as Bode gain-phase
relationship and water bed effect, many non-linear
controllers have been developed. Among them, reset
control elements have attracted a lot of attention be-
cause of their simplicity and flexibility. However, reset
controllers also introduce high order harmonics into the
system which can induce limit cycle and deteriorate
the performance. This paper mainly reviews different
strategies of applying reset elements in literature and
the influence of high order harmonics caused by non-
linearity.

I. Introduction

The PID controller is by far the most dominating form
of feedback in use today [1]. PID is abbreviation for three
different components: Proportional(P) element, Integral(I)
element and Derivative(D) element. It is versatile and
widely used in general cases of motion control applications
because of simple structure and tuning rule. The Propor-
tional element is used to set the desired bandwidth we
would like to reach; Integral element creates high gain at
low frequency and Derivative element can provide phase
lead around the crossover frequency.

However, when higher bandwidth and accuracy are
required while maintaining stability margin in precision
systems, it becomes harder to fulfill the requirement only
use conventional PID controllers. Because of their linear
nature, fundamental limitations of linearity restrict PID
and other linear controllers’ applications especially in high
precision instruments.

One of the limitations of linear controller is the phase-
gain relationship in Bode plot. For a stable Minimum
Phase System (MPS), there exists an unique relation be-
tween the gain and phase of a frequency response function
[2]:

∠G(jω0) = 90◦N(jω0)

where N is the slope of gain in Bode plot.

-200

-150

-100

-50

M
a

g
n

it
u

d
e

 (
d

B
)

101 102 103 104 105
-180

-150

-120

P
h

a
s

e
 (

d
e

g
)

Plant

Plant+D

Frequency  (rad/s)

Figure 1: Bode Gain-Phase relationship

As shown in Fig.1, the blue line represents a single
mass system with −2 slope and −180◦ phase. In order
to control this marginal stable system, we add a tamed
derivative element to provide phase lead at the required
bandwidth. The whole system’s transfer function then can
be illustrated by the red line. Although the derivative
element creates enough phase margin to ensure stability,
because of the slope change in the magnitude plot, lower
gain in low frequencies and higher gain in high frequen-
cies are inevitable. According to the loop shaping, the
decreasing slope deteriorates the tracking performance and
noise attenuation. Therefore, we always need to trade off
between system’s performance and stability when using
linear controllers .

Another basic limitation of linear controller is called
water-bed effect, which can be indicated by the Bode
Sensitivity Integral [3]:

∫

∞

0

ln |S(ω)|dω

The above integral is always 0 for a stable feedback sys-
tem, which means it is impossible to have good disturbance
rejection for all frequencies.

These limitations and trade off are elaborated in [2] and
[3]. Although many other advanced control theories have
been developed, most of them have complex structure and
their tuning methods are very complicated. Among these
non-linear controllers, reset controllers have attracted a lot
of attention from academic institution and industry due to
their simple structures [4], [5], [6], [7].

Reset control is a novel kind of nonlinear control strat-
egy which has been developed since 1958. For a traditional
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reset element, the state is reset to zero every time the input
signal crosses zero. Clegg first introduced this concept in
1958 by applying reset action on a linear integrator. The
time domain responses of Clegg integrator and the linear
integrator are compared in Fig.2 with a sinusoidal input
signal. It is clear that each instant the input signal cross
0, reset action will be triggered and reset the output of
Clegg integrator to 0.
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Figure 2: Time domain response of Clegg integrator and
linear integrator

The frequency domain response of Clegg integrator is
achieved by describing function (DF) analysis [8] and
compared with linear integrator in Fig.3.
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Figure 3: Bode plot of Clegg integrator and linear integra-
tor

It showns that Clegg integrator has a similar gain
behavior with the basic linear integrator, while it reduces
the phase lag from 90◦ to 38◦. This property is profitable
in terms of improving the system’s performance without
sacrificing stability. After the inspiration of reset integra-
tor, many researchers realized the potential of reset control
strategy and have conducted further investigation. In [9]

and [10], Horowitz et al. and Hazelgar et. al. extended
the investigation to First Order Reset Element(FORE)
and Second Order Reset Element(SORE), which make
it possible to apply reset control technology on more
complex systems and get benefit from it. Until now, the
reset control technology has been used in a wide range of
applications, some relative work can be found in hard drive
disk systems [11], [12], precision stages [13], [14], servo
systems [15], [16], etc.

Although DF is widely used to analyze and tune reset
controllers in frequency domain, this method does not
consider high order harmonics. Especially in precision
systems, these high order harmonics’ effect are inevitable
and can lead to unwanted dynamics which deteriorate
system’s performance seriously.

In order to investigate the influence of high order
harmonics in non-linear systems, Nuji proposed the the-
ory of High Order Sinusoidal Input Describing Functions
(HOSIDOFs) in [17]. Based on this, Heinen developed
HOSIDOFs for reset elements in [18].

This paper provides an overview of reset control theory
and problems caused by high order harmonics. Tools to
analyze reset elements and existing strategies to deal with
the problems caused by high order harmonics are also
illustrated. The basic knowledge of reset control and tools
to analyze it are provided in section II. Problems caused
by high order harmonics are stated in section III. Existing
strategies to deal with these problems are presented in
section IV followed by the conclusion.

II. Preliminary

A. Reset control

A general reset controller is defined by the following
state space equations according to [19]:

ΣR =











ẋr(t) = Arxr(t) + Bre(t) if e(t) 6= 0

xr(t+) = Aρxr(t) if e(t) = 0

u(t) = Crxr(t) + Dre(t)

(1)

Where Ar, Br, Cr, Dr are state space matrices of the
corresponding base linear system. Aρ is reset matrix de-
termining the state after reset values [20], e(t) is error
signal between reference and output and u(t) is the whole
controller’s output.

To simplify the design of the reset controller, reset
matrix Aρ is often defined as diagonal form:

Aρ = γIn×n

where n is the order of the reset controller and γ is reset
value. Reset action is triggered according to reset law. In
traditional reset elements, e(t) = 0 is considered as the
reset law.

1) Clegg Integrator (CI): Clegg or reset integrator is a
kind of nonlinear integrator first proposed by J. C. Clegg
in [21]. By applying a reset action on a linear integrator,
Clegg integrator has a similar gain behavior with the linear
one in frequency domain while the phase lag is reduced
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from 90◦ to 38.1◦. The state space matrices and reset
matrix of Clegg integrator in (1) are:

Ar = 0; Br = 1; Cr = 1; Dr = 0; Aρ = 0

2) First Order Reset Element (FORE): Horowitz and
P. Rosenbaum applied reset action on a first order low-
pass filter (LPF) [9]. This extended CI to a First Order
Reset Element (FORE). The state space matrices and
reset matrix of FORE in (1) are:

Ar = −ωr; Br = ωr; Cr = 1; Dr = 0; Aρ = 0

Where ωr is the basic low-pass filter’s corner frequency.

Fig.4 shows the bode plot of a FORE and the basic LPF.
It is clear that phase lead is achieved after ωr comparing
with the linear LPF.
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Figure 4: Bode plot of FORE and LPF

3) Second Order Reset Element(SORE): Hazeleger ap-
plied reset action on a second order LPF in [10] to generate
Second Order Reset Element(SORE). The state space
matrices of SORE in (1) are:

Ar =

ï

0 1
−ω2

r −2βωr

ò

; Br =

ï

0
ω2

r

ò

;

Cr =
[

1 0
]

; Dr = [0]

Where ωr is the corner frequency of the basic second order
LPF, β is damping ratio. More flexibility can be achieved
by the additional parameter. Fig.5 shows the bode plot
of SORE with different damping ratio when we set reset
value γ=0.
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Figure 5: Bode plot of SORE for different βr

B. Describing function

In order to design and tune reset controllers for specific
systems, the investigation of frequency-domain properties
for reset controllers is significant.

In [8], the sinusoidal input describing function (DF) of
a general reset system has been developed. The sinusoidal
input describing function theory assumed there is a quasi-
linear amplitude-dependent relation between sinusoidal
excitation and sinusoidal response [17]. Derived from (1),
the DF of a general reset element for a sinusoidal input is
achieved as:

G(jω) = CT
r (jωI − Ar)

−1
(I + jΘρ(ω)) Br + Dr (2)

where

Θρ =
2

π

Ä

I + e
πAr

ω

ä

Ç

I − Aρ

I + Aρe
πAr

ω

åÇ

Å

Ar

ω

ã2

+ I

å

−1

C. HOSIDFs

In order to investigate the influence of high order har-
monics in general non-linear systems, Nuij proposed the
concept of high order sinusoidal input describing functions
(HOSIDFs) in [17].

The basic skeleton of high order sinusoidal describing
functions (HOSIDFs)when a linear part is in series with a
nonlinear part is shown in Fig. 6.

In this block representation, the non-linear part is di-
vided into two different parts: virtual harmonic generator
part and describing function part. For the sake of explana-
tion, we define the describing function of n order harmonic
as G(njω). Different order of harmonics are generated by
virtual harmonic generator and contribute to final output
by multiplying corresponding order describing function.
These describing functions can be calculated by method
based on Fourier series. For reset controllers, HOSIDOFs
depends not only the reset matrix and state space matrices
of the system, but also the reset rules. Based on this
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Figure 6: HOSIDOFs Representation

theory, Heinen developed the HOSIDOFs of a general reset
element in [18] as: G(njω) =











Cr(jωI − Ar)−1(I + jΘρ(ω))Br + Dr for n = 1

Cr(jωnI − Ar)−1jΘρ(ω)Br for odd n ≥ 2

0 for even n ≥ 2
(3)

III. Challenges toward reset controllers

A. Reliability of the first order describing function

Although DF is widely used to analyze and tune reset
controllers in frequency domain, this method does not
consider high order harmonics which affect the perfor-
mance of the system. With (3), reset elements’ HOSIDFs
can be calculated conveniently. Consider a First Order
Reset Element(F0RE) with state space matrices and reset
matrix:

Ar = −10; Br = 10; Cr = 1; Dr = 0; Aρ = 0

The HOSIDFs are illustrated in Fig. 7.
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Figure 7: HOSIDFs of FORE

It is clear that apart from the first order describing
function which is represented by the blue line, the FORE
also contains high order describing functions. Because
there is no reliable approach to combine different order
describing function together, we can only tune our system
according to the first order describing function.

