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Abstract Real-world road-planning applications
often result in the formulation of new variations of the
nearest neighbor (NN) problem requiring new solutions.
In this paper, we study an unexplored form of NN que-
ries named optimal sequenced route (OSR) query in
both vector and metric spaces. OSR strives to find a
route of minimum length starting from a given source
location and passing through a number of typed loca-
tions in a particular order imposed on the types of the
locations. We first transform the OSR problem into a
shortest path problem on a large planar graph. We show
that a classic shortest path algorithm such as Dijkstra’s is
impractical for most real-world scenarios. Therefore, we
propose LORD, a light threshold-based iterative algo-
rithm, which utilizes various thresholds to prune the
locations that cannot belong to the optimal route. Then
we propose R-LORD, an extension of LORD which
uses R-tree to examine the threshold values more effi-
ciently. Finally, for applications that cannot tolerate the
Euclidean distance as estimation and require exact dis-
tance measures in metric spaces (e.g., road networks)
we propose PNE that progressively issues NN queries
on different point types to construct the optimal route
for the OSR query. Our extensive experiments on both
real-world and synthetic datasets verify that our algo-
rithms significantly outperform a disk-based variation
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of the Dijkstra approach in terms of processing time (up
to two orders of magnitude) and required workspace
(up to 90% reduction on average).
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search · Trip planning queries

1 Introduction

The objective of the nearest neighbor query is to find the
object(s) with the shortest distance(s) to a given query
point. Although this type of query is useful, more often
what the user is really after is to plan a trip to several

(and possibly different types of) locations in some se-

quence, and is interested in finding the optimal route
that minimizes her total traveling distance (or time).
This type of query is important to both commercial
applications such as in-car navigation systems or for on-
line map services as well as non-commercial applications
such as in crisis management, emergency response and
defense/intelligence systems. Similar types of “planning
queries” have also been studied by the database com-
munity in other application domains such as in air traffic
flow and supply chain management [5,10,14]. In this pa-
per, we formally introduce and address this specific type
of trip planning query in the context of spatial database
systems.

1.1 Motivation

Suppose we are planning a Saturday trip around the
town as follows: first we intend to visit a shopping cen-
ter in the afternoon to check the season’s new arrivals,
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then we plan to dine in an Italian restaurant in early
evening, and finally, we would like to watch a specific
movie at late night. Naturally, we intend to drive the
minimum overall distance to these destinations. That is,
we need to find the locations of the shopping center si,
the Italian restaurant rj, and the theater tk that shows
our movie, where traveling between these locations in
the given order would result in the shortest travel dis-
tance (or time). Note that in this example, a time con-
straint enforces the order in which these destinations
should be visited; we usually do not have dinner in the
afternoon, or go for shopping at late night. This type
of query is also essential in other application domains
such as crisis management, air traffic flow management,
supply chain management, and video surveillance. In cri-
sis management, suppose that an ambulance needs to
repeatedly visit one of the several attacked points ai and
hospitals hj, respectively. The ambulance should visit as
many of the attacked points as possible in the short-
est time. The constraint that enforces the order in this
example is that there is no reason for the ambulance to
go to a hospital if it has not yet picked up an injured
person. Note that in this example, although there are
only two different types of points (i.e., attacked points
and hospitals), the size of the sequence can become
arbitrary large [e.g., (a1, h1, a2, h2, . . . , ai, hi)]. With the
video surveillance application, consider searching for a
sequence of relevant images of different scene types
to discover an event. For instance, among time-stamped
images showing individuals approaching a building,
waiting in the lobby or leaving the building, we look
for the minimal three images with approach/wait/leave
sequence. Here, the distance could be defined according
to high-dimensional feature space of images including
their time-stamps.

We call this type of queries where the order of points
to be visited is given and fixed, the optimal sequenced
route queries or OSR for short. Using Fig. 1, we show
that the OSR query cannot be optimally answered by
simply performing a series of independent nearest neigh-
bor searches from different locations. We use the first
example described above as our running example
throughout the paper. The figure shows a network of
equally sized connected square cells, three different
types of point sets shown by white, black and gray cir-
cles representing shopping centers, Italian restaurants,
and theaters, respectively, and a starting point p (shown
by △).

A greedy approach to solve OSR is to first locate the
closest shopping center to p, s2, then find the closest res-
taurant to s2, r2, and finally find the closest theater to r2,
t2. Assuming the length of each edge of a cell is 1 unit, the
total length of the route found by this greedy approach,
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Fig. 1 A network with three different types of point sets

(p, s2, r2, t2), shown by dotted lines in the figure, is 15
units. However, the route (p, s1, r1, t1) (shown with solid
lines in the figure) with the length of 12 units is the opti-
mum answer to our query. Note that s1 is not the closest
shopping center to p and r1 is actually the farthest res-
taurant to s1. Hence, the optimum route for an OSR
query can be significantly different from the one found
by the greedy approach.

1.2 Uniqueness

Even though different variations of the nearest neigh-
bor query have been extensively studied by the database
community, to the best of our knowledge, no other study
investigates the optimal sequenced route (OSR) query.
This problem is closely related to the traveling sales-
man problem (TSP). TSP looks for the minimum cost
round-trip path from a point passing through a given set
of points. As a classic problem in graph theory, TSP is
the search for the minimum weight Hamiltonian cycle

in a weighted graph. With TSP, all the points are of the
same type and they must all participate in the route in
a given sequence. In contrast, OSR enforces a sequence
of points each of which is of a specific type (i.e., from a
different point set).

The most similar TSP-related problem to OSR is
sequential ordering problem (SOP) in which a
Hamiltonian path with a precedence constraint on the
nodes is required. Similar to all the TSP variations, the
solution path to SOP must still pass through all the given
points. Conversely, the main challenge with OSR is to
efficiently select a sequence of points, where each of
which can be any member of a given point set. The com-
mercial online Yellow Pages such as those of Yahoo! and
MapQuest can only search for the k-nearest neighbors
in one specific category (or point set) to a given query
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location and cannot find the optimal sequenced route
from the query to a group of point sets.

Recently and in parallel to our work, the spatial data-
base community has paid attention to queries similar to
our OSR query [5,10,14]. Li et al. [10] propose heuristic
approximate solutions to trip planning queries (TPQ)
which relaxes OSR queries by eliminating the sequence
constraint. The k-stop problem studied by Terrovitis
et al. [14] is also a specialization of OSR for which they
provide a solution only in vector spaces. Hadjieleftheriou
et al. [5] study the problem of identifying the temporal
order patterns within trajectories stored in a moving
object database. Our study is among the first attempts
to investigate the complex route queries in spatial data-
bases.

1.3 Contributions

In this paper, we introduce and formally define the prob-
lem of OSR query in spatial databases. Our general defi-
nition of OSR query also covers a variation where the
query must end in a specific given point (e.g., the user’s
starting point). We propose alternative solutions to the
OSR queries for both vector and metric spaces.

We start by studying the brute-force search solution
to the OSR queries in vector/metric spaces. We show
that the exponential size of the search space renders
this solution impractical. Hence, for vector spaces, we
propose a naive solution that first generates a weighted
directed graph from the input point sets, and then uses
Dijkstra’s algorithm to find the distances from a start-
ing point to all possible end points on the generated
graph. This solution becomes impractical when the gen-
erated graph is large, which is the case for most of the
real-world problems. Therefore, we propose a second
solution, LORD, which utilizes some threshold values
to filter out the points that cannot possibly be on the
optimal route, and then builds the optimal route in
reverse sequence (i.e., from ending to the starting point).
We then propose R-LORD, which improves LORD by
reformulating its thresholds into a single range query
and subsequently performing the range query utilizing
an R-tree index structure. Finally, we propose PNE to
solve OSR in metric spaces (e.g., road networks). PNE
is based on progressively finding the nearest neighbors
to different point sets in order to construct the opti-
mal route from the starting to the ending point. We also
show how LORD, R-LORD, and PNE can be adopted to
address variations of OSR (e.g., when the first k optimal
routes are needed).

We analytically prove the correctness of all of our
algorithms. We also theoretically calculate their time,
space, and I/O complexities. Finally, through extensive

experiments with both real-world and synthetic datasets,
we show that LORD, R-LORD, and PNE can efficiently
answer OSR queries; R-LORD and PNE scale to large
datasets; and R-LORD performs independently from
the distribution and density of the data.

The remainder of this paper is organized as follows.
We first formally define the problem of OSR queries
and the terms we use throughout the paper in Sect. 2. In
Sect. 3, we discuss our alternative solutions for OSR que-
ries in vector and metric spaces. We theoretically explore
the average case complexity of these solutions in terms
of time, memory, and I/O in Sect. 4. We address two
variations of OSR queries in Sect. 5. The performance
evaluation of our proposed algorithms is presented in
Sect. 6. The related work is discussed in Sect. 7. Finally,
we conclude the paper and discuss our future work in
Sect. 8.

2 Formal problem definition

In this section, we describe the terms and notations that
we use throughout the paper, formally define the OSR
query, and discuss the unique properties of OSR that
we utilize in our solutions. Table 1 summarizes our set
of notations.

2.1 Problem definition

Let U1, U2, . . . , Un be n sets, each containing points in a
d-dimensional space R

d, and D(·, ·) be a distance metric
defined in R

d where D(·, ·) obeys the triangular inequal-
ity. To illustrate, in the example of Fig. 1, U1, U2, and U3
are the sets of black, white, and gray points, representing

Table 1 Summary of notations

Symbol Meaning

Ui A point set in R
d

|Ui| Cardinality of the set Ui

n Number of point sets Ui

D(·, ·) Distance function in R
d

M A sequence, = (M1, . . . , Mm)

|M| m, Size of sequence M = number of items in M

Mi i-th item of M

R Route (P1, P2, . . . , Pr), where Pi is a point
|R| r, Number of points in R

Pi i-th point in R

L(R) Length of R

p ⊕ R Route Rp = (p, P1, . . . , Pr) where R = (P1, . . . , Pr)

L(p, R) Length of the route p ⊕ R

Pfx(M, n) The sequence (M1, . . . , Mn) where 1 ≤ n ≤ |M|

Pfx(R, n) The route (P1, . . . , Pn) where 1 ≤ n ≤ |R|
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restaurants, shopping centers and theaters, respectively.
We first define the following four terms.

Definition 1 Given n, the number of point sets Ui, we

say the m-tuple M = (M1, M2, . . . , Mm) is a sequence if

and only if 1 ≤ Mi ≤ n for 1 ≤ i ≤ m. That is, given

the point sets Ui, a user’s OSR query is valid only if she

asks for existing location types. For the example of Fig. 1
where n = 3, (2, 1, 2) is a sequence (specifying a shop-

ping center, a restaurant, and a shopping center), while

(3, 4, 1) is not a sequence because 4 is not referring to an

existing point set. We use m and |M| to denote the size of

the sequence M.

