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Abstract

Naive Bayes is one of the most efficient and effective
inductive learning algorithms for machine learning and
data mining. Its competitive performance in classifica-
tion is surprising, because the conditional independence
assumption on which it is based, is rarely true in real-
world applications. An open question is: what is the
true reason for the surprisingly good performance of
naive Bayes in classification?
In this paper, we propose a novel explanation on the
superb classification performance of naive Bayes. We
show that, essentially, the dependence distribution; i.e.,
how the local dependence of a node distributes in each
class, evenly or unevenly, and how the local dependen-
cies of all nodes work together, consistently (support-
ing a certain classification) or inconsistently (cancel-
ing each other out), plays a crucial role. Therefore,
no matter how strong the dependences among attributes
are, naive Bayes can still be optimal if the dependences
distribute evenly in classes, or if the dependences can-
cel each other out. We propose and prove a sufficient
and necessary conditions for the optimality of naive
Bayes. Further, we investigate the optimality of naive
Bayes under the Gaussian distribution. We present and
prove a sufficient condition for the optimality of naive
Bayes, in which the dependence between attributes do
exist. This provides evidence that dependence among
attributes may cancel out each other. In addition, we
explore when naive Bayes works well.

Naive Bayes and Augmented Naive Bayes
Classification is a fundamental issue in machine learning
and data mining. In classification, the goal of a learning
algorithm is to construct a classifier given a set of train-
ing examples with class labels. Typically, an example E is
represented by a tuple of attribute values (x1, x2, , · · · , xn),
where xi is the value of attribute Xi. Let C represent the
classification variable, and let c be the value of C. In this
paper, we assume that there are only two classes: + (the
positive class) or − (the negative class).

A classifier is a function that assigns a class label to an ex-
ample. From the probability perspective, according to Bayes
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Rule, the probability of an example E = (x1, x2, · · · , xn)
being class c is

p(c|E) =
p(E|c)p(c)

p(E)
.

E is classified as the class C = + if and only if

fb(E) =
p(C = +|E)
p(C = −|E)

≥ 1, (1)

where fb(E) is called a Bayesian classifier.
Assume that all attributes are independent given the value

of the class variable; that is,

p(E|c) = p(x1, x2, · · · , xn|c) =
n∏

i=1

p(xi|c),

the resulting classifier is then:

fnb(E) =
p(C = +)
p(C = −)

n∏
i=1

p(xi|C = +)
p(xi|C = −)

. (2)

The function fnb(E) is called a naive Bayesian classifier,
or simply naive Bayes (NB). Figure 1 shows an example of
naive Bayes. In naive Bayes, each attribute node has no par-
ent except the class node.
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Figure 1: An example of naive Bayes

Naive Bayes is the simplest form of Bayesian network, in
which all attributes are independent given the value of the
class variable. This is called conditional independence. It
is obvious that the conditional independence assumption is
rarely true in most real-world applications. A straightfor-
ward approach to overcome the limitation of naive Bayes is



to extend its structure to represent explicitly the dependen-
cies among attributes. An augmented naive Bayesian net-
work, or simply augmented naive Bayes (ANB), is an ex-
tended naive Bayes, in which the class node directly points
to all attribute nodes, and there exist links among attribute
nodes. Figure 2 shows an example of ANB. From the view
of probability, an ANB G represents a joint probability dis-
tribution represented below.

pG(x1, · · · , xn, c) = p(c)
n∏

i=1

p(xi|pa(xi), c), (3)

where pa(xi) denotes an assignment to values of the par-
ents of Xi. We use pa(Xi) to denote the parents of Xi.
ANB is a special form of Bayesian networks in which no
node is specified as a class node. It has been shown that any
Bayesian network can be represented by an ANB (Zhang &
Ling 2001). Therefore, any joint probability distribution can
be represented by an ANB.
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Figure 2: An example of ANB

When we apply a logarithm to fb(E) in Equation 1, the
resulting classifier log fb(E) is the same as fb(E), in the
sense that an example E belongs to the positive class, if and
only if log fb(E) ≥ 0. fnb in Equation 2 is similar. In this
paper, we assume that, given a classifier f , an example E
belongs to the positive class, if and only if f(E) ≥ 0.