Difference between the first order describing function
and the real nonlinear system makes it impossible to tune
the real system precisely, therefore deteriorate system’s
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performance. For the FORE in Fig. 7, the worst situation
appears at around the corner frequency (10Hz), where the
magnitudes of high order harmonics reach their maximum
value and are closed to the magnitude of the first order
one.

Deterioration of performance because of high order
harmonics has been observed by experiments in [22], [23]
and [24].

B. Limit cycle

Limit cycle is a common problem caused by high or-
der harmonics in reset elements. It occurs because the
controller’s output after reset action is not equal to the
steady state value. Consider a linear PI controller CL and
a corresponding reset PI controller CR as given below:

CL =

®

ẋr(t) = 0 × xr(t) + 1 × e(t)

u(t) = 10 × xr(t) + 1 × e(t)
(4)

CR =











ẋr(t) = 0 × xr(t) + 1 × e(t) if e(t) 6= 0

xr(t+) = 0 if e(t) = 0

u(t) = 10 × xr(t) + 1 × e(t)

(5)

Apply them separately in a close loop for a plant with
transfer function: 1

s+0.5
.

C(z) Plant(s)−
+

r(t) e(t)

Figure 8: Feedback loop

The step responses of this two controllers are shown in
Fig. 9:
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Figure 9: Step response of linear PI and reset PI

Comparing with the linear PI controller, the reset PI
controller reduces the overshoot of step response. In addi-
tion, the settling time is much shorter than the linear one
(if we define the settling band as ±15%). However, instead

of stabilizing at the reference value, a periodical oscillation
occurs in the reset PI case after settling time. This kind of
persistent oscillation is called limit cycle. Obviously, limit
cycle can lead to steady state error and deteriorate whole
system’s performance, which is undesired in precision
applications.

IV. Existing strategies of reset control

The existence of high order harmonics is inevitable in
reset controllers. To deal with the problems caused by high
order harmonics such as limit cycle, several strategies have
been developed in literature to soft the degree of non-
linearity.

A. Partial reset

As we mentioned in section II, γ within Aρ is the
reset value determining the state after reset action. In
traditional reset elements, γ is set to 0, which means
complete reset. Partial reset can be realized by tuning γ
between 0 and 1.

Fig. 10 shows the step response of the same reset PI
controller when we change γ to different values. Although
the limit cycle still occurs, the amplitude of it decreases
when we increase γ.
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Figure 12: Third order describing function for different γ

In Fig. 11 and Fig. 12, the first and third order describ-
ing functions of the reset PI for different γ are plotted.

When γ increases, the phase lead benefit decreases in
Fig. 11. However, in Fig. 12, magnitude of high order har-
monics also decreases with rising γ, which means system
can suffer less from high order harmonics. By tuning γ
between 0 and 1, partial reset makes it possible to find an
optimized point between phase lead benefit and influence
of high order harmonics.

B. PI+CI

Another strategy to tune system’s degree of non-
linearity is PI+CI configuration. The structure of PI+CI
is shown in Fig. 13:

Figure 13: block diagram of PI+CI [25]

The main idea is adding an additional Clegg integrator
to a traditional PI controller and connecting it in parallel
to the linear one. The degree of non-linearity can be tuned
by varying constant gain Preset. This controller then can
be represented by:

PI + CI = kp(1 +
1

τi

(
1 − Preset

s
+

Preset

✁s
)) (6)

Again use the same basic linear PI controller and set
Preset = 0.8. The step response of PI+CI controller, Reset
PI controller and linear PI controller are compared in
Fig. 14:
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Figure 14: Step response of PI+CI, Linear PI and Reset
PI

It is clear that in PI + CI case, limit cycle disappears
because the linear PI part helps remove the steady state
error. Also, the response has much less overshoot and
settling time comparing with linear PI controller, which
is the benefit from reset part. An optimal and systematic
tuning rule for PI+CI controller has been summarized in
[26]. More relative application can be found in [27], [28]
and [29].

C. Reset band

Previous reset elements all have the same reset rule:
e(t) = 0, which means reset action will be triggered
each time error signal crosses zero. Reset band strategy
is realized by triggering the reset action each time error
signal enters a specific band. A general reset band element
can be described by the following equations:

ΣR =











ẋr(t) = Arxr(t) + Bre(t) if e(t), ˙e(t) /∈ Bδ

xr(t+) = Aρxr(t) if e(t), ˙e(t) ∈ Bδ

u(t) = Crxr(t) + Dre(t)

(7)

where Bδ = (x, y) ∈ R2|(x = −δ ∧y > 0)∨(x = δ ∧y < 0).
Band reset strategy is especially suitable for systems

with time delay, because it can provide even more phase
lead than traditional reset element which resets according
to zero crossing. It also has been proven that reset band
can be used to remove limit cycle in some cases. However,
the performance of band reset strategy is decided by reset
band parameter δ, which is hard to design when system
uncertainty occurs.

V. Conclusions

Reset controllers have attracted a lot of attention from
academic institution and industry due to their simple
structures and ability to overcome the limitations of linear
controllers.

Most of reset control design in literature relays on
Describing function(DF). Although DF is a useful tool
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to investigate reset system’s performance in frequency do-
main, it does not consider high order harmonics. Especially
in precision positioning applications, the influence of high
order harmonics can not be omitted and may even lose the
benefits of reset controllers.

To deal with the problems caused by high order har-
monics such as limit cycles and unwanted dynamic, several
reset strategies have been proposed in literature, such as
Partial reset, PI+CI and Reset band. Partial reset can soft
the influence of high order harmonics, but it also sacrifices
the phase lead benefit at the same time. Also, it is not
able to remove the limit cycle effectively. PI+CI strategy
appears to solve the limit cycle problem successfully. But
it is still a trade off between linearity and non-linearity,
which wastes some potential of reset elements. For Reset
band, although it performs well in some ideal cases, it is
not robust enough for systems with uncertainty in reality.

Above all, the influence of high order harmonics has
become an important limitation for the development of
reset control. Although HOSIDFs theory has been devel-
oped and is a powerful tool to visualize the influence of
high order harmonics, research about HOSIDFs on design
of reset controllers is still lack within literature.
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3
Objective

3.1. Problem Definition
The literature review part shows the state of art for reset control strategy. Although reset
elements have attracted a lot of attention because of their simplicity and ability to over-
come the limitation of linear controllers, high order harmonics are introduced because of
non-linearity. High order harmonics deteriorate the performance of reset controllers, so it is
necessary to reduce them as much as possible. Using HOSIDOFs tool, it is found that the
sequence of different parts of a reset controller has effect on the magnitude of high order
harmonics. Based on this, the objective of this thesis is set as:

Find the optimal sequence for reset controllers which has the smallest magnitude of high
order harmonics and check if this sequence has the best performance in closed loop.

3.2. Research Approach
The research is conducted by the following approach:

• Use HOSIDOFs tool to investigate the magnitude of high order harmonics for a gen-
eral reset controller with different sequence of controller parts.

• Find the optimal general sequence in open loop which has the smallest magnitude of
high order harmonics.

• Check the closed-loop performance of different sequences in Matlab simulation.

• Validate the superiority of the optimal sequence in closed-loop configuration at a
Lorentz-actuated precision positioning stage.

11
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12 3. Objective

3.3. Thesis Outline
The thesis is structured as follows.

Chapter 1 provides a brief introduction of motion control especially in high tech industry
applications. In Chapter 2, the state of art for reset control strategy within literature is elab-
orated. This chapter provides the objective of the thesis work and the research approach to
achieve the objective. The core part of this thesis, an investigation of the optimal sequence
for reset controllers is presented in Chapter 4 as scientific paper format. Chapter 5 shows
the conclusion and recommendation for future research. More details during the thesis work
are attached in the Appendices.
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The Optimal Sequence for Reset

Controllers

This chapter is presented in a scientific paper format. Although reset controllers have been
widely used to overcome the limitation of linear controllers in literature, performances of the
system can be different depending on the relative sequence of controller parts. In this paper,
the optimal sequence has been derived utilizing(HOSIDFs). By arranging controller parts
according to this strategy, the superiority in the sense of precision and control output has
been validated in the closed-loop configuration at a Lorentz-actuated precision positioning
stage.

13



The optimal sequence for reset controllers

Chengwei Cai, A.A. Dastjerdi, Niranjan Saikumar, S. Hassan HosseinNia

Abstract—Today, high-tech precision industry is faced with
new control requirements due to the development of technology.
Some researchers believe that using non-linear controllers can
satisfy these requirements. Among non-linear controllers, reset
elements have attracted a lot of attention because of their
simplicity. Although reset controllers have been widely used
to overcome the limitation of linear controllers in literature,
performances of the system can be different depending on
the relative sequence of controller parts. In this paper, the
optimal sequence has been derived from the investigation of
high order sinusoidal input describing functions(HOSIDFs).
By arranging controller parts according to this strategy, the
superiority in the sense of precision and control output has been
validated in closed-loop configuration at a Lorentz-actuated
precision positioning stage. In conclusion, using this sequence
for reset controllers improves the performances of the system
from precision perspective.