Definition 2 We say R = (P1, P2, . . . , Pr) is a route if

and only if Pi ∈ R
d for each 1 ≤ i ≤ r. We use p ⊕ R =

(p, P1, . . . , Pr) to denote a new route that starts from point

p and goes sequentially through P1 to Pr. The route p ⊕R

is the result of adding p to the head of route R.

Definition 3 We define the length of a route R = (P1,
P2, . . . , Pr) as

L(R) =

r−1
∑

i=1

D(Pi, Pi+1) (1)

For example, the length of the route (s2, r2, s3) in Fig. 1
is 4 units where D is the Manhattan distance. Note that

L(R) = 0 for r = 1.

Definition 4 Let M = (M1, M2, . . . , Mm) be a sequence.

We refer to the route R = (P1, P2, . . . , Pm) as a sequenced
route that follows sequence M if and only if Pi ∈ UMi

where 1 ≤ i ≤ m. In Fig. 1, (s2, r2, s3) is a sequenced

route that follows (2, 1, 2) which means that the route

passes only through a white, then a black and finally a

white point.

We now formally define the OSR query.

Definition 5 Assume that we are given a sequence M =

(M1, M2, . . . , Mm). For a given starting point p in R
d

and the sequence M, the OSR query, Q(p, M), is defined

as finding a sequenced route R = (P1, . . . , Pm) that fol-

lows M where the value of the following function L is

minimum over all the sequenced routes that follow M:

L(p, R) = D(p, P1) + L(R) (2)

Note that L(p, R) is in fact the length of route Rp =

p ⊕R. Throughout the paper, we use Q(p, M) = (P1, P2,
. . . , Pm) to denote the optimal SR, the answer to the
OSR query Q. Without loss of generality, we assume that

this optimal route is unique for given p and M.1 For the
example in Sect. 1.1 where (U1, U2, U3) = (black, white,
gray), M = (2, 1, 3), and D is the Manhattan distance,
the answer to the OSR query is Q(p, M) = (s1, r1, t1).
We use candidate SR to refer to all sequenced routes
that follow sequence M. The definition of one of these
routes whose length is used as a threshold value in our
algorithm follows.

Definition 6 Given a starting point p, a sequence M =

(M1, . . . , Mm), and point sets {U1, . . . , Un}, we refer to

Rg(p, M) = (P1, . . . , Pm) as the greedy sequenced route
that follows M from point p if and only if it satisfies the

followings:

1. P1 is the closest point to p in UM1 , and

2. For 1 ≤ i < m, Pi+1 is the closest point to Pi in UMi+1 .

Without loss of generality, we assume that the closest

points of p in UM1 and Pi in UMi+1 are unique. Therefore,

Rg(p, M) is unique for a given point p, a sequence M,

and the sets Ui. Moreover, by definition, the optimal

sequenced route R is never longer than the greedy se-

quenced route for the given sequence M, i.e., L(p, R) ≤

L(p, Rg(p, M)). As this holds for all candidate routes that

follow M, our proposed algorithms are correct in the gen-

eral case where the closest points are not unique.

2.2 Properties

Before describing our algorithms for OSR queries, we
present the following three properties which are
exploited by our algorithms.

Property 1 For a route R = (P1, . . . , Pi, Pi+1, . . . , Pr)

and a given point p, we have

L(p ⊕ R) ≥ D(p, Pi) + L((Pi, . . . , Pr)) (3)

Proof The triangular inequality implies that D(p, P1)+
∑i−1

j=1 D(Pj, Pj+1)≥D(p, Pi). Adding
∑r−1

j=i D(Pj, Pj+1) =

L((Pi, . . . , Pr)) to both sides of the inequality and con-
sidering the definition of the function L() in Eq. 2, yields
Eq. 3. ⊓⊔

As we will show in Sect. 3.2.1, we utilize property
1 to narrow down the candidate sequenced routes for
Q(p, M) by filtering out the points whose distance to
p is greater than a threshold, and hence cannot possi-
bly be on the optimal route. Note that this property is
applicable to all routes in the space.

1 Notice that similar assumptions made throughout the paper are
intended for simplifying our algorithms and do not enforce any
requirement.
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The answer to the OSR query Q(p, M) demonstrates
the following two unique properties. We utilize these
properties to improve the exhaustive search among all
potential routes of a given sequence.

Property 2 If Q(p, M) = R = (P1, . . . , Pm−1, Pm), then
Pm is the closest point to Pm−1 in UMm .

Proof The proof of this property is by contradiction.
Assume that the closest point to Pm−1 in UMm is px �=

Pm. Therefore, we have D(Pm−1, px) < D(Pm−1, Pm)

and hence L(p, (P1, . . . , Pm−1, px))<L(p, (P1, . . . , Pm−1,
Pm)). This contradicts our initial assumption that R is the
answer to Q(p, M). ⊓⊔

Property 2 states that given that P1, . . . , Pm−1 are sub-
sequently on the optimal route, it is only required to find
the first nearest neighbor of Pm−1 to complete the route
and subsequent nearest neighbors cannot possibly be
on the optimal route and hence, will not be examined.
Note that this property does not prove that the greedy
route is always optimal. Instead, it implies that only the
last point of the optimal sequenced route R (i.e., Pm) is
the nearest point of its previous point in the route (i.e.,
Pm−1).

Property 3 If Q(p, M) = (P1, . . . , Pi, Pi+1, . . . , Pm) for
the sequence M = (M1, . . . , Mi, Mi+1, . . . , Mm), then
for any point Pi and M′ = (Mi+1, . . . , Mm), we have
Q(Pi, M′) = (Pi+1, . . . , Pm).

Proof The proof of this property is by contradiction.
Assume that Q(Pi, M′) = R′ = (P′

1, . . . , P′
m−i). Obvi-

ously (Pi+1, . . . , Pm) follows sequence M′, therefore we
have L(Pi, R′) < L(Pi, (Pi+1, . . . , Pm)). We add L(p,
(P1, . . . , Pi)) to the both sides of this inequality to get:

L(p, (P1, . . . , Pi, P′
1, . . . , P′

m−i)) < L(p, (P1, . . . , Pm))

The above inequality shows that the answer to Q(p, M)

must be (P1, . . . , Pi, P′
1, . . . , P′

m−i) which clearly follows
sequence M. This contradicts our assumption that
Q(p, M) = R. ⊓⊔

3 OSR solutions

In this section, we first study the brute-force solution to
OSR queries and describe its issues. Subsequently, we
propose alternative solutions for OSR queries in vector
and metric spaces. We start by discussing a naive solution
based on the Dijkstra’s shortest path algorithm. We then
propose LORD, an approach that employs some thresh-
old values to efficiently prune non-candidate routes.
Next we discuss R-LORD, that is an optimization of

LORD by utilizing an R-tree index structure. Finally,
we discuss PNE, a solution that progressively performs
nearest neighbor queries on different point sets to find
the optimal route for metric spaces.

Suppose we have an OSR query with a starting point p,
a sequence M, and point sets {UM1 , . . . , UMm}. The brute-
force search algorithm for finding the optimal solution
to OSR query must compute all sequenced routes that
follow M. Considering the definition of OSR query, the
number of these routes is

∏m
i=1 |UMi |. Calculating the

length of each of these routes consists of |M| distance
computation operations. Consequently, the brute-force
search algorithm to find the route with minimum length
requires |M|

∏m
i=1 |Ui| distance computations. The com-

putation and storage costs of this algorithm grows expo-
nentially with the sequence size and polynomially with
the cardinality of the database which renders it impracti-
cal for answering OSR queries in the context of typically
large databases.

3.1 The Dijkstra-based solution

This section studies a different naive approach which
slightly improves the brute-force algorithm. We are
given an OSR query with a starting point p, a sequence
M, and point sets {UM1 , . . . , UMm}. We construct a
weighted directed graph G where the set V =

⋃m
i=1 UMi ∪

{p} are the vertices of G and its edges are generated as
follows. The vertex corresponding to p is connected to
all the vertices in point set UM1 . Subsequently, each ver-
tex corresponding to a point x in UMi is connected to
all the vertices corresponding to the points in UMi+1 ,
where 1 ≤ i < m − 1. Figure 2 illustrates an example
of such graph. As shown in the figure, the graph G is a
k-bipartite graph where k = m + 1. The weight assigned
to each edge of G is the distance between the two points
corresponding to its two end-vertices. This graph is in
fact showing all possible candidate sequenced routes
(candidate SRs) for the given M and the set of UMi ’s. To
be precise, it shows all the routes Rp = p ⊕ R where R

is a candidate SR. By definition, the optimal route for

M

M

M

1

2

m

1

1

Fig. 2 Weighted directed graph G for sequence M
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the given OSR query is the candidate SR, R, for which
Rp has the minimum length. Considering graph G, we
notice that the OSR problem can be simply considered
as finding the shortest paths (i.e., with minimum weight)
from p to each of the vertices that correspond to the
points in UMm (i.e., the last level of points in Fig. 2), and
then returning the path with the shortest length as the
optimal route. This can be achieved by performing the
Dijkstra’s algorithm on graph G.

There are two drawbacks with this solution. First, the
graph G has |E|=|UM1 |+

∑m−1
i=1 |UMi |×|UMi+1 | directed

edges which is a large number considering the usually
large cardinality of the sets Ui. For instance, for a real-
world dataset with 40, 000 points and |M| = 3, G has
124 million edges (see Sect. 6). The time complexity of
the Dijkstra’s classic algorithm to find the shortest path
between two nodes in graph G is O(|E| log |V|). Hence,
the complexity of this naive algorithm is O(|UMm |

|E| log |V|). Second, this huge graph must be built and
kept in main memory. Although there exist versions of
the Dijkstra’s algorithm that are adjusted to use exter-
nal memory [7], but they result in so much of overhead
which makes them hard to employ for OSR queries (see
Sect. 7 for the complete discussion). This renders the
classic Dijkstra’s algorithm to answer OSR queries in
real-time impractical.

In order to improve the performance of this naive
Dijkstra-based solution, we can issue a range query
around the starting point p and only select the points
that are closer to p than L(p, Rg(p, M)). This is because
the length of any route R which includes a point out-
side this range is greater than that of the greedy route
Rg(p, M). Therefore, we build the graph G using only
the points within the range instead of all the points.
In Sect. 6, we show that even this enhanced version of
the Dijkstra’s algorithm (EDJ) is not as efficient as our
approaches.