Related Work
Many empirical comparisons between naive Bayes and mod-
ern decision tree algorithms such as C4.5 (Quinlan 1993)
showed that naive Bayes predicts equally well as C4.5 (Lan-
gley, Iba, & Thomas 1992; Kononenko 1990; Pazzani 1996).
The good performance of naive Bayes is surprising because
it makes an assumption that is almost always violated in real-
world applications: given the class value, all attributes are
independent.

An open question is what is the true reason for the sur-
prisingly good performance of naive Bayes on most classifi-
cation tasks? Intuitively, since the conditional independence
assumption that it is based on is almost never hold, its per-
formance may be poor. It has been observed that, however,
its classification accuracy does not depend on the dependen-
cies; i.e., naive Bayes may still have high accuracy on the
datasets in which strong dependencies exist among attributes
(Domingos & Pazzani 1997).

Domingos and Pazzani (Domingos & Pazzani 1997)
present an explanation that naive Bayes owes its good per-
formance to the zero-one loss function. This function de-
fines the error as the number of incorrect classifications
(Friedman 1996). Unlike other loss functions, such as the
squared error, the zero-one loss function does not penalize
inaccurate probability estimation as long as the maximum
probability is assigned to the correct class. This means that
naive Bayes may change the posterior probabilities of each
class, but the class with the maximum posterior probability
is often unchanged. Thus, the classification is still correct,
although the probability estimation is poor. For example, let
us assume that the true probabilities p(+|E) and p(−|E) are
0.9 and 0.1 respectively, and that the probability estimates
p′(+|E) and p′(−|E) produced by naive Bayes are 0.6 and
0.4. Obviously, the probability estimates are poor, but the
classification (positive) is not affected.

Domingos and Pazzani’s explanation (Domingos & Paz-
zani 1997) is verified by the work of Frank et al. (Frank et
al. 2000), which shows that the performance of naive Bayes
is much worse when it is used for regression (predicting a
continuous value). Moreover, evidence has been found that
naive Bayes produces poor probability estimates (Bennett
2000; Monti & Cooper 1999).

In our opinion, however, Domingos and Pazzani (Domin-
gos & Pazzani 1997)’s explanation is still superficial as it
does not uncover why the strong dependencies among at-
tributes could not flip the classification. For the example
above, why the dependencies could not make the probability
estimates p′(+|E) and p′(−|E) produced by naive Bayes be
0.4 and 0.6? The key point here is that we need to know how
the dependencies affect the classification, and under what
conditions the dependencies do not affect the classification.

There has been some work to explore the optimality of
naive Bayes (Rachlin, Kasif, & Aha 1994; Garg & Roth
2001; Roth 1999; Hand & Yu 2001), but none of them give
an explicit condition for the optimality of naive Bayes.

In this paper, we propose a new explanation that the clas-
sification of naive Bayes is essentially affected by the de-
pendence distribution, instead by the dependencies among
attributes. In addition, we present a sufficient condition for
the optimality of naive Bayes under the Gaussian distribu-
tion, and show theoretically when naive Bayes works well.

A New Explanation on the Superb
Classification Performance of Naive Bayes

In this section, we propose a new explanation for the surpris-
ingly good classification performance of naive Bayes. The
basic idea comes from the observation as follows. In a given
dataset, two attributes may depend on each other, but the
dependence may distribute evenly in each class. Clearly, in
this case, the conditional independence assumption is vio-
lated, but naive Bayes is still the optimal classifier. Fur-
ther, what eventually affects the classification is the com-
bination of dependencies among all attributes. If we just
look at two attributes, there may exist strong dependence be-
tween them that affects the classification. When the depen-
dencies among all attributes work together, however, they



may cancel each other out and no longer affect the classifi-
cation. Therefore, we argue that it is the distribution of de-
pendencies among all attributes over classes that affects the
classification of naive Bayes, not merely the dependencies
themselves.

Before discussing the details, we introduce the formal
definition of the equivalence of two classifiers under zero-
one loss, which is used as a basic concept.

Definition 1 Given an example E, two classifiers f1 and f2

are said to be equal under zero-one loss on E, if f1(E) ≥ 0
if and only if f2(E) ≥ 0, denoted by f1(E) .= f2(E). If for
every example E in the example space, f1(E) .= f2(E), f1

and f2 are said to be equal under zero-one loss, denoted by
f1

.= f2.