Keywords—Reset controllers, Optimal sequence, HOSIDFs,
Precision positioning

I. INTRODUCTION

Precision positioning is an important topic in high-tech

industry such as lithography machines. In these applications,

nano-precision controllers with high bandwidth and stability

are required to ensure the high quality of productions. PID

controllers, which are one of the most used controllers in

industry owning to their simplicity and ease of tuning, can

not fulfill these control requirements due to their linear

nature. Water-bed effect confines performances of linear

controllers so that it is impossible to achieve high band-

width, stability and precision simultaneously [1], [2]. Many

advanced nonlinear controllers have been developed recent

years to overcome the limitation of linearity. However, most

of them have complex structure and their tuning methods are

very complicated. Among these non-linear controllers, reset

controllers have attracted a lot of attention from academic

institutions and industry due to their simple structures [3],

[4], [5], [6], [7].

Reset control is a novel kind of nonlinear control strategy

which has been developed since 1958. A traditional reset

element resets its own state to zero when the input signal

crosses zero. Clegg first proposed the concept of reset by

applying reset control strategy on a linear integrator in

[8]. From Describing Function (DF) analysis in [9], Clegg

integrator has a similar gain behavior with the basic linear

integrator while it reduces the phase lag from −90◦ to

−38◦. This property is profitable in terms of improving

the system’s performance without sacrificing stability. In

[10] and [11], Horowitz et al. and Hazelgar et. al. extended

the investigation to First Order Reset Element (FORE) and

Second Order Reset Element (SORE) which make it possible

to apply reset control on more complex systems and get

benefit from it. Also, several strategies have been developed

to tune the degree of non-linearity of reset elements such

as partial reset, PI+CI, reset band and fixed time reset [12],

[13], [14], [15]. The reset control has been used in a wide

range of applications [16], [17], [18], [19], [20].

Although DF is widely used to analyze and tune reset con-

trollers in frequency domain, this method does not consider

high order harmonics which affect the performance of the

system. In order to investigate the influence of high order

harmonics in general non-linear systems, Nuij proposed the

concept of high order sinusoidal input describing functions

(HOSIDFs) in [21]. The representation of HOSIDOFs when

a linear part is in series with a nonlinear part is shown in

Fig. 1. Based on that theory, Kars developed HOSIDOFs for

reset elements in [22].

High order harmonics deteriorate the performance of reset

controllers, so it is necessary to reduce them as much

as possible. Using HOSIDOFs tool, it is found that the

sequence of different parts of a reset controller has effect

on the magnitude of high order harmonics. This paper

aims to reduce the side effects of high order harmonics

by changing the relative sequence of controller parts. The

best arrangement will be selected to have best precision and

reduce control sensitivity output. Then, this arrangement’s

performance is examined on simulation and a real precision

setup.

In the remainder of this paper, in section II, preliminary

knowledge about reset controllers and mathematical tools to

investigate frequency domain of nonlinear systems are pre-

sented. Theoretical investigation about different sequences of

controller parts is presented in section III. In section IV, the

simulation result for closed-loop configuration is presented.

The experimental results and conclusion are described in

sections V and VI, separately.

II. PRELIMINARY

A. Reset Control

A general reset controller is defined by the following state-

space equations according to [23]:

ΣR =







ẋr(t) = Arxr(t) +Bre(t) if e(t) 6= 0

xr(t
+) = Aρxr(t) if e(t) = 0

u(t) = Crxr(t) +Dre(t)

(1)

where Ar, Br, Cr and Dr are state-space matrices of

the corresponding base linear system. Aρ is reset matrix

determining the state values after reset action, e(t) is error

input and u(t) is the whole controller’s output.

To simplify the design of the reset controller, reset matrix

Aρ is often defined as diagonal form:

Aρ = γIn×n

where n is the order of the reset controller and γ is reset

value. Reset action is triggered according to reset law. In

this paper, e(t) = 0 is considered as reset law.

Describing function of a general reset element for a

sinusoidal input is achieved in [9] as:

G(jω) = CT
r (jωI −Ar)

−1(I + jΘρ(ω))Br +Dr (2)



Virtual

Harmonic

Generator

e(t) = a0sin(ωt+ ϕ0)

a0sin(ωt+ ϕ0)

a0sin(2(ωt+ ϕ0))

.

.

.

a0sin(n(ωt+ ϕ0))

G(jω)

G(2jω)

G(njω)

a1(ω)sin(ωt+ ϕ0 + ϕ1(ω))

a2(ω)sin(2(ωt+ ϕ0) + ϕ2(ω))

.

.

.

.

.

.

an(ω)sin(n(ωt+ ϕ0) + ϕn(ω))

L(jω)

L(2jω)

L(njω)

.

.

.

b1(ω)sin(ωt+ ϕ0 + ϕ1(ω) + θ1(ω))

b2(ω)sin(2(ωt+ ϕ0) + ϕ2(ω) + θ2(ω))

.

.

.

bn(ω)sin(n(ωt+ ϕ0) + ϕn(ω) + θn(ω))

Σ
y(t)

Nonlinear part Linear part

e(t) = a0sin(ωt+ ϕ0) y(t)

Nonlinear part Linear part

CR CL P

Nonlinear part

of controller

Linear part

of controller
Plant

Fig. 1: HOSIDOFs Representation

Where

Θρ =
2

π
(I + e

πAr
ω )(

I −Aρ

I +Aρe
πAr
ω

)((
Ar

ω
)2 + I)−1

In addition, HOSIDOFs for general reset elements are

obtained in [22] as: G(njω) =






Cr(jωI −Ar)
−1(I + jΘρ(ω))Br +Dr for n = 1

Cr(jωnI −Ar)
−1jΘρ(ω)Br for odd n ≥ 2

0 for even n ≥ 2
(3)

B. New Sensitivity Function

In linear systems, tracking error is obtained through

sensitivity function which is defined as:

e

r
= S(jω) =

1

1 + CG(jω)
(4)

where CG(jω) is the open loop transfer function of the

whole linear system.

In order to get sensitivity function of nonlinear systems,

describing function should be used for calculating CG(jω).
However, describing function only consider the first order

harmonic which is inaccurate. To take into account the

influence of high order harmonics, considering a sinusoidal

input r = Rsin(ωt), it is defined a new sensitivity function

for nonlinear systems as:

S∂(ω) =
max(|e(t)|)

|R|
for t ≥ tss (5)

where tss is the time when error becomes steady and peri-

odic. Since max(|e(t)|) is the summation error of all order

harmonics, from precision perspective, this new sensitivity

function is more reliable than (4) and will be used in closed-

loop performance analysis.

C. Shaping Filter

In the closed-loop system, the influence of noise can not

be omitted. Especially when we put lead filter in front of

the reset element, noise will first be amplified and then

go through the reset element. It can be foresaw that these

amplified noise will influence zero cross instants signif-

icantly when reaches certain magnitude which affect the

performance. To reduce the influence of noise, a shaping

filter Cs is proposed within the reset element part at the

reset branch as shown in Fig. 2.

CR

Cs

R(t)

Rs(t)

Fig. 2: Structure of shaping filter

This shaping filter consists of a low pass filter(LPF) and

a tamed lead filter. It is represented as:

Cs =

Ç

1

1 + s
ωf

å

︸ ︷︷ ︸

LPF

Ç

1 + s
ωc/a

1 + s
ωca

å

︸ ︷︷ ︸

Lead

(6)

where ωf is the corner frequency of the LPF; ωc is the

bandwidth.



The LPF plays a role of decreasing the magnitude of

noise. To make sure this additional shaping filter does not

change the phase margin of the whole system, the tamed lead

filter is used to compensate the phase change at bandwidth

caused by the LPF.

The phase of LPF at bandwidth can be calculated by:

φc = −tan−1(
ωc

ωf
) (7)

To compensate this phase change, the constant a is tuned

as:

[tan−1(a)− tan−1(
1

a
)] = −φc (8)

Smaller ωf can filter out more noise, but it also corre-

sponds to a large constant a, which means higher magnitude

peak created by the lead filter. To trade off these two param-

eters, the corner frequency of LPF is tuning as ωf = 2ωc,

with the corresponding a = 1.62.

Considering the phase of this shaping filter as φ(ω),
the HOSIDOFs of the reset element with shaping filter is

recalculated according to the similar process in [9] and [22]

as: Gs(njω) =






Cr(jωI −Ar)
−1(I + ejφjΘs(ω))Br +Dr for n = 1

Cr(jωnI −Ar)
−1ejφjΘs(ω)Br for odd n ≥ 2

0 for even n ≥ 2
(9)

Where

Θs = Θρ(
−Arsinφ+ ωcosφI

ω
)

III. METHODOLOGY

In linear controllers, different sequences of controller parts

generate the same transfer function. However, when a reset

element is applied in the system, performances of the system

can be different depending on the relative sequence. There-

fore, HOSIDFs tool is used to investigate and compare the

magnitude of high order harmonics at different sequences.

For the general case, considering a combination of a linear

part and a nonlinear reset part, the linear part can be divided

into lag and lead elements. The transfer function of general

linear lead and lag elements can be described as:

Clead(s) = cmsm + cm−1s
m−1 + ...+ c0s

0 (10)

and

Clag(s) =
1

dpsp + dp−1sp−1 + ...+ d0s0
(11)

There are 6 different sequences for three controller parts.

However, when linear lag and lead elements are adjacent,

changing their sequence doesn’t make any difference. There-

fore, 4 relevant sequences out of 6 are achieved in TABLE I.

TABLE I: Different configurations of genral case

No. Sequence Magnitude of the nth order harmonic

1 Lead-Reset-Lag |Clead(jω)×G(njω)× Clag(njω)|
2 Lag-Reset-Lead |Clag(jω)×G(njω)× Clead(njω)|
3 Reset-Lead-Lag |G(njω)× Clead(njω)× Clag(njω)|
4 Lead-Lag-Reset |Clead(jω)× Clag(jω)×G(njω)|

For the first order harmonic (n=1), DFs for all 4 configura-

tions are the same. When it comes to high order harmonics,

since lead filter has an increasing function of frequency and

lag filter has a descending function of frequency, it is obvious

that the first sequence has the smallest magnitude of high

order harmonics.