3.2 OSR in vector space

In this section, we assume that the distance function
D(·, ·) is the Euclidean distance between the points in
R

d. We provide two solutions for OSR problem in this
vector space.

3.2.1 Light optimal route discoverer

This section describes our light optimal route discoverer
(LORD) for addressing OSR queries. LORD has the
same flavor as Dijkstra’s algorithm but as a threshold-
based algorithm it functions in the context of the OSR
problem considering its unique properties described in

Sect. 2.2. The LORD is light in terms of memory usage
as we will show that LORD’s workspace is less than the
workspace required when the Dijkstra-based approach
is applied to the OSR problem.

Given an OSR query Q(p, M), LORD iteratively
builds and maintains a set of partial sequenced routes
(partial SR) in the reverse sequence, i.e., from the end
points (points in UMm ) toward p. During each iteration i

of LORD, points from the point set UM(m−i+1)
are added

to the head of each of these partial SRs to make them
closer to a candidate SR and finally, to the solution (i.e.,
optimal SR). To make the solution space smaller, LORD
only considers those points in UM(m−i+1)

that adding them
to the partial SRs will not generate routes which are
longer than a variable threshold value Tv. LORD fur-
ther examines the partial SRs by calculating their lengths
after adding p, and discards the routes whose corre-
sponding length is more than a constant threshold value
Tc, where Tc is the length of the greedy route.

We now describe LORD in more details using the
example shown in Fig. 3. Figure 3a depicts a starting
point p and three different sets of points U1, U2, and
U3, shown as black (bi), white (wi) and gray (gi) points,
respectively. Without loss of generality, we assume that
the distance between each two points in the space is their
Euclidean distance. Given the starting point p (shown as
△ in the figure), we want to find the route R with the min-
imum L(p, R) from a white, to a black and then a gray
point. Therefore, the required OSR query is formulated
as Q(p, (2, 1, 3)).

Figure 4 shows the pseudo-code of LORD. The algo-
rithm generates a set, S, for partial candidate routes and
initializes it to the empty set. The first step in LORD
is to issue m(= 3) consecutive nearest neighbor queries
to find the greedy route that follows (2, 1, 3) from p.
To be specific, the algorithm first finds the closest wi

to p (i.e., w2), then the closest bi to w2 (i.e., b2), and
finally the closest gi to b2 (i.e., g2). Figure 3b renders the
greedy route Rg(p, (2, 1, 3)) as (w2, b2, g2). LORD initi-
ates both threshold values Tv and Tc to the length of
p ⊕ Rg(p, M) (i.e., L(p, (w2, b2, g2)). Note that the value
of Tc remains the same while the value of Tv reduces
after each iteration. Subsequently, LORD discards all
the points whose distances to p are more than Tv, i.e.,
the points that are outside the circle shown in Fig. 3c
(i.e., w1, w4, and g1). This is because any route (e.g., R)
that contains a point that is outside this circle will lead to
L(p, R) > L(p, Rg(p, M)) and hence, by definition, can-
not be the optimal route. At this point, LORD inserts the
gray nodes (i.e., points in UMm ) which are inside the cir-
cle in Fig. 3c, in to S, i.e., S = {(g2), (g3), (g4), (g5), (g6)}.
Note that at this stage, the length of the partial routes in
S is zero.



The optimal sequenced route query

a) b) c) d)

e) f) g) h)

Fig. 3 Iterations of LORD

In the first iteration of LORD, each point x ∈ UMm−1

(i.e., bi’s) is added to the head of each partial SR, PSR =

(P1) ∈ S, if: (a) x is inside the circle Tv, and (b) D(p, x)+

D(x, P1) + L(PSR) ≤ Tc. The rational behind the sec-
ond condition is property 1; if the inequality does not
hold, then L(p, (x, P1, . . . , Pi)) will be greater than Tc

and hence, (x, P1, . . . , Pi) cannot be part of the optimal
route. For instance, in Fig. 3d, point b4 is added to (g3)

and (g4) resulting in new partial SRs {(b4, g3), (b4, g4)},
but cannot be added to (g2), (g5) and (g6). Moreover,
between partial SRs that have the same first point (e.g.,
(b4, g3) and (b4, g4)), only the one with the shortest
length will be kept in S (i.e., property 2). In addition,
any PSR ∈ S that no x can be added to it will be dis-
carded. For example, in Fig. 3d, (g6) will be discarded
because if any bi is added to it, at least one of the above
two conditions will not be met. Hence, at the end of
the first step, the set of the partial SRs will become
{(b6, g5), (b4, g3), (b3, g3), (b2, g2), (b1, g2)} (Fig. 3e).

At the end of each iteration, the value of variable
threshold Tv is decreased as follows. Suppose that
Q(p, M) = (q1, . . . , qi, . . . , qm) and we are examining
iteration (m − i + 1) (i.e., the partial SRs in S are in
the form of (pi+1, . . . , pm)). The definition of the greedy
route implies that

L(p, (q1, . . . , qm)) ≤ L(p, Rg(p, M)) = Tc

and by considering Property 1, we have

D(p, qi)+L((qi+1, . . . , qm))<D(p, qi)+L((qi, . . . , qm))

≤ Tc

which can be rewritten as

D(p, qi) ≤ Tc − L((qi+1, . . . , qm)) (4)

Note that inequality 4 must hold for all points qi that
are to be examined at iteration (m − i + 1). Hence,
by replacing L((qi+1, . . . , qm)) with its minimum value,
we obtain the maximum value for D(p, qi) for any qi.
Therefore, for any point qi that is examined in iteration
(m − i + 1), we must have

D(p, qi) ≤ Tv = Tc − minPSR∈S(L(PSR))

Note that at each iteration, the lengths of the partial
SRs in S, and hence the value of minPSR∈S(L(PSR)) is
increasing. This yields to smaller values for Tv after each
iteration. This is also shown in Fig. 3; the radius of the
circle in Fig. 3f is smaller than the radius of the circle in
Fig. 3c.

The subsequent (m − 2) iterations of LORD are per-
formed similarly and the partial routes in S will become
complete routes (i.e., candidate SRs that follow M) after
the last iteration is completed (Fig. 3g). Finally, LORD
examines the distance from p to the first point in each
complete route in S (i.e., {(w2, b2, g2), (w3, b4, g3)}) and
selects the one that generates the minimum total dis-
tance, i.e., the route with the minimum value for L()

function, as the result of Q(p, (2, 1, 3)) (route (w3, b4, g3)

in Fig. 3h).
Now that we described the details of our LORD algo-

rithm, we explain why it builds the candidate sequenced
routes in reverse sequence (i.e, from the points in UMm
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to the points in UM1 ). First, all iterations of LORD use
a common circular range around p to select the points
to be included in the candidate routes. The radius of this
circle is decreasing from one iteration to the next one
which incrementally increases the number of points to
be pruned. If we start from p (and the points in UM1 ) to
generate candidate routes, this range either remains the
same as its initial size, or varies for each candidate route
during the iterations. Second, LORD continues to gen-
erate the partial route in reverse sequence to be able to
employ the properties described in Sect. 2.2 and prune
more candidate points. This is not feasible if LORD
builds these routes in the original sequence. Finally, as
we show in Sect. 3.2.2 adding points in to the middle
of the candidate routes (between p and the head of any
partial route) enables LORD to utilize the locus of these
candidate points as an ellipse. This helps LORD’s itera-
tions to prune more points.

3.2.2 R-LORD: R-tree-based LORD

We described LORD in Sect. 3.2.1 without any assump-
tion on the structure of the points in each Ui. We now
discuss the situation that the points in Ui’s are stored in
an R-tree index structure. We utilize the features of the
index structure to develop an R-tree-friendly version of
LORD. The core idea behind this solution is to use the
points’ neighborhood information implicitly stored in
R-tree MBR’s to more efficiently prune the candidate
points at each iteration of LORD. Towards this goal, we
transform the LORD’s point selection criterium to the
range queries applicable on an R-tree. Then, we show
that the point selection can be performed using a single

range query. Finally, we describe our algorithm which
uses this range to find the solution for an OSR query
utilizing an R-tree.

3.2.2.1 Point selection criterium in LORD As we dis-
cussed in Sect. 3.2.1, at each iteration i, LORD prunes
the points in UMi in two steps. First, it ignores any point
of the set UMi that is farther than the value of the var-
iable threshold Tv from the starting point p. This is a
simple range query Q1 given the range Range(Q1) as
a circle with a known radius Tv centered at p. Second,
any point x resulting from query Range(Q1) is checked
against all partial SRs PSR ∈ S. If for each PSR =

(P1, . . . , P|PSR|) ∈ S, the value of D(p, x) + D(x, P1) +

L(PSR) is greater than the constant threshold Tc (i.e.,
the length of the greedy route), then point x is not added
to the beginning of that PSR. Otherwise, a new partial
SR, (x, P1, . . . , P|PSR|), is generated. This clearly shows
that the second query Q2 uses a more complicated range
to prune the results of Q1.

Fig. 4 Pseudo-code of the LORD algorithm

p

P1

P2

P
|PSR|

x

E(p,PSR)

Fig. 5 The locus of the points x for LORD

To identify Range(Q2), we first find the locus of the
points x which can possibly be added to a PSR = (P1, . . . ,
P|PSR|) ∈ S. For such a point x, we must have D(x, p) +

D(x, P1) ≤ Tc − L(PSR) (line 12 in Fig. 4). As L(PSR)

and Tc are constant values for a given PSR and query
Q(p, M), the sum of x’s distances from two fixed points p

and P1 cannot be larger than a constant. Hence, x must
be on or inside an ellipse defined by the foci p and P1
and the constant Tc − L(PSR). Figure 5 shows the locus
of the points x for a given route PSR as inside and on an
ellipse E(p, PSR).

Query Q2 is defined in terms of the set of partial
SRs stored in S during the current iteration. For each
PSR, we showed that LORD appends points inside el-
lipse E(p, PSR) to the head of the PSR in order to build
a new partial candidate route. All such ellipses, each
corresponding to a partial SR in S, are intersecting as
they all share the common focus point p. The union of
these ellipses contains all the points x (of the appropriate
set), where for each, there is exactly one route starting
with x built at the end of the current iteration. In other
words, this union should be the range used in query Q2.
Figure 6 illustrates an example for the current set S dur-
ing an iteration of LORD. The set includes three partial
SRs of the same length each starting with a black point.
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MBR(Q2)

Range(Q2)

Fig. 6 Range query Q2 and its MBR for partial routes in LORD

The sequence M of the query Q(p, M) dictates the type
of the point which must be added to the head of each
partial SR. Any point outside the union of these three
ellipses is ignored by LORD.