Local Dependence Distribution
As discussed in the section above, ANB can represent any
joint probability distribution. Thus we choose an ANB as
the underlying probability distribution. Our motivation is to
find out under what conditions naive Bayes classifies exactly
the same as the underlying ANB.

Assume that the underlying probability distribution is an
ANB G with two classes {+, −}, and the dependencies
among attributes are represented by the arcs among attribute
nodes. For each node, the influence of its parents is quanti-
fied by the correspondent conditional probabilities. We call
the dependence between a node and its parents local depen-
dence of this node. How do we measure the local depen-
dence of a node in each class? Naturally, the ratio of the
conditional probability of the node given its parents over the
conditional probability of the node without the parents, re-
flects how strong the parents affect the node in each class.
Thus we have the following definition.

Definition 2 For a node X on ANB G, the local dependence
derivative of X in classes + and − are defined as below.

dd+
G(x|pa(x)) =

p(x|pa(x),+)
p(x|+)

(4)

dd−
G(x|pa(x)) =

p(x|pa(x),−)
p(x|−)

. (5)

Essentially, dd+
G(x|pa(x)) reflects the strength of the lo-

cal dependence of node X in class +, which measures the
influence of X’s local dependence on the classification in
class +. dd−G(x|pa(x)) is similar. Further, we have the fol-
lowing results.

1. When X has no parent, then

dd+
G(x|pa(x)) = dd−

G(x|pa(x)) = 1.

2. When dd+
G(x|pa(x)) ≥ 1, X’s local dependence in class

+ supports the classification of C = +. Otherwise, it
supports the classification of C = −. Similarly, when
dd−G(x|pa(x)) ≥ 1, A’s local dependence in class − sup-
ports the classification of C = −. Otherwise, it supports
the classification of C = +.

Intuitively, when the local dependence derivatives in both
classes support the different classifications, the local depen-
dencies in the two classes cancel partially each other out, and
the final classification that the local dependence supports, is
the class with the greater local dependence derivative. An-
other case is that the local dependence derivatives in the two
classes support the same classification. Then, the local de-
pendencies in the two classes work together to support the
classification.

The discussion above shows that the ratio of the local de-
pendence derivatives in both classes ultimately determines
which classification the local dependence of a node supports.
Thus we have the following definition.

Definition 3 For a node X on ANB G, the local dependence
derivative ratio at node X , denoted by ddrG(x) is defined
below:

ddrG(x) =
dd+

G(x|pa(x))
dd−

G(x|pa(x))
. (6)

From the above definition, ddrG(x) quantifies the influ-
ence of X’s local dependence on the classification. Further,
we have the following results.

1. If X has no parents, ddrG(x) = 1.

2. If dd+
G(x|pa(x)) = dd−G(x|pa(x)), ddrG(x) = 1. This

means that x’s local dependence distributes evenly in
class + and class −. Thus, the dependence does not affect
the classification, no matter how strong the dependence
is.

3. If ddrG(x) > 1, X’s local dependence in class + is
stronger than that in class −. ddrG(x) < 1 means the
opposite.

Global Dependence Distribution
Now let us explore under what condition an ANB works ex-
actly the same as its correspondent naive Bayes. The fol-
lowing theorem establishes the relation of an ANB and its
correspondent naive Bayes.

Theorem 1 Given an ANB G and its correspondent naive
Bayes Gnb (i.e., remove all the arcs among attribute nodes
from G) on attributes X1, X2, ..., Xn, assume that fb and
fnb are the classifiers corresponding to G and Gnb, respec-
tively. For a given example E = (x1, x2, · · ·, xn), the equa-
tion below is true.

fb(x1, x2, ..., xn) = fnb(x1, x2, ..., xn)
n∏

i=1

ddrG(xi), (7)

where
∏n

i=1 ddrG(xi) is called the dependence distribution
factor at example E, denoted by DFG(E).