For a simple example, if we combine a FORE with a first

order lead filter: 1 + s
ωd

and a first order lag filter: 1 + ωi

s ,

the magnitude of the third order harmonic for four different

sequences is visualized in Fig. 3.
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Fig. 3: The magnitude of the third order harmonic for

different sequences of FORE

It is clear that before ωi, the lag filter plays a role so

that No.1 and No.3 have smaller magnitude of high order

harmonics. After ωd, lag filter has been terminated and lead

filter comes into play, therefore No.1 and No.4 become

smaller. In all range of frequencies, the first sequence always

has the smallest magnitude and the second one has the

largest amplitude of high order harmonics. The other two

are the trade off between the first and second configurations.

For higher order harmonics, this difference is increased.

IV. CLOSED-LOOP PERFORMANCE

Now, we find the optimal sequence which is Lead-Reset-

Lag theoretically in the open-loop configuration. In order to

investigate closed-loop performance of different sequences,

a Lorentz-actuated precision positioning stage is used.

A. System Overview

As shown in Fig. 4, this system is guided using flexure

cross hinge and actuated by a Visaton FR10-4 loudspeaker.

With a Mercury 2000 reflective linear encoder, the horizontal

position of the stage is achieved with a resolution of 100nm.

The controllers are compiled using FPGA module and

implemented via compact RIO real-time hardware.

Fig. 5 shows the frequency response of the system. This

system is identified as a second order mass-spring-damper

system with the transfer function:

P (s) =
1

1.077× 10−4s2 + 0.0049s+ 4.2218
(12)

B. Controller Design

For controlling this system, a Proportional Integration

(PI)+Constant gain Lead phase (CgLp) compensator used.

CgLp element is made up by a reset filter and a corre-

sponding linear lead filter as proposed in [24]. Consider a

first order reset element FORE and a linear lead part D as

given below:

FORE(s) =
1

✘
✘
✘

✘✘✿
γ

s/ωr + 1
(13)



Fig. 4: Picture of precision positioning stage actuated by a

loud speaker at the left
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Fig. 5: Frequency response and the identified model

and

D(s) =
s/ωd + 1

s/ωt + 1
(14)

where ωr is the corner frequency of reset element, γ is the

reset value, ωd and ωt are starting and taming frequencies

of linear lead filter. By tuning ωr = ωd/α, where α is a

correction factor chosen according to [24], broadband phase

lead can be achieved in the range of [ωd, ωt] with constant

gain(based on DF) as shown in Fig. 6.
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Fig. 6: DF of CgLp element

By replacing the D part of a traditional PID controller

with a CgLp element, PI+CgLp controller is defined as:

ΣRC = Kp

(

1 +
ωi

s

)

︸ ︷︷ ︸

PI

Ç

1 + s
ωd

1 + s
ωt

å

(

1

✘
✘

✘
✘✘✿

γ
s/ωr + 1

)

︸ ︷︷ ︸

CgLp

(15)

where ωi is the corner frequency of the integrator element.

Considering the frequency response of the experimental

setup, bandwidth is chosen as ωc = 100Hz with 30 deg

phase margin. According to the DF, ωd is chosen to be ωc/4,

ωi=ωc/10 and ωt=6ωc. According to [24], correction factor

α is taken as 1.62 so that ωr = ωd/1.62. Also, the reset value

λ is selected as zero (classical reset). The tuning parameters

of controller are listed in TABLE II.

TABLE II: Tuning parameters of CgLp+PI controller

symbol parameter Value

ωc bandwidth 100 Hz

ωd corner frequency of lead filter 25Hz

ωt taming frequency of lead filter 600 Hz

ωr corner frequency of reset lag filter 15.43 Hz

ωi corner frequency of integrator 10 Hz

A PI+CgLp consists of a lag element (PI), a lead element

(D) and a reset element (FORE). Same as TABLE I, four

relative sequences can be achieved. All four configurations

have the same first order describing function as shown in

Fig. 7.
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Fig. 7: DF of the whole system

C. Closed-loop Simulation: Sensitivity Function

The defined sensitivity function (5) of different config-

urations are used to compare their closed loop tracking

performance. Disturbance and white noise will be added

to mimic more realistic stimulation as shown in Fig. 8.

Control elements are discretized with sampling frequency

of 20 KHz. A disturbance signal between 0.5Hz and 30Hz
which can cause 10% positioning deviation is applied for all

configurations to mimic floor vibration.

By inputting sinusoidal reference signal at different fre-

quencies, the steady value of max(|e(t)|) was recorded and

used to plot S∂(ω) under different levels of noise as shown

in Fig. 9. The sensitivity function according to DF is also

plotted to show it is unreliable in nonlinear systems.

Firstly, the configuration Lead-Reset-Lag has the smallest

S∂(ω) at all frequencies when the magnitude of noise signal

is smaller than 0.5% of reference. In addition, when the



C(z) Plant(s)+
+

+
+

−
+

n

d

r(t) e(t)

Fig. 8: Block diagram of close loop

magnitude of noise is bigger than 0.5%, the performances

of configuration 1 and 4 deteriorate obviously at low fre-

quencies while the configuration 2 and 3 do not change a

lot. As we predicted, this kind of deterioration only occurs

in the configurations with lead filter in front of the reset

element. When the frequency of sinusoidal reference signal

is bigger than ωd (25Hz), the reference signal will also be

amplified by the Lead filter, which cancels out the influence

of noise. That’s why this deterioration only appears at low

frequencies.

D. Closed-loop Simulation: Control Output

By inputting sinusoidal reference signal at different fre-

quencies, the maximum steady control output can also be

recorded. Since the level of noise does not have much effect

on control output, the control output with 0.1% noise is

shown in Fig. 10 to illustrate the general result.

It is clear that configuration 2 and 3 have much larger

control output comparing with others. This is because these

two structures both have differentiator (Lead) after reset

element. In these configurations, the ’jump’ signal will first

be generated by reset action, and then be differentiated

consequently. The derivative of the ’jump’ signal leads to

large control output. Obviously, too much control output is

not desired in reality since it can cause the saturation of

controllers and even the instability of the system.

E. Closed-loop simulation: Effect of Shaping Filter

To attenuate the influence of noise at low frequencies,

the shaping filter (6) is applied on configuration 1 and 4.

For this system, ωf is tuned as 2ωc = 200Hz, with the

corresponding a = 1.62.

The first and third order DFs of the original FORE and the

FORE with shaping filter are shown in Fig. 11. It can be seen

that the shaping filter does not change the DF so much, but

the magnitude of the third order harmonic becomes smaller

after ωf .

With 3% noise in the system, Fig. 12 shows the sensitivity

function when the shaping filter is applied on configuration

1 and 4. With the shaping filter, configuration 1 has the

smallest sensitivity function again at almost all frequencies

before bandwidth. Although the performance deteriorates

a bit around bandwidth, it will not affect the tracking

performance of trajectory signals [25] in reality where high

frequency components are often pre-filtered out. Simulation

has also been done for the situation when noise is larger than

3%, the results show 3% of noise is the maximum level this

shaping filter can handle. For larger level of noise, shaping

filter with smaller ωf need to be used.

Above all, the configuration 1 is the optimal sequence for

tracking performance when noise signal is not bigger than

0.5% amplitude of reference. For larger noise, the tracking

performance will deteriorate at low frequencies. By adding

the shaping filter as proposed above, the effect of noise can

be attenuated and the suggested sequence still has the best

performance until the level of noise reaches 3%.

F. Closed-loop simulation: Step Response

The step responses of different configurations are shown

in Fig. 13. It can been seen that the steady state error only

occurs when integrator (Lag) is in front of reset element.

Overshoot occurs when differentiator (Lead) is located after

reset element. Although, putting the lead filter after reset

element has less rise time than Lead-Reset sequence, both

configurations have the same settling time. All in all, Lead-

Reset-Lag is also the optimal sequence.

V. EXPERIMENTAL VALIDATION

A series of experiments are conducted for configurations

in TABLE I to check the simulation results and the optimal

sequence. Since it is time consuming to plot the above sensi-

tivity function in experiment, validation is only conducted in

several specified frequencies. To avoid saturation, different

magnitude of sinusoidal reference signals are applied at

different frequencies as shown in TABLE III. The maximum

steady error signal(max(|e(t)|)) and maximum steady digital

control output are recorded in TABLE IV and TABLE V.

TABLE III: Magnitude of sinusoidal reference and the level

of noise

Reference signal level of noise

Frequency(Hz) Magnitude (0.1µm) Percentage

1 100 1%

5 120 0.83%

10 120 0.83%

15 150 0.67%

20 200 0.5%

TABLE IV: Maximum steady error of four different config-

urations

Reference max(|e(t)|) (0.1µm)

(Hz) No.1 No.2 No.3 No.4

1 15 73 14 15

5 37 78 56 40

10 42 73 67 48

15 54 84 86 54

20 55 97 86 55

TABLE V: Maximum steady control output of four different

configurations

Reference Digital control output (count)

(Hz) No.1 No.2 No.3 No.4

1 486 26173 3103 1222

5 884 26806 12785 1513

10 941 24476 16972 1306

15 1364 25718 19539 1473

20 1677 27541 22038 1471

As shown in TABLE IV, configuration 1 has the smallest

steady maximum error at almost all frequencies we tested.

The only exception occurs at 1Hz, in which configuration 3
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Fig. 9: Sensitivity function with different level of noise
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has the best tracking performance. This is consistent with the

simulation results, since the noise level at 1Hz is 1%, noise

tends to domain the performance. In addition, at 15Hz and

20Hz which are both more than ωi, the effect of integrator

is terminated, therefore configurations 1 and 4 have same

performance.

From TABLE V, the control outputs of configuration 2

and 3 are much larger than configuration 1 and 4, which is

consistent with the simulation.