Up to this point, we have identified the range of the
two main queries Q1 and Q2 used in LORD. In the
following, we show that any ellipse for the range Q2 is
entirely inside the circle for range Q1 and hence, the
range of Q2 is completely inside that of Q1.

Lemma 1 During each iteration of LORD for Q(p, M),

given a partial sequenced route PSR ∈ S, any point x

inside or on the ellipse E(p, PSR) has a distance less than

current value of the variable threshold Tv from point p

(i.e., D(x, p) < Tv).

Proof As point x is inside or on ellipse E(p, PSR) cor-
responding to the route PSR, we have

D(x, p) + D(x, P1) ≤ Tc − L(PSR)

≤ Tc − minPSR∈S(L(PSR))
(5)

The right side of the above inequality has the same
value as that of the current value of Tv. It directly yields
that D(x, p) ≤ Tv − D(x, P1) and subsequently, we have
D(x, p) < Tv. ⊓⊔

Lemma 1 shows that any ellipse E(p, PSR) is com-
pletely inside the circular range of Q1. Now, as Range

(Q2) is the union of all ellipses E(p, PSR) corresponding
to all the partial SRs in S, it can be concluded that it is
entirely inside Range(Q1).

Note that at each iteration, LORD builds a new route
using only the points in the intersection of Range(Q1)

and Range(Q2). Given Lemma 1, this intersection is the
same as Range(Q2). Hence, the algorithm must only
consider the points which are within the range of Q2

from p, to be added to the partial SRs in S.
3.2.2.2 R-tree friendly LORD Recall that our goal is

to transform the threshold values utilized by LORD to
a single range query that can be performed efficiently
using an R-tree index structure. Then, to retrieve the
points in the specific range, we need to traverse the

Fig. 7 General range query using an R-tree

R-tree from its root down to the leaves, visit the
intermediate nodes, extract the child nodes of only those
that intersect with the given range and report the points
that are inside that range. Figure 7 shows the pseudo-
code of a general range query processing algorithm on
R-tree that we employ.

In Sect. 3.2.2, we showed that the two range que-
ries Q1 and Q2 employed by LORD can be reduced to
only one query as Q2 is entirely inside Q1. However,
as Fig. 6 illustrates, the range specified by Q2 (union of
the ellipses) is a complex parameterized curved shape.
This range cannot be efficiently handled by the R-tree
range query algorithm of Fig. 7 as computing its inter-
section with a rectangular node requires a complicated
expensive operation. To make this range simpler (i.e.,
rectangular), we employ its minimum bounding box
(MBR(Q2)) as shown in Fig. 6. However, MBR(Q2) is
no longer inside the range of Q1. Therefore, our R-tree
version of LORD must use the intersection of MBR(Q2)

and Range(Q1) in its single range query to examine the
points in UMi ’s.

Now that we have identified the range queries used
to select the points in LORD and studied how they
can be evaluated together using an R-tree, we propose
R-LORD, the R-tree version of LORD. Figure 8 shows
the pseudo-code of R-LORD. The only difference be-
tween R-LORD and LORD is that R-LORD incorpo-
rates a single R-tree implementation of the two range
queries of LORD in its iterations. First, it initializes
Range(Q1) to a circle with the radius Tv =L(p, Rg(p, M))

centered at p. The range MBR(Q2) is also initialized to
the minimum bounding box of the entire space of points.

During each iteration, R-LORD traverses the entire
R-tree starting from the root down to the data points.
It should extract only those nodes that are inside the
intersection of Range(Q1) and MBR(Q2) and prune the
others. Therefore, for each visited node N, we first check
whether N (i.e., MBR(N)) intersects with Range(Q1).
As this range is a circle centered at p, we utilize the
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Fig. 8 Pseudo-code of the R-LORD algorithm

function mindist(N, p) which gives a lower bound on the
smallest distance between the point p and any point in
the subtree of node N. Any R-tree node N with mindist

(N, p) greater than radius of Range(Q1) (i.e., threshold
Tv) does not intersect with Range(Q1) and should be
pruned.

For any node N intersecting with Range(Q1), we
check whether N intersects with MBR(Q2) too. This is
an easy intersection check against two rectangles. Now, if
an intermediate or leaf node passes both checks, its chil-
dren are added to the list of nodes/points to be visited.
Otherwise, the node is discarded which prunes all the
nodes/points in its corresponding subtree. We treat the
visited data points similarly. The only difference is that
any point that passes the above checks (i.e., is in both
ranges) creates a new PSR (Rmin). The minimum bound-
ing box of its corresponding ellipse E(p, Rmin) also up-
dates MBR(Q2) for the next iteration (i.e., B in Fig. 8).
At the end of each iteration, we update MBR(Q2) to
B, the minimum bounding box of the current partial
sequenced routes. This is simply the union of the MBRs
of all ellipses corresponding to the newly built partial
routes.

3.2.3 Correctness

We show that LORD and R-LORD both correctly
answer OSR queries. As R-LORD is only a specializa-
tion of LORD for R-tree, we only prove the correctness
of LORD which also validates R-LORD.

Lemma 2 For a given starting point p and sequence M,

LORD accurately finds the optimal sequence route

Q(p, M).

Proof We show that LORD examines all the routes eli-
gible to be the optimal route. First, for the optimal route
L(p, Q(p, M)) is not greater than L(p, Rg(p, M)). The ini-
tialization step of LORD guarantees that LORD starts
by examining only the routes R that follow M and their
L(p, R) are not greater than that of the greedy route (line
3 in Fig. 4). Second, during its iterations, LORD uses
Property 1 to prune the routes R with L(p, R) greater
than L(p, Rg(p, M)) (line 12). Third, LORD utilizes the
unique property of the optimal sequenced route Prop-
erty 3 to examine only those routes that exhibit this
property (line 14). Finally, LORD returns the exam-
ined route R with minimum L(p, R) which is the optimal
route by definition. ⊓⊔

3.3 OSR in metric space

The previous proposed solutions for OSR queries (dis-
cussed in Sects. 3.2.1 and 3.2.2), although efficient in vec-
tor spaces, are impractical or inefficient for a sequence
M in a metric space (road networks). Even though both
EDJ and LORD can be applied to both vector and met-
ric spaces, their extensive usage of the D(·, ·) function
renders them inefficient for metric spaces where the dis-
tance metric is usually a computationally complex func-
tion. When applied on road networks, both EDJ and
LORD require significant number of distance compu-
tations, each of them corresponds to finding a shortest
path in the road network. This makes EDJ and LORD
infeasible for road networks. Likewise, R-LORD can
only be applied to vector spaces since it is based on
utilizing R-tree index structure.

Road networks (or general spatial networks) can be
modeled as weighted graphs where the intersections are
represented by nodes of the graph and roads are repre-
sented by the edges connecting the nodes. The weights
can be the distances of the nodes or they can be the time
it takes to travel between the nodes (representing short-
est times). The distance between any two points on the
nodes or edges of the graph is the length of the shortest
path connecting them via the graph edges. Therefore,
the triangle inequality obviously holds for this distance
function. Although the triangle inequality is the only
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Fig. 9 Pseudo-code of the PNE algorithm for a metric space

requirement of the model used by our proposed algo-
rithm, throughout the paper we assume that the graph
model of the road network is undirected so the distance
function is symmetric.

In this section, we describe our proposed algorithm,
progressive neighbor exploration (PNE), to address
OSR queries in metric spaces for arbitrary values of
M. PNE uses efficient fast nearest neighbor algorithms
such as INE [11] or VN3 [9] utilized for road network
databases to replace the extensive use of distance com-
putation operations in LORD. It utilizes the progressive-
ness of these algorithms to efficiently build candidate
sequenced routes and refine them. Similar to EDJ and
LORD, PNE addresses OSR in both vector and metric
spaces. However, it is suitable for the spaces where the
computation of the distance metric is very expensive.
Notice that PNE uses the same road network model
specified by its underlying nearest neighbor algorithm.

Figure 9 shows the pseudo-code of the PNE algo-
rithm. Unlike LORD, the idea behind PNE is to incre-
mentally create the set of candidate routes for Q(p, M)

in the same sequence as M, i.e., from p toward UMm . This
is achieved through an iterative process in which we start
by examining the nearest neighbor to p in UM1 , gener-
ating partial SR from p to this neighbor, and storing the
candidate route in a heap based on its length. At each
subsequent iteration of PNE, a partial SR (e.g., PSR =

(P1 , P2 , . . . , P
|PSR|

)) from top of the heap is fetched and
examined as follows.

1. If |PSR| = m, meaning that the number of nodes
in the partial SR is equal to the number of items in
M and hence PSR is a candidate SR that follows M,
the PSR is selected as the optimal route for Q(p, M)

since it also has the shortest length.
2. If |PSR| < m:

(a) First the last point in PSR, P
|PSR|

, (which
belongs to UM|PSR|

) is extracted and its next near-
est neighbor in UM|PSR|+1 , P

|PSR|+1 , is found.2 This
will guarantee that (a) the sequence of the points
in PSR always follows sequence specified in M,
and (b) the points that are closer to P

|PSR|
and

hence may potentially generate smaller routes
are examined first. The fetched PSR is then
updated to include P

|PSR|+1 and is put back in
to the heap.

(b) We then find the next nearest neighbor in UM|PSR|

to P
|PSR|−1 , P′

|PSR|
, generate a new partial SR,

PSR′ = (P1 , P2 , . . . , P
|PSR|−1 , P′

|PSR|
), and place the

new route in to the heap. This is because once
the point P

|PSR|
, which we can assume is the

k-th nearest point in UM|PSR|
to P

|PSR|−1 , is chosen
in step (a) above, the (k + 1)-st nearest point in
UM|PSR|

to P
|PSR|−1 (e.g., P′

|PSR|
) is the only next

point that may generate a shorter route and
hence, must be examined. If |PSR| = 1, we find
the next nearest point in UM1 to p.