Proof: According to Equation 3, we have:

fb(x1, · · · , xn) =
p(+)

p(−)

n∏
i=1

p(xi|pa(xi), +)

p(xi|pa(xi),−)

=
p(+)

p(−)

n∏
i=1

p(xi|+)

p(xi|−)

n∏
i=1

p(xi|pa(xi), +)p(xi|−)

p(xi|pa(xi),−)p(xi|+)



= fnb(E)

n∏
i=1

ddr+
G(xi|pa(xi))

ddr−G(xi|pa(xi))

= fnb(E)

n∏
i=1

ddrG(xi)

= DFG(E)fnb(E)

(8)

From Theorem 1, we know that, in fact, it is the depen-
dence distribution factor DFG(E) that determines the dif-
ference between an ANB and its correspondent naive Bayes
in the classification. Further, DFG(E) is the product of local
dependence derivative ratios of all nodes. Therefore, it re-
flects the global dependence distribution (how each local de-
pendence distributes in each class, and how all local depen-
dencies work together). For example, when DFG(E) = 1,
G has the same classification as Gnb on E. In fact, it is
not necessary to require DFG(E) = 1, in order to make
an ANB G has the same classification as its correspondent
naive Bayes Gnb, as shown in the theorem below.

Theorem 2 Given an example E = (x1, x2, ..., xn), an
ANB G is equal to its correspondent naive Bayes Gnb un-
der zero-one loss; i.e., fb(E) .= fnb(E) (Definition 1), if
and only if when fb(E) ≥ 1, DFG(E) ≤ fb(E); or when
fb(E) < 1, DFG(E) > fb(E).

Proof: The proof is straightforward by apply Definition
1 and Theorem 1.

From Theorem 2, if the distribution of the dependences
among attributes satisfies certain conditions, then naive
Bayes classifies exactly the same as the underlying ANB,
even though there may exist strong dependencies among at-
tributes. Moreover, we have the following results:

1. When DFG(E) = 1, the dependencies in ANB G has no
influence on the classification. That is, the classification
of G is exactly the same as that of its correspondent naive
Bayes Gnb. There exist three cases for DFG(E) = 1.

• no dependence exists among attributes.
• for each attribute X on G, ddrG(x) = 1; that is, the lo-

cal distribution of each node distributes evenly in both
classes.

• the influence that some local dependencies support
classifying E into C = + is canceled out by the influ-
ence that other local dependences support classifying
E into C = −.

2. fb(E) .= fnb(E) does not require that DFG(E) = 1.
The precise condition is given by Theorem 2. That ex-
plains why naive Bayes still produces accurate classifica-
tion even in the datasets with strong dependencies among
attributes (Domingos & Pazzani 1997).

3. The dependencies in an ANB flip (change) the classifica-
tion of its correspondent naive Bayes, only if the condition
given by Theorem 2 is no longer true.

Theorem 2 represents a sufficient and necessary condition
for the optimality of naive Bayes on an example E. If for
each example E in the example space, fb(E) .= fnb(E);
i.e., fb

.= fnb, then naive Bayes is globally optimal.

Conditions for the Optimality of Naive Bayes
In Section , we proposed that naive Bayes is optimal if the
dependences among attributes cancel each other out. That
is, under circumstance, naive Bayes is still optimal even
though the dependences do exist. In this section, we in-
vestigate naive Bayes under the multivariate Gaussian dis-
tribution and prove a sufficient condition for the optimality
of naive Bayes, assuming the dependences among attributes
do exist. That provides us with theoretic evidence that the
dependences among attributes may cancel each other out.

Let us restrict our discussion to two attributes X1 and X2,
and assume that the class density is a multivariate Gaussian
in both the positive and negative classes. That is,

p(x1, x2, +) =
1

2π|∑
+
|1/2

e
− 1

2 (x−µ+)T
∑−1

+
(x−µ+)

,

p(x1, x2,−) =
1

2π|∑− |1/2
e
− 1

2 (x−µ−)T
∑−1

− (x−µ−)
,

where x = (x1, x2),
∑

+ and
∑

− are the covariance matri-
ces in the positive and negative classes respectively, |∑− |
and |∑+ | are the determinants of

∑
− and

∑
+,
∑−1

+ and∑−1
− are the inverses of

∑
− and

∑
+; µ+ = (µ+

1 , µ+
2 ) and

µ− = (µ−
1 , µ−

2 ), µ+
i and µ−

i are the means of attribute Xi in
the positive and negative classes respectively, and (x−µ+)T

and (x−µ−)T are the transposes of (x−µ+) and (x−µ−).
We assume that two classes have a common covariance

matrix
∑

+ =
∑

− =
∑

, and X1 and X2 have the same
variance σ in both classes. Then, when applying a logarithm
to the Bayesian classifier, defined in Equation 1, we obtain
the classifier fb below.

fb(x1, x2) = log
p(x1, x2, +)

p(x1, x2,−)

= − 1

σ2
(µ+ + µ−)

∑−1

(µ+ − µ−)

+xT
∑−1

(µ+ − µ−).