To check the effect of noise at low frequencies more

clearly, another set of experiments have been done at 1Hz

with 3% noise. Since configuration 2 is the worst sequence

in both tracking performance and saturation in previous ex-

periments, only the other three configurations are compared

in TABLE VI.

Without the shaping filter, we can see that the perfor-

mance of No.1 and No.4 deteriorate seriously while the

performance of configuration.3 does not change a lot as the

level of noise increasing from 1% to 3%. When we apply

the shaping filter, the performances of configuration 1 and 4

are improved significantly which means the effect of noise

is effectively suppressed. With this kind of shaping filter,

configuration 1 can perform well at low frequencies even

with 3% noise.

TABLE VI: Influence of shaping filter for maximum steady

error

Configuration level of noise
max(|e(t)|) (0.1µm)
No.1 No.3 No.4

without shaping filter 1% 15 14 15

without shaping filter 3% 49 20 32

with shaping filter 3% 19 19 21
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Fig. 11: The first and third order DFs of FORE and FORE with shaping filter
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filter is applied on configuration 1 and 4
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VI. CONCLUSION

This paper has proposed an optimized strategy to arrange

the sequence of controller parts when a reset element is used.

Firstly, the performances of different sequences were investi-

gated by considering high order harmonics using HOSIDFs

theory. The optimal sequence in which the magnitude of

high order harmonics is minimum is achieved. Next, the

closed loop performances of a high-tech positioning stage

with PI+CgLp controller were analyzed in both simulation

and experiment for different sequences of controller parts.

The results illustrated that when the magnitude of noise

within the system is smaller than 0.5% of the reference

signal, it is safe to say the suggested sequence has the best

performance; otherwise, the performance of the suggested

sequence will deteriorate at low frequencies. In this case, a

shaping filter was proposed to deal with the problem. It is

revealed that this shaping filter attenuated the influence of

noise successfully and make the suggested sequence have the

best tracking performance with up to 3% noise. In addition,

the suggested sequence also has the smallest control output,

which means from the perspective of actuator saturating in

reality, it is also the optimal sequence.

Above all, this paper suggests the optimal sequence for

different parts of a controller which has a reset element to

achieve high precision and has minimum controller output.

The results can facilitate the use of reset controllers in a

broad range of applications in high-tech industry. For further

studies, applying this approach on other kinds of nonlinear

controllers to increase their performance is a promising

topic.
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5
Conclusion

The objective of this thesis was established as follow:

Find the optimal sequence for reset controllers which has the smallest magnitude of high
order harmonics and check if this sequence has the best performance in closed loop.

Firstly, an introduction about reset control was given in the literature review part. Al-
though reset controllers can be used to overcome the limitation of linear controllers, high
order harmonics are introduced into the system because of non-linearity which deteriorate
the performance of the system. Therefore, it is necessary to reduce the magnitude of high
order harmonics as much as possible.

Then, by using HOSIDOFs tool, it is found that the sequence of different parts of a reset
controller has effect on the magnitude of high order harmonics. Based on the HOSIDOFs
theory, the optimal sequence of open loop in which the magnitude of high order harmonics
is minimum is achieved for a general reset controller.

Finally, the closed loop performances of a high-tech positioning stage with PI+CgLp
controller were analyzed in both simulation and experiment for different sequences of con-
troller parts. The results show that:

• From the step response perspective, the suggested sequence (Lead-Reset-Lag) has the
smallest settling time among all sequences without steady state error and overshoot.

• From the precision perspective, when the magnitude of noise within the system is
smaller than 0.5% of the reference signal, it is safe to say the suggested sequence
(Lead-Reset-Lag) has the best precision performance. When the magnitude of noise
within the system is bigger than 0.5%, the performance of the suggested sequence
(Lead-Reset-Lag) deteriorates at low frequencies.

• From the perspective of controller’s saturation, the suggested sequence (Lead-Reset-
Lag) has the smallest control output.
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24 5. Conclusion

To deal with the performance deterioration at low frequencies because of high level
noise, two different types of shaping filters were proposed in appendix C:

• Type 1: Use a LPF to filter out noise and a tamed lead filter to compensate the phase
change at bandwidth.

• Type 2: Use a LPF to filter out noise and change reset value 𝛾 to compensate the
phase change at bandwidth.

The HOSIDOFs of a reset element with shaping filter were derived in appendix B to
facilitate the tuning and analysis of the shaping filter. The simulation and experiment results
show that both types of shaping filters have similar effect to make the suggested sequence
(Lead-Reset-Lag) have the best performance with up to 3% noise. Comparatively speaking,
the tuning rule of the Type 1 shaping filter is simpler and more general than Type 2, therefore
is a better choice.

In appendix D, a fourth order trajectory was applied for different sequences to check
their tracking performance in simulation. The results show that the suggested sequence
has the smallest maximum tracking error when there is no noise within the system. The
deterioration occurs when the level of noise increases. After applying the shaping filter, the
suggested sequence achieced the best precision performance with up to 3% noise.

In appendix E, a different kind of shaping filter was attempted to get less phase lag.
Although the phase lag was reduced in that case, the additional shaping filter also increased
the high order harmonics, more investigations need to be done in that field.

Following are the recommendations for further studies:

• This work focused on finding the optimal sequence for reset controllers. However,
the theory of HOSIDOFs holds for all non-linear controllers. Applying this optimal
sequence on other kinds of nonlinear controllers to increase their performance can be
a promising direction.

• Although the proposed shaping filter attenuates the influence of noise to some extent,
the maximum level of noise it can deal with is around 3%. Further research need to
be done to find more effective way to handle the deterioration because of noise.



A
HOSIDOFs of Different Sequences

This appendix elaborates the HOSIDOFs of different sequences according to block dia-
grams, followed by an illustrative example.

A.1. The optimal sequence in open loop
First consider an open loop consists of a linear filter (ℭℒ) and a nonlinear reset filter (ℭℜ).
The block diagrams of HOSIDOFs for two different sequences are shown in Fig. A.1. For
the first sequence, when the nonlinear part is in front of the linear part, the magnitude of the𝑛𝑡ℎ order harmonic is: 𝑏፧(𝜔) = |𝐺(𝑛𝑗𝜔)𝐿(𝑛𝑗𝜔)|
where G(s) is the HOSIDOFs of the nonlinear part and L(s) is the transfer function of the
linear part.

For the second sequence, when the linear part is in front of the nonlinear part, the mag-
nitude of the 𝑛𝑡ℎ order harmonic becomes:𝑏፧(𝜔) = |𝐿(𝑗𝜔)𝐺(𝑛𝑗𝜔)|

To reduce the magnitude of high order harmonics as much as possible, the following
Lemma can be derived:

If the linear filter is a descending function of frequency, then it has to be located after
the nonlinear element(Fig. A.1a), otherwise it should be located before that (Fig. A.1b).

A.2. Illustrative example
In this section, the HOSIDOFs of a Clegg integrator combining with a linear Differentiator
with different sequences are compared as an illustrative example. Two different sequences
are shown in Fig. A.2.
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Figure A.1: Block Diagram of HOSIDOFs
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𝐶𝑙𝑒𝑔𝑔𝑒(𝑡) 𝑢(𝑡)𝑆
(a) First Differentiator, then Clegg𝐶𝑙𝑒𝑔𝑔𝑒(𝑡) 𝑢(𝑡)𝑆
(b) First Clegg, then Differentiator

Figure A.2: Combination of Differentiator and Clegg

The HOSIDOFs of the first sequence is obtained as:

𝐺ኻ(𝜔, 𝑛) = {(1 + 𝑗 ኾ᎝ ) for 𝑛 = 1ኾ፣᎝፧ (−1)ᑟᎽᎳᎴ for 𝑜𝑑𝑑 𝑛 ≥ 20 for 𝑒𝑣𝑒𝑛 𝑛 ≥ 2 (A.1)

The second sequence’s HOSIDOFs is:

𝐺ኼ(𝜔, 𝑛) = {(1 + 𝑗 ኾ᎝ ) for 𝑛 = 1ኾ፣᎝ for 𝑜𝑑𝑑 𝑛 ≥ 20 for 𝑒𝑣𝑒𝑛 𝑛 ≥ 2 (A.2)

For a single Clegg integrator, the HOSIDFs becomes:

𝐶𝐼(𝜔, 𝑛) = { ኻ፣Ꭶ (1 + 𝑗 ኾ᎝ ) for 𝑛 = 1ኾ᎝Ꭶ፧ for 𝑜𝑑𝑑 𝑛 ≥ 20 for 𝑒𝑣𝑒𝑛 𝑛 ≥ 2 (A.3)

Compare (A.1), (A.2) and (A.3), the magnitude of high order harmonics for two different
sequences can be represented as:|𝐺ኻ(𝜔, 𝑛)| = |𝑗𝜔𝐶𝐼(𝜔, 𝑛)||𝐺ኼ(𝜔, 𝑛)| = |𝐶𝐼(𝜔, 𝑛)𝑛𝑗𝜔|

It is clear that the first sequence generates the smaller magnitude of high order harmon-
ics. Since the Differentiator element has an increasing function of frequency, put it in front
of the nonlinear part is a better choice in open loop.





B
HOSIDOFs with Shaping Filter

This appendix provides the detail process of deriving the HOSIDOFs when we have a shap-
ing filter in the reset branch.

For a reset element with shaping filter:

Σፑ፬ = {𝑥̇፫(𝑡) = 𝐴፫𝑥፫(𝑡) + 𝐵፫𝑒(𝑡) if 𝑒፬(𝑡) ≠ 0𝑥፫(𝑡ዄ) = 𝐴᎞𝑥፫(𝑡) if 𝑒፬(𝑡) = 0𝑢(𝑡) = 𝐶፫𝑥፫(𝑡) (B.1)

The block diagram is shown in Fig. B.1.