We describe PNE in more details using the example of
Sect. 1.1. Recall that our OSR query was to drive toward
a shopping center, a restaurant, and then a theater (i.e.,
M = (2, 1, 3) and |M| = m = 3). Figure 2 depicts the
values stored in the heap in each step of the algorithm.
In step 1, the first nearest si to p, s2, is found and the first
partial SR along with its distance, (s2 : 2), is generated
and placed in to the heap. In step 2, first (s2 : 2) is fetched
from the heap. Since for this route |PSR| < 3, the above
steps 2(a) and 2(b) are performed. More specifically, first
the next nearest ri to s2, r2, is found; the partial SR is
updated by adding r2 to it; and is placed back into the
heap. Second, the next nearest si to p, s1, is found and is
placed in to the heap. Similarly, this process is repeated
until the route on top of the heap follows the sequence
M (i.e., (s1, r1, t1) in step 13). Note that we only keep one
candidate SR (i.e., route with m points) in the heap. That

2 Assume the points in Ui can be ranked based on the increasing
distance from a point p and ties are broken for the points with
the same distance (e.g., we use the direction of points considering
p to break the tie). Although we assume that the underlying NN
algorithm can track the nearest neighbors of any query point per
user’s request, one can easily modify an incremental NN algorithm
such as VN3 [9] to support this extension.
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Table 2 PNE for the example of Fig. 1

Step Heap contents (partial candidate route R : L(p, R) )

1 (s2 : 2)

2 (s1 : 3), (s2, r2 : 4)

3 (s2, r2 : 4), (s3 : 4), (s1, r2 : 6)

4 (s3 : 4), (s2, r3 : 5), (s1, r2 : 6), (s2, r2, t2 : 15)

5 (s2, r3 : 5), (s4 : 5), (s1, r2 : 6), (s3, r2 : 6)

(s2, r2, t2 : 15)

6 (s4 : 5), (s1, r2 : 6), (s3, r2 : 6), (s2, r1 : 12)

(s2, r3, t3 : 14), (s2, r2, t2 : 15)

7 (s1, r2 : 6), (s3, r2 : 6), (s4, r3 : 11), (s2, r1 : 12)

(s2, r3, t3 : 14)

8 (s3, r2 : 6), (s1, r3 : 9), (s4, r3 : 11), (s2, r1 : 12)

(s2, r3, t3 : 14), (s1, r2, t2 : 17)

9 (s1, r3 : 9), (s3, r3 : 9), (s4, r3 : 11), (s2, r1 : 12)

(s2, r3, t3 : 14), (s3, r2, t2 : 17)

10 (s3, r3 : 9), (s1, r1 : 10), (s4, r3 : 11), (s2, r1 : 12)

(s2, r3, t3 : 14), (s1, r3, t3 : 18)

11 (s1, r1 : 10), (s4, r3 : 11), (s2, r1 : 12), (s3, r1 : 12)

(s2, r3, t3 : 14), (s3, r3, t3 : 18)

12 (s4, r3 : 11), (s2, r1 : 12), (s3, r1 : 12), (s1, r1, t1 : 12)

(s2, r3, t3 : 14)

13 (s2, r1 : 12), (s3, r1 : 12), (s1, r1, t1 : 12)

(s4, r3, t3 : 20)

is, if during step 2(a) a route with m points is generated,
it is only added to the heap if there is no other candidate
SR with a shorter length in the heap. Moreover, after a
candidate SR is added to the heap, any other SR with
longer length will be discarded. For example, in step 6,
adding the route (s2, r3, t3) with the length of 14 to the
heap will result in discarding the route (s2, r2, t2) with the
length of 15 from the heap (crossed out in the figure).
However, by keeping k routes in the heap and contin-
uing the algorithm until k routes are fetched from the
heap, we can easily address a variation of OSR where k

routes with the minimum total distances are requested.
The only requirement for PNE is a nearest neigh-

bor approach that can progressively generate the neigh-
bors (i.e., a distance browsing algorithm [6]). Hence,
by employing an approach similar to INE [11] or our
VN3 [9], which are explicitly designed for metric spaces,
PNE can address OSR queries in metric spaces. In the-
ory, PNE can work for vector spaces in a similar way;
however, it is inefficient for these spaces where dis-
tance computation is not expensive. The reason is that
PNE explores the candidate routes from the starting
point which may result in an exhaustive search. Instead,
R-LORD optimizes this search by building the routes in
the reverse sequence utilizing the R-tree index structure.

3.3.1 Correctness

We prove that PNE correctly answers OSR queries in
metric spaces. Throughout the proof, we use Pfx(M, n) =

(M1, . . . , Mn) where 1 ≤ n ≤ |M| to denote the
prefix sequence of sequence M with size n. We also use
Pfx(R, n) = (P1, . . . , Pn) for route R = (P1, . . . , Pr) to
refer to the prefix route of R with size n. Given a query
Q(p, M), we use partial candidate route (PC route) to
refer to any route R that follows a prefix sequence of M

and for which we have L(p, R) ≤ L(p, Q(p, M)).
PNE starts generating and examining all candidate

routes for the given query from p towards the last point
in UMm . While generating route R = (P1, . . . , Pm), PNE
stops generating R when for one of R’s prefix routes
Pfx(R, n) we have L(p, Pfx(R, n)) > L(p, Rmin) where
Rmin is the best candidate route built so far. The reason
is that any candidate route built by appending more
points to this prefix route cannot be the optimal route.
The following lemma shows that PNE examines all other
routes for which the above inequality does not hold.

Lemma 3 For a given OSR query Q(p, M), PNE exam-

ines all Q’s partial candidate routes.

Proof The proof is by induction on n, the size of the
partial candidate routes. First, for n = 1 we show that
PNE examines all PC routes R that follow the sequence
Pfx(M, 1) = (M1). That is, it generates all routes (q) for
which q ∈ UM1 and D(p, q) ≤ L(p, Q(p, M)). The ini-
tialization step of PNE (line 3 in Fig. 9) generates the
route corresponding to the first closest point to p in UM1 .
Whenever PNE removes the route corresponding to the
k-th closest point to p in UM1 from the heap H, it gener-
ates the route corresponding to p’s k+1-th closest point
and adds it to H (lines 16–18). Notice that there is always
an iteration during which the former route is at the top
of H as long as it is not longer than any candidate route
which is the assumption of the lemma. Therefore, all PC
routes of size one that follow Pfx(M, 1) are examined by
PNE.

Now, assume that PNE examines all PC routes that
follow Pfx(M, n). Assume that the PC route R′ = (P1,
. . . , Pn+1) follows Pfx(M, n + 1). We show that PNE
examines R′. It is clear that the route R′′ = Pfx(R′, n)

is a PC route that follows Pfx(M, n) and hence is exam-
ined by PNE. Assume that Pn+1 is the k-th closest point
to Pn in UMn+1 . When PNE removes R′′ = (P1, . . . , Pn)

from the heap H, it generates the route (P1, . . . , Pn, P′)

in which P′ is the closest point to p in UM1 (lines 9–11).
During subsequent iterations, this route is replaced with
the routes (P1, . . . , Pn, Pn+1) in which Pn+1 is the k-th
closest point to Pn. Therefore, PNE examines the PC
route R′. ⊓⊔

Lemma 3 shows that PNE progressively searches the
entire space of candidate sequenced routes, prunes those
that cannot be optimal as soon as it identifies them, and
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Table 3 Notations used in the complexity analysis

Symbol Meaning

N Total number of points in all UMi ’s where 1 ≤ i ≤ |M|

δ Expected distance between any two points
Cx Expected computation cost of algorithm x

Mx Expected workspace requirement of algorithm x

(i.e., number of partial routes maintained)
NA(i) Expected number of R-tree nodes accessed in

the ith iteration of R-LORD
PNAi Probability of accessing an R-tree node at level i

Npne(i) The number of partial routes that PNE generates for
a sequence of size i

CNN Expected computation cost of a single
first (or next) nearest neighbor query

finally returns the optimal route. This proves the cor-
rectness of PNE.

Lemma 4 For a given starting point p and sequence M,

PNE accurately finds the optimal sequence route Q(p, M).

4 Complexity analysis

In this section we study the complexity of our proposed
algorithms. For each algorithm we compute the expected
number of distance computations and amount of work-
space needed to answer an OSR query.

Without loss of generality, we assume that the points
in UMi ’s are uniformly distributed in a unit square uni-
verse. The number of these points is N =

∑m
i=1 |UMi |

where m = |M|. We also assume that the cardinalities
of the UMi ’s are equal (i.e., |UMi | = N

m ). Therefore, we
have

1. The expected distance between any pair of points

each from a different UMi set is δ = 1/

√

2N
m .

2. The expected number of points in UMi which are
closer to the starting point p than threshold value
Tv is πT2

v
N
m [13].

3. The expected L(p, Rg) of the greedy route Rg is mδ.

Considering the above values, the number of dis-
tance computations of the brute-first search algorithm is
Cbfs = m

∏m
i=1

N
m = O

(

Nm

mm−1

)

. Similarly, in the Dijkstra-
based solution of Sect. 3.1, the graph G has |V| = N + 1
vertices and |E| = O

(

N2

m

)

edges. Therefore, the com-

plexity of this solution is Cedj = O
(

N3

m2 log(N)
)

.

4.1 LORD

We study the time complexity of LORD by enum-
erating the distance computation operations in its

pseudo-code given in Fig. 4. We assume that LORD
stores the length of all partial SRs built during its iter-
ations. Therefore, it does not need any distance compu-
tation to find the length of those routes (i.e., L(p, R) in
line 12 in Fig. 4). The initialization step of LORD uses
the threshold value Tv equal to the length of greedy
route (i.e., mδ) to select the points from UMm (lines 3–
4). This step requires |UMm | = N

m distance computations
as the entire set UMm should be examined. Hence, the
expected number of partial routes at the end of this step
is E[|S|] = πm2δ2 N

m as we have E[Tv] = mδ. Table 4
lists a summary of the total cost of initialization step of
LORD and those of its iterations.