Then, because of the conditional independence assump-
tion, we have the correspondent naive Bayesian classifier
fnb

fnb(x1, x2) =
1

σ2
(µ+

1 − µ−
1 )x1 +

1

σ2
(µ+

2 − µ−
2 )x2.

Assume that ∑
=

(
σ σ12

σ12 σ

)
.

X1 and X2 are independent if σ12 = 0. If σ �= σ12, we
have ∑−1

=

( −σ
σ2
12−σ2

σ12
σ2
12−σ2

σ12
σ2
12−σ2

−σ
σ2
12−σ2

)
.



Note that, an example E is classified into the positive class
by fb, if and only if fb ≥ 0. fnb is similar. Thus, when fb or
fnb is divided by a non-zero positive constant, the resulting
classifier is the same as fb or fnb. Then,

fnb(x1, x2) = (µ+
1 − µ−

1 )x1 + (µ+
2 − µ−

2 )x2, (9)

and

fb(x1, x2) =

=
1

σ2
12 − σ2

(σ12(µ
+
2 − µ−

2 ) − σ(µ+
1 − µ−

1 ))x1

+
1

σ2
12 − σ2

(σ12(µ
+
1 − µ−

1 ) − σ(µ+
2 − µ−

2 ))x2

+a, (10)

where a = − 1
σ2 (µ+ + µ−)

∑−1(µ+ − µ−), a constant
independent of x.

For any x1 and x2, naive Bayes has the same classification
as that of the underlying classifier if

fb(x1, x2)fnb(x1, x2) ≥ 0. (11)

That is,

1

σ2
12 − σ2

((σ12(µ
+
1 − µ−

1 )(µ+
2 − µ−

2 ) − σ(µ+
1 − µ−

1 )2)x2
1

+(σ12(µ
+
1 − µ−

1 )(µ+
2 − µ−

2 ) − σ(µ+
2 − µ−

2 )2)x2
2

+(2σ12(µ
+
1 − µ−

1 )(µ+
2 − µ−

2 ) − σ((µ+
1 − µ−

1 )2

+(µ+
2 − µ−

2 )2))x1x2)

+a(µ+
1 − µ−

1 )x1 + a(µ+
2 − µ−

2 )x2 ≥ 0

(12)

Equation 12 represents a sufficient and necessary condi-
tion for fnb(x1, x2)

.= fb(x1, x2). But it is too complicated.
Let (µ+

1 − µ−
1 ) = (µ+

2 − µ−
2 ). Equation 12 is simplified as

below.
w1(x1 + x2)2 + w2(x1 + x2) ≥ 0, (13)

where w1 = (µ+
1 −µ−

1 )2

σ12+σ , and w2 = a(µ+
1 − µ−

1 ). Let
x = x1 +x2, and y = w1(x1 +x2)2 +w2(x1 +x2). Figure
3 shows the area in which naive Bayes has the same classi-
fication with the target classifier. Figure 3 shows that, under
certain condition, naive Bayes is optimal.

The following theorem presents a sufficient condition for
that naive Bayes works exactly as the target classifier.

Theorem 3 fb
.= fnb, if one of the following two conditions

is true:

1. µ+
1 = −µ−

2 , µ−
1 = −µ+

2 , and σ12 + σ > 0.

2. µ+
1 = µ−

2 , µ+
2 = µ−

1 , and σ12 − σ > 0.

Proof: (1) If µ+
1 = −µ−

2 , µ−
1 = −µ+

2 , then (µ+
1 − µ−

1 ) =
(µ+

2 − µ−
2 ). It is straightforward to verify that − 1

σ2 (µ+ +
µ−)

∑−1(µ+ − µ−) = 0. That is, for the constant a in
Equation 10, we have a = 0. Since σ12 + σ > 0, Equation
13 is always true for any x1 and x2. Therefore, fb

.= fnb.

y=w1x+w2

x

y

Figure 3: Naive Bayes has the same classification with that
of the target classifier in the shaded area.