ℭℜℭ፬𝑒(𝑡)
𝑒፬(𝑡)

𝑢(𝑡)
Figure B.1: Structure of shaping filter

Use the following well defined notations same as [12] for convenience:Λ(𝜔) ≜ 𝜔ኼ𝐼 + 𝐴ኼ፫Δ(𝜔) ≜ 𝐼 + 𝑒 ᒕᒞፀᑣΔፃ(𝜔) ≜ 𝐼 + 𝐴᎞𝑒 ᒕᒞፀᑣΓፃ(𝜔) = Δዅኻፃ (𝜔)𝐴᎞Δ(𝜔)Λዅኻ(𝜔)
Consider sinusoidal excitation input𝑒(𝑡) = 𝑠𝑖𝑛(𝜔𝑡 − 𝜙(𝜔)) (B.2)

where 𝜙(𝜔) is the phase of the shaping filter ℭ፬. Therefore, the shaped signal becomes:𝑒፬(𝑡) = 𝑠𝑖𝑛(𝜔𝑡) (B.3)
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the set of the reset time instants is𝑡፤ = 𝑘𝜋𝜔 𝑘 = 0, 1, ...
Define 𝜂፤ = 𝑥 (𝑡ዄኼ፤) , 𝜁፤ = 𝑥 (𝑡ዄኼ፤ዄኻ) and

𝜓(𝑡) ≜ ∫፭ኺ 𝑒ዅፀᑣ፬𝐵፫ sin(𝜔𝑠 − 𝜙(𝜔))d𝑠 (B.4)

The solution of B.1 is given in [12] as:

𝑥(𝑡) = ⎧⎨⎩
𝑒ፀ(፭ዅ፭Ꮄᑜ)𝜂፤+𝑒ፀ፭ [𝜓(𝑡) − 𝜓 (𝑡ኼ፤)] , 𝑡 ∈ (𝑡ኼ፤ , 𝑡ኼ፤ዄኻ]𝑒ፀ(፭ዅ፭ᎴᑜᎼᎳ)𝜁፤+𝑒ፀ፭ [𝜓(𝑡) − 𝜓 (𝑡ኼ፤ዄኻ)] , 𝑡 ∈ (𝑡ኼ፤ዄኻ, 𝑡ኼ፤ዄኼ] (B.5)

where
lim፤→ዄጼ 𝜂፤ = −Δዅኻፃ (𝜔)𝐴፫𝑒 ᒕᒞፀᑣ𝜓 ( 𝜋𝜔) (B.6)

lim፤→ዄጼ 𝜁፤ = Δዅኻፃ (𝜔)𝐴፫𝑒 ᒕᒞፀᑣ𝜓 ( 𝜋𝜔) (B.7)

The response of the system can be represented as:𝑢(𝑡) = 𝑢፬፬(𝑡) + 𝑢፭(𝑡)
where 𝑢፬፬(𝑡) is the steady-state response and 𝑢፭(𝑡) is the transient response which dies
away with time.

The HOSIDOFs of this system is defined in [15] by𝐺(𝑛𝑗𝜔) = 𝑈ss(𝑛𝑗𝜔)𝐸(𝑗𝜔) (B.8)

where 𝑈ss(𝑛𝑗𝜔) = 𝜔2𝜋 ∫ Ꮄᒕᒞኺ 𝑢ss(𝑡)𝑒ዅ፧፣Ꭶ፭𝑑𝑡 (B.9)

𝐸(𝑗𝜔) = 𝜔2𝜋 ∫ Ꮄᒕᒞኺ 𝑒(𝑡)𝑒ዅ፣Ꭶ፭𝑑𝑡 (B.10)

By B.1, B.5, B.6, B.7, when 𝑡 ∈ (𝑡፤ , 𝑡፤ዄኻ]𝑢ss(𝑡) = 𝐶፫𝑒ፀᑣ፭ {(−1)፤ዄኻ𝑒ዅፀᑣ፭ᑜΓፃ(𝜔) [−𝐴፫𝑠𝑖𝑛𝜙(𝜔) + 𝜔𝑐𝑜𝑠𝜙(𝜔)𝐼] 𝐵፫ + 𝜓(𝑡) − 𝜓 (𝑡፤)}= 𝐶፫𝑒ፀᑣ፭𝜃፤(𝜔) − 𝐶፫Λዅኻ(𝜔)[𝜔𝐼 cos(𝜔𝑡 − 𝜙) + 𝐴፫ sin(𝜔𝑡 − 𝜙)]𝐵፫
where𝜃፤(𝜔) = (−1)፤ዄኻ𝑒ዅፀᑣ፭ᑜ [Γፃ(𝜔) − Λዅኻ(𝜔)] [−𝐴፫𝑠𝑖𝑛𝜙(𝜔) + 𝜔𝑐𝑜𝑠𝜙(𝜔)𝐼]𝐵፫
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The Fourier series of 𝑢፬፬ for 𝑛 order harmonics is calculated as𝑈ss(𝑛𝑗𝜔) = 𝜔2𝜋 ∫ Ꮄᒕᒞኺ 𝑢ss(𝑡)𝑒ዅ፧፣Ꭶ፭d𝑡= 𝜔𝐶፫2𝜋 (𝐼ኻ + 𝐼ኼ) − 𝜔𝐶፫Λዅኻ(𝜔)2𝜋 (𝜔𝐽ኻ + 𝐴𝐽ኼ) 𝐵፫
𝐼ኻ = ∫ ᒕᒞኺ 𝑒ፀᑣ፭𝜃ኺ(𝜔)𝑒ዅ፧፣Ꭶ፭d𝑡= (𝑛𝑗𝜔𝐼 − 𝐴፫)ዅኻΔ(𝜔)𝜃ኺ(𝜔)𝐼ኼ = ∫ Ꮄᒕᒞᒕᒞ 𝑒ፀᑣ፭𝜃ኻ(𝜔)𝑒ዅ፧፣Ꭶ፭d𝑡= −(𝑛𝑗𝜔𝐼 − 𝐴፫)ዅኻΔ(𝜔)𝑒 ᒕᒞፀᑣ𝜃ኻ(𝜔)𝐽ኻ = ∫ Ꮄᒕᒞኺ 𝑒ዅ፧፣Ꭶ፭ cos(𝜔𝑡 − 𝜙)d𝑡 = { ᎝Ꭶ𝑒ዅᎫ፣ if 𝑛 = 10 if 𝑛 > 1𝐽ኼ = ∫ Ꮄᒕᒞኺ 𝑒ዅ፧፣Ꭶ፭ sin(𝜔𝑡 − 𝜙)d𝑡 = {−𝑗 ᎝Ꭶ𝑒ዅᎫ፣ if 𝑛 = 10 if 𝑛 > 1

It is easy to get 𝐸(𝑗𝜔) ≜ 𝜔2𝜋 ∫ Ꮄᒕᒞኺ sin(𝜔𝑡 − 𝜙)𝑒ዅ፣Ꭶ፭d𝑡 = −𝑗𝑒ዅ፣Ꭻ2
From B.8

𝐺፬(𝑛𝑗𝜔) = {𝐶፫(𝑗𝜔𝐼 − 𝐴፫)ዅኻ(𝐼 + 𝑒፣Ꭻ𝑗Θ፬(𝜔))𝐵፫ for 𝑛 = 1𝐶፫(𝑗𝜔𝑛𝐼 − 𝐴፫)ዅኻ𝑒፣Ꭻ𝑗Θ፬(𝜔)𝐵፫ for 𝑜𝑑𝑑 𝑛 ≥ 20 for 𝑒𝑣𝑒𝑛 𝑛 ≥ 2 (B.11)

Where Θ፬ = −2𝜔𝜋 Δ(𝜔) [Γፃ(𝜔) − Λዅኻ(𝜔)] (−𝐴፫𝑠𝑖𝑛𝜙 + 𝜔𝑐𝑜𝑠𝜙𝐼)
If the output function is replaced by𝑢(𝑡) = 𝐶፫𝑥፫(𝑡) + 𝐷፫𝑒(𝑡) (B.12)

The HOSIDOFs becomes

𝐺፬(𝑛𝑗𝜔) = {𝐶፫(𝑗𝜔𝐼 − 𝐴፫)ዅኻ(𝐼 + 𝑒፣Ꭻ𝑗Θ፬(𝜔))𝐵፫ + 𝐷፫ for 𝑛 = 1𝐶፫(𝑗𝜔𝑛𝐼 − 𝐴፫)ዅኻ𝑒፣Ꭻ𝑗Θ፬(𝜔)𝐵፫ for 𝑜𝑑𝑑 𝑛 ≥ 20 for 𝑒𝑣𝑒𝑛 𝑛 ≥ 2 (B.13)

Where Θ፬ = −2𝜔𝜋 Δ(𝜔) [Γፃ(𝜔) − Λዅኻ(𝜔)] (−𝐴፫𝑠𝑖𝑛𝜙 + 𝜔𝑐𝑜𝑠𝜙𝐼)





C
Shaping Filter for Noise Attenuation

In this appendix, two different types of shaping filters are applied to attenuate the influence
of noise.

Type 1: Use a LPF to filter out noise and a tamed lead filter to compensate the phase
change at bandwidth.

This shaping filter is represented as:

ℭ፬ = ( 11+ ፬Ꭶᑗ )⏝⎵⎵⏟⎵⎵⏝ፋፏፅ
(1+ ፬Ꭶᑔ/ፚ1+ ፬Ꭶᑔፚ )⏝⎵⎵⎵⏟⎵⎵⎵⏝ፋ፞ፚ፝

(C.1)

where 𝜔፟ is the corner frequency of the LPF, 𝜔፜ is the bandwidth and 𝑎 is a constant.
The phase of LPF at bandwidth can be calculated by:𝜙፥ፚ፠ = −𝑡𝑎𝑛ዅኻ(𝜔፜𝜔፟ ) (C.2)

To compensate this phase lag, the constant 𝑎 is tuned as:[𝑡𝑎𝑛ዅኻ(𝑎) − 𝑡𝑎𝑛ዅኻ(1𝑎 )] = −𝜙፥ፚ፠ (C.3)

Type 2: Use a LPF to filter out noise and change reset value 𝛾 to compensate the
phase change at bandwidth.