The first iteration computes N
m distances between the

points of UMm−1 and p considering the current thresh-
old (lines 8–9). The expected number of points which
pass this check is πE[Tv]

2 N
m . It also performs distance

computations between the points resulted from the first
check and the head of PSRs (lines 11–12). The expected
number of these computations is E[|S|]πE[Tv]

2 N
m where

E[|S|] is the expected number of current PSRs. We as-
sume that all of the points pass the second check in
line 12 so the expected number of PSRs is updated to
πE[Tv]

2 N
m at the end of this iteration. Meanwhile, the

threshold value is decreased to (m − 1)δ (line 16). Sum-
marizing all above, the cost of the first iteration will be
N
m +π2m4δ4 N2

m2 . The cost of other iterations is computed
similarly (see Table 4). Finally, the expected computa-
tion cost of LORD is calculated as

Clord = N +
π2

4

⎛

⎝m4 +

m−1
∑

i=2

i2(i + 1)2

⎞

⎠ = O(N + m5)

(6)

Now, we calculate the expected amount of workspace
required by LORD as the expected number of partial
routes maintained in the set S during LORD’s iterations.
This value is the average of E[|S|] values in Table 4

Mlord =
π

2

(

m +

m
∑

i=2

i2

m

)

= O(m2) (7)

4.2 R-LORD

The workspace requirement of R-LORD is the same
as that of LORD given in Eq. 7 (i.e., Mr-lord = Mlord).
The reason is that both algorithms use the same points to
build the partial routes during their iterations. However,
as each algorithm uses a different approach to select
these points from their corresponding sets, their time
complexities are different. LORD first scans the entire
set UMm to select the points which are closer to p than Tv

(lines 3–4 in Fig. 4). The complexity of this scan is m× N
m
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Table 4 Cost analysis of LORD

E[Tv] Cost of (workspace) Total cost
lines 3–4 E[|S|] = πE[Tv]

2 N
m

Initialization mδ N
m πm2δ2 N

m
N
m

Cost of Cost of
Iteration E[Tv] lines 8–9 lines 11–12 E[|S|] = πE[Tv]

2 N
m Total cost

i = m − 1 mδ N
m π2m4δ4 N

m πm2δ2 N
m

N
m + π2m4δ4 N2

m2

i = m − 2 (m − 1)δ N
m π2m2(m − 1)2δ4 N

m π(m − 1)2δ2 N
m

N
m + π2m2(m − 1)2δ4 N2

m2

– – – – – –
i = m − j − 1 (m − j)δ N

m π2(m − j + 1)2(m − j)2δ4 N
m π(m − j)2δ2 N

m
N
m + π2(m − j + 1)2(m − j)2δ4 N2

m2

– – – – – –
i = 1 δ N

m π23222δ4 N
m π22δ2 N

m
N
m + π22232δ4 N2

m2

LORD π
2 (m +

∑m
i=2

i2

m ) N + π2

4 (m4 +
∑m−1

i=2 i2(i + 1)2)

(= N in Eq. 6). However, R-LORD utilizes its single
range query to perform this selection.3 We compute the
complexity of this range query.

R-LORD traverses R-tree m times from root node
down to the leaves. For each accessed node, it performs
an O(1) mindist computation (line 23 in Fig. 8). There-
fore, the complexity of each R-tree traversal is the same
as the number of node accesses during this traversal.
Following the cost mode of Tao et al. [13], the expected
number of node accesses is given as

NA =

h−1
∑

i=0

(ni · PNAi) (8)

where h is the height of the R-tree, PNAi is the probabil-
ity of accessing a node at level i, and ni is the
total number of nodes at level i. Tao et al. give estima-
tions of h and ni based on the total number of points N,
the maximum node capacity and the average fan-out of
each node. To estimate PNAi for each traversal, we only
need to identify the search region of our traversal proce-
dures. The search regions of R-LORD is the union of the
ranges used in each traversal. We assume that the range
used by an R-LORD’s iteration is approximately the
same as Range(Q1). Therefore, each R-LORD’s iter-
ation uses range D(p, x) ≤ E[Tv] to select the point
x. During LORD’s analysis in Sect. 4.1, we calculated
the value of E[Tv] for each LORD’s iteration which is
the same for the corresponding iteration (see Table 4).
The first iteration uses E[Tv] = mδ and all other subse-
quent iterations 1 < i ≤ m use E[Tv] = (m−i+2)δ in R-
LORD. Consequently, the search region of each R-tree

3 We assume that both algorithms use the same range. Note
that this is a conservative assumption for the general case where
R-LORD uses a combination of the circular range Range(Q1) and
the rectangular range MBR(Q2).

traversal is clearly identified. Once the search region is
found, one can straightforwardly derive the probability
PNAi from the cost model given in [13], hence the details
are omitted.

We use NA(i) to denote the expected number of node
accesses during R-LORD’s iteration i. Therefore, the ex-
pected total number of R-LORD’s node accesses which
is also R-LORD’s expected number of I/Os is calculated
as

IOr-lord =

m
∑

i=1

NA(i) (9)

While the points within the range of each iteration are
selected, both LORD and R-LORD perform the same
set of distance computations for each selected point
(lines 11–12 in Fig. 4 and lines 15–16 in Fig. 8). Therefore,
we include the same number of computation operations
calculated during the analysis of LORD in the time com-
plexity of R-LORD (i.e., Clord − N = O(m5)). Hence,
the expected time complexity of R-LORD follows:

Cr-lord =

m
∑

i=1

NA(i) +
π2

4

⎛

⎝m4 +

m−1
∑

i=2

i2(i + 1)2

⎞

⎠

=

m
∑

i=1

NA(i) + O(m5) (10)

where NA(i), the expected number of nodes accessed in
iteration i, is easily derived from the cost model of [13].

4.3 PNE

PNE completely relies on the efficiency of the near-
est neighbor algorithm in the metric space. Therefore,
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i+1

i

m

p

x

Fig. 10 The locus of all points x ∈ UM1 with which a PC route
can start

it extensively performs NN queries on the database.4

Hence, the time complexity of PNE can be computed as
the number of NN queries issued by PNE. We assume
that PNE only generates the PC routes. That is, it gen-
erates only the routes R that follow a prefix sequence
Pfx(M, n) for which we have L(p, R) ≤ L(p, Q(p, M)).
Now, as PNE issues a single NN query to generate each
PC route, we count the expected number of PC routes
added in to PNE’s heap to calculate PNE’s time com-
plexity. Note that in general case PNE may generate
non-PC routes as well.

Assume that Npne(m) is the number of PC routes
that PNE generates for sequence M (m = |M|). Note
that in the average case, Npne(m) only depends on the
size of the sequence M (i.e., m). Also, assume that the
E[L(p, Q(p, M))], the expected value of L(p, Q(p, M)),
is mδ. Therefore, we need to count all the PC routes R

for which we have L(p, R) ≤ mδ. Figure 10 illustrates
the starting point p and the circle Cm centered at p with
radius mδ. Corresponding to each point x ∈ UM1 which
is inside or on the circle Cm (i.e., D(p, x) ≤ mδ), PNE
generates PC route (x). Therefore, for sequence M, the
number of PC routes with size one generated by PNE is
πm2δ2 N

m (i.e., π
2 m2).

Now, we need to count the PC routes with more
than one point. To follow the sequence M or any of
its prefix sequences, each of these routes start with a
point x ∈ UM1 inside or on circle Cm. For each point
x, we recursively calculate the number of PC routes of
query Q(p, M) which start with x. Figure 10 divides the
points such as x into m groups using circles Ci. Each
circle Ci shown in the figure is centered at p with radius
iδ. The circle C0 is an empty circle. Each group i in-
cludes all the points x between the two circles Ci−1 and

4 The main objective of PNE is to reduce the number of partial
routes maintained during its execution. Other efficiency issues are
handled by the NN approach.

Ci ((i − 1)δ ≤ D(p, x) < iδ). We can assume that all the
points of group i are almost within the same distance iδ

from p. For each point x of group i, the number of PC
routes of query Q(p, M) which start with x is the same
as the number of PC routes of query Q(x, M′) where
|M′| = m − i (see Fig. 10). Therefore, the number of PC
routes which start with x is Npne(m− i). Furthermore, no
PC route with size more than one starts with the points
in group m. The reason is that p’s distance to any point
x in this group is already mδ which makes any route that
starts with x longer that mδ.

The expected number of points in group i is A(i)N
m

where A(i) = π(2i − 1)δ2 is the area of the space includ-
ing group i (i.e., the space between Ci−1 and Ci). Hence,
the number of PC routes which start with the points
in group i is calculated as π(2i − 1)δ2 N

m Npne(m − i) =
π
2 (2i − 1)Npne(m − i). Summing up the number of PC
routes of size one and those generated by each group i,
we get the following:

Npne(m) =
π

2
m2 +

m−1
∑

i=1

π

2
(2i − 1)Npne(m − i) (11)

Equation 11 shows the expected number of all PC routes
generated and examined by PNE for a given query
Q(p, M). Thus, the expected time complexity of PNE
for the OSR query Q(p, M) will be

Cpne = CNN × Npne(|M|) (12)

where CNN is the cost of performing a single first (or
next) nearest neighbor query. This cost depends on the
incremental nearest neighbor approach used by PNE.
The expected amount of workspace required by PNE is
also equal to the expected number of PC routes gener-
ated. Therefore, this leads to Mpne = Npne(|M|).

5 Variations of OSR queries

In this section, we address two variations of OSR que-
ries. The first variation is when a destination point also
exists, and the second variation is when k optimal routes
are requested.

5.1 Directed-OSR

Assume that the user asks for an optimal sequenced
route that follows the given sequence which starts from
a source and ends in a given destination. A special case
of this query is where the source and destination points
are the same, i.e., the user intends to return to her
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starting location. We start by formally defining this type
of query as:

Definition 7 Given source point p, destination point q

and a sequence M, the Directed-OSR query is defined as

finding R = (P1, . . . , Pm), a sequenced route that follows

M, where the following function G is minimum over all

sequence routes that follow M:

G(p, R, q) = D(p, P1) + L(R) + D(Pm, q) (13)

The above equation is similar to L(p, R) + D(Pm, q).
We show that this new form of OSR can easily be
reduced to the general form of OSR.

We define a new set Un+1 = {q}. Including this new
set in the set of Ui’s makes M′ = (M1, . . . , Mm, n + 1) a
valid sequence in the new setting of the problem. Now
if we assume that Q(p, M′) = R′ = (P′

1, . . . , P′
m+1), we

know that P′
m+1 will be q as q is the only member of

Un+1. Moreover, L(p, R′) is minimum over all candi-
date routes that follow M′. Recall that the length of the
route R′

p = p ⊕ R′ (i.e., L(p, R′)) is equal to D(p, P′
1) +

L(R′). We define the route R as (P′
1, . . . , P′

m) by exclud-
ing q from R′. It is clear that L(p, R′) is the same as
D(p, P1) + L(R) + D(Pm, q). By comparing the latter
expression with G(p, R, q) of Eq. 13, we conclude that
R is the answer to the directed-OSR query given the
source p, destination q, and sequence M.

Since we showed that directed-OSR can be reduced
to a general OSR problem, we are able to use our LORD
(or R-LORD) algorithm to answer this query. Specifi-
cally, the answer to directed-OSR given the source p,
destination q, and sequence M is the same as the answer
to OSR query Q(p, M′) excluding the point q, where
Un+1 = {q} and M′ = (M1, . . . , Mm, n + 1). Although
R-LORD can similarly solve directed-OSR, we can fur-
ther optimize it for directed-OSR. This is achieved by
neglecting the first range query Q1. The reason is that
the only point in this range is q. Therefore, the set S can
be directly initialized to {(q)}.