(2) If µ+
1 = µ−

2 , µ+
2 = µ−

1 , then (µ+
1 −µ−

1 ) = −(µ+
2 −µ−

2 ),
and a = 0. Thus, Equation 12 is simplified as below.

(µ+
1 − µ−

1 )2

σ12 − σ
(x1 + x2)

2 ≥ 0, (14)

It is obvious that Equation 14 is true for any x1 and x2, if
σ12 − σ > 0. Therefore, fb

.= fnb.

Theorem 3 represents an explicit condition that naive
Bayes is optimal. It shows that naive Bayes is still optimal
under certain condition, even though the conditional inde-
pendence assumption is violated. In other words, the con-
ditional independence assumption is not the necessary con-
dition for the optimality of naive Bayes. This provides evi-
dence that the dependence distribution may play the crucial
role in classification.

Theorem 3 gives a strict condition that naive Bayes per-
forms exactly as the target classifier. In reality, however, it is
not necessary to satisfy such a condition. It is more practi-
cal to explore when naive Bayes works well by investigating
what factors affect the performance of naive Bayes in clas-
sification.

Since under the assumption that two classes have a com-
mon covariance matrix

∑
+ =

∑
− =

∑
, and X1 and X2

have the same variance σ in both classes, both fb and fnb

are linear functions, we can examine the difference between
them by measuring the difference between their coefficients.
So we have the following definition.

Definition 4 Given classifiers f1 =
∑n

i=1 w1ixi + b and
f2 =

∑n
i=1 w2ixi + c, where b and c are constants. The

distance between two classifiers, denoted by D(f1, f2), is
defined as below

D(f1, f2) =

√√√√ n∑
i=1

(w1i − w2i)2 + (b − c)2.

D(f1, f2) = 0, if and only if they have the same co-
efficients. Obviously, naive Bayes will well approximate
the target classifier, if the distance between them are small.
Therefore, we can explore when naive Bayes works well by
observing what factors affect the distance.



When (σ2
12 − σ2) > 0, fb can be simplified as below.

fb(x1, x2) = (σ12(µ
+
2 − µ−

2 ) − σ(µ+
1 − µ−

1 ))x1

+(σ12(µ
+
1 − µ−

1 ) − σ(µ+
2 − µ−

2 ))x2 + a(σ2
12 − σ2),

Let r = µ+
2 −µ−

2

µ+
1 −µ−

1
. If (µ+

1 − µ−
1 ) > 0, then

fnb(x1, x2) = x1 + rx2,

and

fb(x1, x2) = (σ12r − σ)x1 + (σ12 − σr)x2 +
a(σ2

12 − σ2)

µ+
1 − µ−

1

.

Then,

D(fb, fnb) = (1−σ12r+σ)2+(r−σ12+σr)2+
a2(σ2

12 − σ2)2

(µ+
1 − µ−

1 )2
.

(15)

It is easy to verify that, when (µ+
1 − µ−

1 ) < 0, we can
get the same D(fb, fnb) in Equation 15. Similarly, when
(σ2

12 − σ2) < 0, we have

D(fb, fnb) = (1+σ12r−σ)2+(r+σ12−σr)2+
a2(σ2

12 − σ2)2

(µ+
1 − µ−

1 )2
.

(16)
From Equation 15 and 16, we see that D(fb, fnb) is affected
by r, σ12 and σ. It is true that D(fb, fnb) increases, as |r| in-
creases. That means, the absolute ratio of distances between
two means of classes affect significantly the performance of
naive Bayes. More precisely, the less absolute ratio, the bet-
ter performance of naive Bayes.

Conclusions
In this paper, we propose a new explanation on the classifica-
tion performance of naive Bayes. We show that, essentially,
the dependence distribution; i.e., how the local dependence
of a node distributes in each class, evenly or unevenly, and
how the local dependencies of all nodes work together, con-
sistently (support a certain classification) or inconsistently
(cancel each other out), plays a crucial role in the classifica-
tion. We explain why even with strong dependencies, naive
Bayes still works well; i.e., when those dependencies cancel
each other out, there is no influence on the classification. In
this case, naive Bayes is still the optimal classifier. In addi-
tion, we investigated the optimality of naive Bayes under the
Gaussian distribution, and presented the explicit sufficient
condition under which naive Bayes is optimal, even though
the conditional independence assumption is violated.
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