The corresponding reset values 𝛾 for this system have been calculated according to𝐺፬(𝑗𝜔) for different 𝜔፟ as shown in Fig. C.1.
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Figure C.1: corresponding reset value ᎐ for different Ꭶᑗ
With 3% noise, two types of shaping filters with different 𝜔፟ are applied on configura-

tion 1 and 4. The new sensitivity functions are simulated and shown in Fig. C.2.
The results show that both types of shaping filters attenuate the influence of noise at

low frequencies successfully and increase the performance of the suggested sequence. For
the Type 1 shaping filter, the optimal parameters are: 𝜔፟200𝐻𝑧; 𝑎 = 1.62. For the Type 2
shaping filter, the optimal parameters are: 𝜔፟300𝐻𝑧; 𝛾 = −0.37.

However, for different reset controllers, the corresponding reset value 𝛾 for different𝜔፟ needs to be recalculated through HOSIDOFs which is not convenient. Comparatively
speaking, the tuning rule of the Type 1 shaping filter is more general for different controllers
and can achieve similar effect with Type 2.
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(a) The sensitivity functions when applying Type
1 shaping filter for configuration 1 and 4

100 101 102

Input frequency [Hz]

-25

-20

-15

-10

-5

0

5

10

S
e

n
s
it
iv

it
y
 [

d
B

]

Lead-Reset-Lag

Lag-Reset-Lead

Reset-Lead-Lag

Lead-Lag-Reset

100 101 102

Input frequency [Hz]

-25

-20

-15

-10

-5

0

5

10

S
e

n
s
it
iv

it
y
 [

d
B

]

Lead-Reset-Lag

Lag-Reset-Lead

Reset-Lead-Lag

Lead-Lag-Reset

100 101 102

Input frequency [Hz]

-25

-20

-15

-10

-5

0

5

10

S
e

n
s
it
iv

it
y
 [

d
B

]

Lead-Reset-Lag

Lag-Reset-Lead

Reset-Lead-Lag

Lead-Lag-Reset

(b) The sensitivity functions when applying Type
2 shaping filter for configuration 1 and 4

Figure C.2: Effect of two types of shaping filters with different Ꭶᑗ





D
Trajectory Tracking Performance

In this appendix, a fourth order trajectory as explained in [17] was applied for reset con-
troller with different sequences to check their tracking performance in simulation as shown
in Fig. D.1.
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Figure D.1: Trajectory reference signal

Fig. D.2 shows the simulation result of the error signal of different sequences when there
is no noise and 1% noise within the system respectively.

It can be seen that when there is no noise within the system, the suggested sequence
(Lead-Reset-Lag) has the smallest maximum tracking error. However, when the noise level
is 1%, the tracking error of the suggested sequence increases significantly.

To attenuate the deterioration because of noise, the proposed shaping filter in appendix
C was applied on configurations 1 and 4 where the Lead filter is in front of the reset element.
As shown in Fig. D.3, the shaping filter attenuates the influence of noise successfully and
makes the suggested sequence have the smallest tracking error with up to 3% noise.
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(a) The error signal of different configurations without noise
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(b) The error signal of different configurations with ኻ% noise

Figure D.2: Trajectory tracking performance without shaping filter
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(a) The error signal of different configurations with ኻ% noise after applying shaping filter in config-
urations 1 and 4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time (s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

E
rr

o
r 

(%
)

Lead-Reset-Lag

Lag-Reset-Lead

Reset-Lead-Lag

Lead-Lag-Reset

(b) The error signal of different configurations with ኽ% noise after applying shaping filter in config-
urations 1 and 4

Figure D.3: Trajectory tracking performance with shaping filter





E
Shaping Filter for Less Phase Lag

In this appendix, a shaping filter is applied to get less phase lag.
Consider the same structure as Fig. B.1 when a shaping filter is applied on a FORE with

reset matrix 𝐴᎞ = 0 . With excitation input 𝑒(𝑡) = 𝑠𝑖𝑛(𝜔𝑡), a fractional order derivative
is used as the shaping filter to generate the shaped signal 𝑒፬(𝑡) = 𝑠𝑖𝑛(𝜔𝑡 + 𝜋/4). By
tuning the corner frequency, we make the FORE with the shaping filter have almost the
same magnitude of the first order DF as the original FORE.

Fig. E.1 shows the first and third order DFs of the original FORE and the FORE with this
shaping filter. Comparing with the original FORE, resetting according to 𝑒፬(𝑡) = 𝑠𝑖𝑛(𝜔𝑡+𝜋/4) generates less phase lag. However, the high order harmonics increase when we add
this shaping filter.
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Figure E.1: Comparison of FORE and FORE with shaping filter

An alternative way to get less phase lag is by changing 𝐴᎞ to negative reset values. We
tune the reset value to make the phase lag the same as the FORE with the shaping filter.

Fig. E.2 shows the first and third order DFs of the FORE with the shaping filter and the
FORE with the negative reset value. It is clear that with the same magnitude and phase lag
of the first order DF, using negative 𝛾 generates less high order harmonics than using the
shaping filter.
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Figure E.2: Comparison of the FORE with the shaping filter and with negative reset value

More investigations about using shaping filters to get less phase lag need to be done in
future.



F
System Overview

This appendix provides an overview of the experiment setup and the identification result.

F.1. Setup
The setup is a Four Flexure Cross Hinges(FFCH) system built by Arjan [18], a former grad-
uate student at HTE department. The side view and the top view of the plant are shown in
Fig. F.1.

(a) Side view (b) Top view

Figure F.1: The FFCH setup

The base of the hinge is fixed on a vibration isolation table. The top end is connected
with a Visaton FR10-4 loudspeaker through a beam and actuated by a Lorenz actuator in-
side. In this thesis, the actuator is used to control the displacement of FFCH in 𝑥 direction.
The horizontal position is measured by a Mercury M2000 reflective linear encoder. The
resolution of this sensor is 100nm. The required controller is compiled using FPGA mod-
ule through Labview interface and implemented via compact RIO real-time hardware. The

43
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schematic diagram of the complete control system is shown in Fig. F.2.

Mercury M2000
Encoder

Current
Amplifier

Compact Rio
cRIO-9039

DAC Module
NI9264

Digital I/O
NI9401

Main PC Controller Signal conditioner Plant

Figure F.2: Schematic overview of the experimental setup

F.2. Identification
To get the frequency response of this system, the system identification is done by exciting
the system with a chirp signal. This chirp signal increases from 1Hz to 1000Hz with the
increase fraction of 2% per second. The data is logged in every 50𝜇𝑠 and used to obtain
transfer function of the system using tfestimate function by MATLAB.

The time domain response of the plant with the input chirp signal is shown in Fig. F.3.
As shown in Fig. F.4, this system is identified as a second order mass-spring-damper

system with the estimated transfer function:𝑃(𝑠) = 11.077 × 10ዅኾ𝑠ኼ + 0.0049𝑠 + 4.2218 (F.1)
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Figure F.3: Time domain response of the experimental setup
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G
Matlab Code and Simulink Model

In this appendix, the MATLAB codes and SIMULINK models used in this thesis are given.

G.1. HOSIDOFs.m
This code is used to calculate HOSIDOFs of a reset element when we have shaping filter in
the reset branch.

1 function [G] = HOSIDOFs( sys , Ar , n , phi , f r eqs )
2 % Calculate DF for a re se t element
3 % when Input : s in (wt+phi ) and Reset by s in (wt)
4 % sys i s the re se t element described in state space
5 % A_r i s the amount of r e se t you want to achieve ( typ ica l 0)
6 % phi i s the phase s h i f t
7 % n i s the order of the descr ib ing function
8 % freqs i s the frequency you want to ca l cu la te ( rad/s )
9

10 % Chengwei Cai - TU Delft - 14.May.2019
11 i f (mod(n ,2 ) == 0)
12 G = 0;
13 return ;
14 end
15

16 A = sys .a ; B = sys .b ; C = sys . c ; D = sys .d ;
17

18 G = zeros (1 ,numel( f r eqs ) ) ;
19

20 f o r i =1:numel( f r eqs )
21 w = freqs ( i ) ;
22

23 Lambda = w*w*eye ( s i z e (A) ) + A^2;
24 LambdaInv = inv (Lambda) ;
25

26 Delta = eye ( s i z e (A) ) + expm(A*pi/w) ;
27 DeltaR = eye ( s i z e (A) ) + Ar*expm(A*pi/w) ;
28

47
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29 GammaR = inv (DeltaR)*Ar*Delta*LambdaInv ;
30

31 Theta=A* s in ( phi )+w*cos ( phi )*eye ( s i z e (A) ) ;
32

33 ThetaD = ( -2*w/pi )*Delta*Theta*(GammaR-LambdaInv) ;
34

35 i f (n==1)
36 G( i ) = exp ( - j *phi )*C*inv ( j *w*eye ( s i z e (A) ) - ...

A) *(exp( j *phi )*eye ( s i z e (A) ) + j *ThetaD)*B;
37

38 e l s e
39 % J1 and J2 dissappear
40 G( i ) = exp ( - j *phi )*C*inv ( j *w*n*eye ( s i z e (A) ) - A)* j *ThetaD*B;
41 end
42 end
43

44 i f (n == 1)
45 G = G + D;
46 end
47 end

G.2. Identification.m
This code is used to identify the frequency response of the setup from the data obtained from
experiment.