5.2 k-OSR

The second variation of OSR is when the user asks for
the k routes with the minimum total distances to its
location. We define this as k-OSR query. We can easily
address this type of query using both our R-LORD and
PNE approaches.

Recall that in PNE, we maintain a heap of the par-
tially completed sequenced routes and only keep one
candidate sequenced route (or in other words, a route
that follows M), that is the one that has the minimum
total length. By modifying this policy to maintain k can-
didate SRs in the heap and continuing the iterations

until k candidate SRs are fetched from the heap, PNE
can also address k-OSR queries.

6 Performance evaluation

We conducted several experiments to evaluate the per-
formance of our proposed approaches. First, we com-
pared the query response time of R-LORD with those of
LORD and the Dijkstra-based solution. Moreover, we
evaluated R-LORD with respect to: (1) disk I/O acces-
ses incurred by its underlying R-tree index structure,
(2) effectiveness of its range query, and (3) its overall
query response time. Finally, we evaluated the perfor-
mance of PNE with respect to: (1) its heap size (i.e.,
number of route in the heap), (2) the time required to
maintain the heap, (3) the number of NN queries issued
for each point set, and (4) its overall query response
time using a real road network. We evaluated all our
proposed approaches by investigating the effect of the
following parameters on their performances: (1) size
of sequence M in Q(p, M) (i.e., number of points in
the optimal route), (2) cardinality of the datasets (i.e.,
∑n

i=1 |Ui|), and (3) density and distribution of the data-
sets.

We used one real and two synthetic datasets for our
experiments. The real data is obtained from the U.S.
Geological Survey (USGS)5 and consists of the loca-
tions of different businesses (e.g., schools) in the entire
country. The synthetic datasets consist of randomly gen-
erated set of points with uniform and Zipf distributions.
Table 5 shows the characteristics of the datasets. The
real dataset has a total of 950,000 points. However, in
our experiments, we randomly selected sets of 40, 70,
250 and 500 K points from this dataset. The cardinal-
ity of each synthetic dataset is 480,000. Each dataset
is indexed by an R*-tree index with the page size of
1 K bytes and the maximum of 50 entries in each node
(capacity of the node). The experiments were performed
on a DELL Precision 470 with Xeon 3.2 GHz processor
and 3 GB of RAM. We ran 1,000 OSR queries initiated
from randomly selected starting points and reported the
average of the results.

In the first set of experiments, we compared the per-
formance of R-LORD, LORD and the Dijkstra-based
solution. Note that the weighted directed graph G (see
Sect. 3.1) for even a small dataset is a substantially
large graph. For example, for a real dataset with 40,000
points and |M| = 3, G has 22,400 nodes and 124 mil-
lion edges. This will result in substantially large query
response times for the naive Dijkstra-based solution

5 http://www.geonames.usgs.gov/.
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Table 5 Datasets used in our experiments

USGS Synthetic

Points Size Points Size

Hospital 5,314 P1 (uniform) 32,000
Building 15,127 P2 (uniform) 64,000
Summit 69,498 P3 (uniform) 128,000
Cemetery 109,557 P4 (uniform) 256,000
Church 127,949 P5 (Zipf) 32,000
School 139,523 P6 (Zipf) 64,000
Populated place 167,203 P7 (Zipf) 128,000
Institution 319,751 P8 (Zipf) 256,000
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Fig. 11 Query response time versus sequence size |M|

(e.g., 40 s for the 40 K example). Therefore, we do not
report the query and workspace costs of this expensive
approach. Instead, we compare R-LORD and LORD’s
performances with that of enhanced Dijsktra-based ap-
proach in which the length of the greedy route is used to
reduce the number of candidate points (see Sect. 3.1).

Figure 11 shows the query response time for
R-LORD, LORD and the enhanced Dijkstra-based
approach (EDJ) when the number of points in opti-
mal route (i.e., |M|) varies from 3 to 12. While the figure
depicts the results from the experiment on 250 K USGS
dataset, the trend is the same with those of all of our
datasets with different cardinalities and distributions.
As shown in the figure, both EDJ and LORD answer an
OSR query very quickly for small values of |M| (less than
100 ms for |M| = 3). However, R-LORD outperforms
both approaches for all values of |M|. The figure also
shows that as the value of |M| increases, the response
time of the EDJ increases with a rate that is substantially
more than that of LORD and R-LORD, confirming the
impracticality of the Dijkstra-based solution for OSR on
large graphs and the efficiency of LORD. Meanwhile,
it depicts the performance gain due to utilizing R-tree

in R-LORD. Due to the superiority of R-LORD over
LORD, for the rest of the experiments, we only report
the results for R-LORD.

In the second set of experiments, we varied the size of
M and measured the performance of R-LORD.
Figure 12a, b, c depict the performance of R-LORD on
a randomly selected real dataset with 250 K points when
the size of M varies from 3 to 12. For this dataset, 7, 291
nodes are generated in R*-tree. Figure 12a illustrates
the percentage of R*-tree nodes that were accessed by
R-LORD. As shown in the figure, between 1% (for small
values of |M|) to 11% (for large values of |M|) were
accessed by R-LORD. The figure also shows that the
rate in which the number of accessed nodes increases is
slightly more than linear. That is, while the percentage
of accessed nodes increases from 1 to 2% (i.e., 2 times)
when |M| increases from 3 to 6, it increases from 2 to
11% (i.e., 5.5 times) when M increases from 6 to 12.
This is because for larger values of |M|, more nodes are
examined against Q2 and mindist() function. Figure 12b
shows the total query response time of R-LORD for the
same dataset. As shown in the figure, even for a large
value of 12 for |M|, R-LORD can answer the query in
less than 0.8 s. Moreover, it shows that the rate of in-
crease in the processing time closely follows the rate
of increase in accessed nodes, indicating that traversing
R*-tree is the major factor in R-LORD.

Figure 12c shows the performance of the range que-
ries of R-LORD. The bars in the figure indicate the
required workspace of R-LORD (WS) as the maximum
number of points that were stored in the partial SRs
of S (see Sect. 3.2.2). As shown in the figure, the num-
ber of points filtered in by the range queries are sub-
stantially less than the cardinality of the points (e.g.,
for |M| = 6, only 110 points out of 250,000 are se-
lected). This shows that the range queries of R-LORD
are extremely effective. The figure also compares the
effectiveness of the range queries of R-LORD. It shows
the percentage of reduction in the number of selected
points as compared to the Dijkstra-based approach. In
the later approach the only filter is one simple range
query with a range based on the length of the greedy
sequenced route (L(p, Rg(p, M))). This is shown as verti-
cal lines in the figure, where each line indicates the max-
imum, minimum, and average value of this reduction for
a given M. The figure confirms that our range queries
provide a filter with better selectivity as compared to
the simple range query. For example, for |M| = 6, the
decrease in the size of the candidate points is between
48 and 97.7% with an average of 77.4%. Figure 13a, b,
c shows the result of the same set of experiments for
our first set of synthetic data (i.e., with uniform distri-
bution). This dataset has 250,000 points and generate
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Fig. 12 Query cost versus sequence size |M| (250 K USGS)

6,804 nodes in the R*-tree. The figures show identical
behavior for the synthetic data as compared to the real
dataset. It also shows that the range queries can filter
out up to 99% of the points as compared to the simple
range query with the range equal to L(p, Rg(p, M)).

Figure 14a, b, c shows the results of our third set of
experiments, where we investigated the impact of the
cardinality of the points on the efficiency of R-LORD.
We varied the cardinality of our real dataset from 40 to
500 K and ran OSR queries of sequence size |M| = 6.
Figure 14a shows the percentage of accessed nodes of
R*-tree for different cardinalities of the dataset. As
shown in the figure, the percentage of accessed nodes
in R*-tree decreases as the cardinality of the data in-
creases, indicating that R-LORD can efficiently scale to
large datasets. Moreover, Fig. 14b shows that the pro-
cessing time of R-LORD increases slightly as the car-
dinality of the data increases. For example, the query
response time is 0.09 s for 40,000 points, and it only in-
creases to 0.32 s (i.e., a factor of 3.5) when the number
of points increases by a factor of 12. This verifies the
scalability of R-LORD. Figure 14c shows the perfor-
mance of the range queries for different cardinalities
of the dataset. The figure shows that for a dataset with
70,000 points, only 100 (0.142%) of them are selected as
the result of the range queries. The figure also indicates
that this percentage decreases for larger cardinalities of
data. For example, in the dataset with 500,000 points,
only 110 (0.022%) are selected. Our experiments for the
synthetic data show similar trends but due to lack of
space, we omit the graphs for the synthetic data.

Our next set of experiments were aimed to evalu-
ate the performance of R-LORD when the densities of
the datasets UMi ’s specified by the query sequence M are
different. We used R-LORD to answer five different cat-
egories of queries Q(p, M), each with a different pattern

of change in the density of the datasets. The categories
are

1. LL: The density of points is significantly decreas-
ing from UM1 to UMm . For example, a query for an
optimal route to an institution (i.e., 319,751 points),
then to a church (i.e., 127,949 points) and finally to
a hospital (i.e., 5,314 points) in USGS dataset falls
in this category.

2. LU: There is an 1 < i < |M| (usually i = |M|/2)
where the density is decreasing from UM1 to UMi

and increasing from UMi to UMm (e.g., (church, hos-
pital, school)).

3. MM: The densities of all UMi ’s are almost the same
(e.g., (school, church, school)).

4. UL: There is an 1 < i < |M| where the density is
increasing from UM1 to UMi and decreasing from
UMi to UMm (e.g., (church, school, hospital)).

5. UU: The density is significantly increasing from UM1

to UMm (e.g., (hospital, church, institution)).

Figure 15a, b, c illustrates the results of our experi-
ments where M follows the above density distribution
categories. In these experiments, |M| = 6 and the data
consists of 250,000 points selected from USGS dataset.
Figure 15a shows that although the percentage of the
accessed nodes varies for different density categories,
they are still in the range of 1 to 2%. Moreover, the query
response times shown in Fig. 15b indicate that regard-
less of the density of the points, R-LORD answers OSR
queries with almost identical response times. Figure 15c
depicts that although the range queries perform simi-
larly for different density categories, the selectivity of
the range queries for LU and UU is slightly less than
that of LL, MM and UL. The reason for this is that the
last set of points in M (i.e., UMm ), which are selected
first by Q1 (recall that R-LORD constructs the partial
roads from UMm toward UM1 ), are denser and hence,
Q1 selects more number of points to be included in the
PRCs in S. Our experiments for the synthetic data show
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Fig. 13 Query cost versus sequence size |M| (250 K uniform)
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Fig. 14 Query cost versus cardinality, USGS data, (|M| = 6)
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Fig. 15 Query cost versus density, 250 K USGS data, (|M| = 6)

similar trends but due to lack of space, we omit the
graphs for the synthetic data.