1 %iden t i f i c a t i on of the setup
2 % Chengwei Cai - TU Delft - 14.May.2019
3 da=load ( ’ data.lvm ’ ) ;
4 u=da ( : , 1 ) ;
5 y=da ( : , 2 ) ;
6

7 [T, f ]= t fest imate (u , y , [ ] , [ ] , [ ] , 2 e4 ) ;
8 [C, f ]=mscohere (u , y , [ ] , [ ] , [ ] , 2 e4 ) ;
9

10 ax1=subplot (3 ,1 ,1) ;
11 semilogx ( f ,20* log10 ( abs (T) ) ) ; hold on ; gr id on ;
12

13 ylabe l ( ’Magnitude [dB] ’ ) ;
14

15 ax2=subplot (3 ,1 ,2) ;
16 semilogx ( f , radtodeg (unwrap( angle (T) ) ) ) ; hold on ; gr id on ;
17

18 ylabe l ( ’Phase [ deg ] ’ ) ;
19

20 ax3=subplot (3 ,1 ,3) ;
21 semilogx ( f ,C)
22

23 ylabe l ( ’ coherence ’ ) ;
24 xlabe l ( ’ Frequency [Hz ] ’ ) ;
25

26 l inkaxes ( [ ax1 , ax2 , ax3 ] , ’x ’ )
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G.3. Sensitivityfunction.m
This code is used to run the real-time simulation of the system and plot the new sensitivity
functions for different sequences.

1 %% Closed - loop simulation
2 %% parameters of the cross f l exure
3 %% Chengwei Cai - TU Delft - 14.May.2019
4 m=1.077e - 4 ;
5 c=0.0049 ;
6 k=4.2218 ;
7

8 %% calcu la te Kp
9 w_c=100*2*pi ; %bandwidth

10 w_d=w_c/4; %corner frequency of D i f f e r en t i a to r
11 w_r=w_d/1 .62 ; %corner frequency of FORE
12 w_i=w_c/10; %corner frequency of Integrator
13

14 A=-w_r; B=w_r; C=1; D=0;
15 A_rho=0;
16 sys=ss (A,B,C,D) ;
17 s_c=j *w_c;
18

19 G_d=(1+s_c/w_d)/(1+s_c/6/w_c) ;
20 G_fore=hos id f ca l c ( sys , A_rho, 1 , w_c) ;
21 G_i=(s_c+w_i)/s_c ;
22 G_plant=1/(m*s_c^2+c*s_c+k) ;
23

24 G_tot=G_d*G_fore*G_i*G_plant ;
25

26 k_p=1/abs (G_tot) ;
27

28 %% di s c r e t i z e
29

30 Ts=1/20000; %sampling time
31

32 % D element
33 D=t f ( [ 1/ (w_d) ,1 ] , [ 1/6/w_c, 1 ] ) ;
34 D_z=c2d(D,Ts , ’ tust in ’ ) ;
35 [numD, denD] = tfdata (D_z, ’v ’ ) ;
36

37 % I element
38 I=t f ( [ 1 ,w_i ] , [ 1 , 0 ] ) ;
39 I_z=c2d( I ,Ts , ’ tust in ’ ) ;
40 [ numI , denI ] = tfdata (I_z , ’v ’ ) ;
41

42 % Reset
43 R=t f ( [w_r] , [ 1 ,w_r] ) ;
44 R_z=c2d(R,Ts , ’ tust in ’ ) ;
45 [ A_R , B_R , C_R , D_R] = ssdata (R_z) ;
46

47 %shaping f i l t e r
48 a=1.38 ;
49 w_f=300*2*pi ;
50 LPF=t f ( [ 1 ] , [ 1 /w_f , 1 ] ) ;
51 ELead=t f ( [ a/w_c, 1 ] , [ 1 / a/w_c, 1 ] ) ;
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52 EC=LPF*ELead ;
53 EC_z=c2d(EC,Ts , ’ tust in ’ ) ;
54 [numEC, denEC] = tfdata (EC_z, ’v ’ ) ;
55

56 %% run simulink to get data
57 f r eqs=logspace (0 ,2 .2 ,50) ; %Hz
58 f o r i =1:numel( f r eqs )
59 f=f reqs ( i ) ;
60

61 T=1/f ;
62

63 sim( ’ c r o s s f l e xu r e . s l x ’ ) ;
64

65 load ( ’ a1 ’ ) ;
66 load ( ’ a2 ’ ) ;
67 load ( ’ a3 ’ ) ;
68 load ( ’ a4 ’ ) ;
69 load ( ’ a5 ’ ) ;
70 load ( ’ a6 ’ ) ;
71 load ( ’ a7 ’ ) ;
72 load ( ’ a8 ’ ) ;
73

74

75 a1max( i , : )=max(a1 ( 2 , : ) ) /1000;
76 a2max( i , : )=max(a2 ( 2 , : ) ) /1000;
77 a3max( i , : )=max(a3 ( 2 , : ) ) /1000;
78 a4max( i , : )=max(a4 ( 2 , : ) ) /1000;
79

80 %contro l output
81 a5max( i , : )=max(a5 ( 2 , : ) ) ;
82 a6max( i , : )=max(a6 ( 2 , : ) ) ;
83 a7max( i , : )=max(a7 ( 2 , : ) ) ;
84 a8max( i , : )=max(a8 ( 2 , : ) ) ;
85

86 end
87

88 %%
89

90 f i gu re (3)
91 semilogx ( f r eqs , 20* log10 (a1max) , ’ l inewidth ’ ,2) ; hold on ; gr id on ;
92 semilogx ( f r eqs , 20* log10 (a2max) , ’ l inewidth ’ ,2) ; hold on ; gr id on ;
93 semilogx ( f r eqs , 20* log10 (a3max) , ’ l inewidth ’ ,2) ; hold on ; gr id on ;
94 semilogx ( f r eqs , 20* log10 (a4max) , ’ l inewidth ’ ,2) ; hold on ; gr id on ;
95

96 legend ( ’Lead - Reset -Lag ’ , ’Lag - Reset -Lead ’ , . . .
97 ’ Reset -Lead -Lag ’ , ’Lead -Lag - Reset ’ ) ;
98 ylabe l ( ’ e r ror / re f e rence [dB] ’ ) ;
99 xlabe l ( ’ Input frequency [Hz ] ’ ) ;

100

101

102 f i gu re (4)
103 semilogx ( f r eqs , (a5max) , ’ l inewidth ’ ,2) ; hold on ; gr id on ;
104 semilogx ( f r eqs , (a6max) , ’ l inewidth ’ ,2) ; hold on ; gr id on ;
105 semilogx ( f r eqs , (a7max) , ’ l inewidth ’ ,2) ; hold on ; gr id on ;
106 semilogx ( f r eqs , (a8max) , ’ l inewidth ’ ,2) ; hold on ; gr id on ;
107

108 legend ( ’Lead - Reset -Lag ’ , ’Lag - Reset -Lead ’ , . . .
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109 ’ Reset -Lead -Lag ’ , ’Lead -Lag - Reset ’ ) ;
110 ylabe l ( ’ contro l output ( pulse ) ’ ) ;
111 xlabe l ( ’ Input frequency [Hz ] ’ ) ;
112 t i t l e ( ’ contro l output ’ )

G.4. hosidfcalc.m
This code is provided by Kars Heinen. It is used to calculate HOSIDOFs of a reset element
without shaping filter.

1 function [G] = hos id f ca l c ( sys , Ar , n , f r eqs )
2 % G = hos id f ca l c (SYS, AR, N, FREQS, CLOL)
3 % Calculated the higher order (n) descr ib ing function for a re se t ...

system.
4 %
5 % SYS i s the re se t element described in state space
6 % AR i s the amount of r e s e t you want to achieve ( typ ica l 0)
7 % N i s the descr ib ing function order
8 % FREQS contains the f requenc ies the descr ib ing function i s ...

ca lcu lated for
9

10 % Kars Heinen - TU Delft - 2018
11

12 % to do ; replace inv () by ’matlab \ ’ fo r f a s t e r r e su l t s
13

14 % odd orders w i l l be skipped
15 i f (mod(n ,2 ) == 0)
16 G = 0;
17 return ;
18 end
19

20 A = sys .a ; B = sys .b ; C = sys . c ; D = sys .d ;
21

22 G = zeros (1 ,numel( f r eqs ) ) ;
23

24 f o r i =1:numel( f r eqs )
25 w = freqs ( i ) ;
26

27 Lambda = w*w*eye ( s i z e (A) ) + A^2;
28 LambdaInv = inv (Lambda) ;
29

30 Delta = eye ( s i z e (A) ) + expm(A*pi/w) ;
31 DeltaR = eye ( s i z e (A) ) + Ar*expm(A*pi/w) ;
32

33 GammaR = inv (DeltaR)*Ar*Delta*LambdaInv ;
34

35 ThetaD = ( -2*w*w/pi )*Delta *(GammaR-LambdaInv) ;
36

37 i f (n==1)
38 G( i ) = C*inv ( j *w*eye ( s i z e (A) ) - A) *( eye ( s i z e (A) ) + ...

j *ThetaD)*B;
39 e l s e
40 % J1 and J2 dissappear
41 G( i ) = C*inv ( j *w*n*eye ( s i z e (A) ) - A)* j *ThetaD*B;



G

52 G. Matlab Code and Simulink Model

42 end
43 end
44

45 i f (n == 1)
46 G = G + D;
47 end
48 end

G.5. Simulink model
This model is used to simulate the closed-loop performance of the system under different
level of noise.

Plant
-100~100um	reference（0.1um=1pulse）

No	disturbance

No	noise

HPF LPF
Disturbance

Quantization2

In1 Out1

Controller1

(D-Reset-I)

Quantization1

	-500nm~500nm	noise 	-1um~1um	noise

	-3um~3um	noise	-100nm~100nm	noise

	-5um~5um	noise

error1 Control	Output1

Figure G.1: crossflexure.slx
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