We also studied the impact of the distributions of
the datasets on R-LORD by performing R-LORD for
different values of |M| on the two synthetic datasets.
The results showed that R-LORD performs indepen-
dently from the distribution of the datasets; that is, the R-
Tree nodes accessed, the processing time, and the space
reduction were almost identical for the two datasets.

We used the Euclidean distance function together
defined in the vector spaces of our previously described
datasets for PNE experiments measuring heap size, its
maintenance time and number of NN queries. The rea-
son is that PNE’s performance in terms of these fac-
tors is independent from the space/distance. In the next
set of experiments, we evaluated the performance of
PNE by investigating the effect of |M| and the density
of the datasets. Figure 16 depicts the average size of the
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Fig. 16 Evaluation of heap in PNE

heap (i.e., number of routes in the heap) and the time
required by PNE to maintain the heap when the densi-
ties of all UMi ’s are similar (i.e., MM category) and |M|

varies from 3 to 12. Figure 16a shows that the size of
the heap is (almost) a linear function of the size of the
sequence and hence, suggests that PNE scales for larger
values of |M|. Figure 16b shows that although the time
required to maintain the heap increases with |M| (since
the size of heap becomes larger), this time is still less
than 20 ms. Our experiments also showed that this time
is always less than 0.1% of the total processing time and
hence, is negligible as compared to the time required to
perform the NN queries.

In the next set of experiments, we studied the
effect of the changes in the densities of the datasets of
M on PNE. Figure 17 shows the heap size when |M| = 6
and M follows the previously defined distribution cat-
egories. The figure suggests that when the densities of
the UMi ’s are either similar or increasing from UM1 to
UMm (i.e., MM and UU, subsequently), PNE requires a
very small heap (and consequently, has very small heap
maintenance time). However, decrease in the density
of the U’s from UM1 to UMm results in to larger heap
sizes, particularly if the decrease is in the first portion
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Fig. 17 Number of routes in heap versus density (|M| = 6)

Table 6 Number of NN queries issued by PNE (|M| = 6)

Density order Number of NN queries

UM1 UM2 UM3 UM4 UM5 UM6

LL 437 26,403 33,173 12,882 6,048 371
LU 351 16,454 16,473 374 8 3
MM 17 59 58 24 14 5
UL 16 40 109 282 227 30
UU 11 19 15 15 14 4

of M (i.e., categories LL and LU). This indicates that as
opposed to R-LORD, PNE’s performance is sensitive
to the distribution of the densities in M. The intuition
here is that for categories LL and LU, where the first
group of datasets in M (i.e., UM1 , UM2 ,…) are dense
as compared to (UMi , UMi+1 , . . . where i > 1), their dis-
tances to each other are smaller than the distances be-
tween (UMi , UMi+1 , . . .) and hence, PNE must perform
exhaustive search on {UM1 , UM2 , . . .} before examining
{UMm , UMm−1 , . . .}.

Table 6 shows the number of NN queries issued by
PNE on each dataset when |M| = 6. Note that for the
category LU shown in the table, the density decreases
from UM1 to UM3 and then increases from UM4 to UM6 .
The table shows that very large number of NN queries
are performed when the density of the U’s decreases
(i.e., LL and first portion of LU) and further verifies the
intuition described above.

Finally, the last set of experiments focuses on eval-
uating the performance of PNE in a real-world road
network space. Our road network dataset is obtained
from NAVTEQ Inc.,6 used for navigation systems with
GPS devices installed in cars, and represents a network
of approximately 110,000 links and 79,800 nodes of the
road system in the downtown Los Angeles. The point
dataset is a subset of USGS dataset including different

6 http://www.navteq.com/.
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businesses in the same area. We implemented PNE using
our VN3 nearest neighbor approach for road network
spaces [9]. Our experiments show that PNE’s average
query response time for OSR queries on our road net-
work dataset is approximately 7.8 s. This shows that PNE
can efficiently answer a typical OSR query on road net-
work databases. However, as the number of PNE’s NN
queries is very sensitive to the density of the points in
UMi ’s, PNE may require hundreds of seconds for pro-
cessing an OSR query on very sparse point datasets.
This performance is still acceptable as asking for only
sparse locations in an OSR query generally happens in
planing for long trips for which the user can tolerate a
reasonably longer time to find the optimal route .

7 Related work

In this section, we first review the related work in the
area of graph theory. We then provide an overview of
the related studies on variations of the nearest neighbor
queries in spatial databases.

The only similarity between traveling salesman prob-
lem (TSP) and OSR is that both search for a route of
minimum cost in a graph. The general form of TSP was
first studied in the 1930s by Karl Menger in Harvard [2].
The most similar instance of TSP to OSR is sequential
ordering problem (SOP) which sets some precedence
constraints on the route [1]. Each constraint requires
that a node of the graph be visited before some other
node. Although the number of nodes is small in SOP and
general TSP, the unknown traveling sequence makes
them NP-hard. However, OSR dictates a given strict
sequence order of point types where each point must be
selected from a large set per type.

The OSR problem is also related to the problem of
finding shortest path (SP) in directed weighted graphs.
Two classic algorithms for solving SP in main memory
are Dijkstra’s and Bellman-Ford algorithms [4]. How-
ever, for addressing SP on the huge graph G of Sect. 3.1,
an external memory algorithm is required. Hutchinson
et al. [7] propose a tree data structure for answering SP
queries on a planar graph stored in external memory.
Chan at al. [3] describe a disk-based algorithm to find
SP on large network systems. They partition the original
large graph and search for the shortest path by locally
searching in its smaller pieces. While these approaches
eliminate the overheads of loading the huge graph in
main memory, they are not applicable for OSR que-
ries. The reason is that OSR graph’s topology is depen-
dent on the user’s query Q(p, M). Since point p and
sequence M are not known in advance, this graph must
be built on demand as described in Sect. 3.1. Therefore,

if we intend to use an external memory SP approach, we
need to store the graph on disk blocks before process-
ing it. This makes the approach expensive and therefore
impractical.

Numerous algorithms for k-nearest neighbor queries
in spatial databases have been proposed. A majority
of these algorithms are based on utilizing spatial index
structures such as R-tree and usually perform in two fil-
ter and refinement steps. Roussopoulos et al. [12] pres-
ent a branch-and-bound R-tree traversal algorithm that
uses two mindist minmaxdist metrics. Hjaltason et al.
[6] propose an incremental nearest neighbor algorithm
that is based on utilizing an index structure and a priority
queue. Jensen et al. in [8] discuss data models and graph
representations for NN queries in road networks and
provide alternative solutions for it. Papadias et al. [11]
propose a solution for NN queries in network databases
by generating and expanding a search region around a
query point. In our previous work [9], we proposed a
solution for NN queries in road network databases that
is based on utilizing network Voronoi diagrams. Other
variations of k nearest neighbor queries have also been
studied and their solutions are usually motivated by the
solutions of their regular k nearest neighbor queries.

In an independent research, Li et al. [10] studied trip
planning queries (TPQ), a class of queries similar to
our OSR query. With a TPQ, the user specifies a subset
(not a sequence) of location types R and asks for the
optimal route from her starting location to a specified
destination which passes through at least one database
point of each type in R. In particular, TPQ eliminates
the sequence order of OSR to define a new query. Con-
sequently, finding accurate solutions to TPQ becomes
NP-hard as the size of candidate space significantly grows.
The paper proposes several approximation methods to
provide near-optimal answers to TPQs. However, our
proposed solutions to OSR efficiently compute the
exact optimal route. In theory, OSR algorithms are able
to address address TPQ queries. This can be done by
running any OSR algorithm |R|! times, each time using
a permutation of point types in R as the sequence M

and returning the optimal route among all the resulted
routes. This exponentially complex solution is inefficient
in practice. The approximation algorithms of [10] are
designed to handle the exponential growth of the prob-
lem’s search space.

In parallel with our study, Terrovitis et al. [14]
addressed k-stops shortest path problem for spatial da-
tabases. The problem seeks for the optimal path from
a starting location to a given destination which passes
through exactly k intermediate points of the location
database. The k-stops problem is a specialized case of
OSR queries. To be specific, OSR query Q(p, M) reduces
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to a k-stops problem where p is the starting location,
M = (1, . . . , 1), |M| = k, and U1 is the single given point
set representing the location database. The destination
is considered by the variation directed-OSR of the above
OSR query. A major advantage of our OSR approach
over k-stops is that we address solutions to OSR queries
in both metric and vector spaces while [14] only consid-
ers Euclidean space. Our PNE approach can answer K

best optimal routes of OSR in a metric space.

8 Conclusions and future work

We studied the new problem of optimal sequenced route
query in both vector and metric spaces. To tackle the
problem, we first proposed a Dijkstra-based approach
and showed that it is not efficient for large point sets
and/or routes with large number of points. Hence, we
proposed a novel threshold-based algorithm, LORD,
for vector spaces. Subsequently, we proposed R-LORD
which transforms the LORD’s thresholds into a range
query and then utilizes an R-tree index structure to sup-
port OSR queries more efficiently. We conducted an
extensive set of experiments to evaluate R-LORD and
our main observations are

– R-LORD is light in terms of required workspace; as
compared to the Dijkstra-based approach, it always
reduces the required workspace by a factor of (on
average) 55–90%. The maximum of this space reduc-
tion reaches 99.6% for some instances of our exper-
iments.

– R-LORD is efficient in terms of query response time;
it answers an OSR query in a time which increases
with almost a linear rate as the sequence size |M|

increases. Moreover, R-LORD substantially outper-
forms the Dijkstra’s classic algorithm.

– R-LORD is I/O efficient; it accesses at most 10.5%
of the R-tree nodes.

We also proposed PNE, a progressive algorithm for
metric spaces that generates the optimal route from the
starting to the ending point. We showed that PNE per-
forms efficiently, particularly when the distributions of
the datasets of M are either similar, or increasing from
UM1 to UMi . Moreover, we showed that the overhead of
PNE is always negligible as compared to the overhead
of the nearest neighbor approach that it employs.

This paper is our first attempt to tackle the core prob-
lem of OSR and evaluate its base solutions. As part of
our future work, we intend to study other variations of
the OSR query as well as improving our base solutions.

In particular, we plan to extend our definition of OSR
query to include more general precedence constraints
on the points of the optimal route.
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