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ABSTRACT

Our aim in tThis paper is to examine a number of fundamental
guestions in the theory of optimal control of processes monitored dy
certain general systems of linear funcbional differentisl equations
with finite memories. In our model the controls may appear in a
very general nonlinear functional manner which permits uvs to consider
retardations of a rather general character in the control varisbles.
In particular, we prove a maximal principle for such systems. We
consider existence questiong in the class of admissible Borel
measurable (resp. piecewise continuous, almoét piecewise continuous)
initial functions and controls. We also show that certain solutions
of an uncontrolled linear functional differentisl eguation are piece-

wise analytic or quasi piecewise analybic,
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§1, Introduction. The linear functional differential equa-

tion describing the controlled systeéms studied in this paper is given
in eguation (2.3) below. Many avithors have studied control systeus
with delays in the state varisbles and there are several extensive
ﬁibliographies available in thgge areas [B-5, B-1, 0-2, H-1, Z-1],
Recently; models fof systems with &elays in the control parameters
have been proposed and some results for these systems have been obh-
tained [B-3, B-4, D-1, H-3, H-11; k-1, K=2, L-1, L-23. . Such models occur
naturally in the study of gas-pressurized bipropellant rocket systems
[D-1], in population models [B-3, L-51, and in some complex economic .
models currently under study.

In section 2, we set down the notation, definitions, and
stending hypotheses that will be required throughout. In section 3,
we prove (see Theorem 3.1) that the collection of points in Rn,
which can ﬁe attained at time % from adwmissible Borel measurable
initial Tunctions and controls, is compact and depends continuously
(with respéct to the Haﬁsdorff metric) on 4., The assumpbtions re-
quired for this theorem are in effect no more than is usually required

just to prove the existence of soluticns to the linear functional



differential equation (2.3) (see [B-1, B-k]). Since the Lebesgue-
Stieltjes measures, which will appear below in the veriation of
parameters formula (2,7), can be atomic, we cammot conclude that the
above mentioned fixed-time cross sections of the attainable set are
convex. However, if we add rather mild assumptions (Properties (Ai)
and CQE) in section 3), then we do obtain the convexity of the
fixed-time cross secbions of the attainable set (see Theorem 3.2).
We then adapt an argument of Lee and Markus [L-3] for ordinary con-
trol problems to obtain the statements of the maximal principle in
section 4 (Theorem 4.1 and Remark 4.1). Theorems 3,1 and 3.2 can
be regarded as extensions of gome well known results by Neustadi
[N-2] and Olech [0-l]. Several very special cases of these £Wo
theorems have appeared in the literature [C-5, L-1, I-2, 0-2], The
actual statement of the maximal principal is confined to the time
optimal control problem, altﬁough this is not an essential feature
(cf, the remarks preceding Lemma 4.1). This maximal principle
complements recent work of Banks [B-3] and Kharatishvili [K-1, K-2],
and in effect contains some of Lee's work [L-1, L-2] as special cases,
although Lee has considered a somevhat different class of cost
f‘unctioﬁals° Also our work in essence includes the necessary con-
ditlions determined by Mlanay in [H-2]. Even in the cases where our
work overlaps with that of. the above authors, our methods of proof
differ in that we have made extensive use of a number of Tairly recent

developments in the ‘theory of measurable multifunctions [A-2,

¢-2, ¢-3, H-10, J-1, J-2, K-3, 0-1] to greatly simplify the arguments.



In section 5 we turn to a study of amalybicity properties
of "fundamental matrix" solutions to certain sysfems of functional
differential ;equations. Many authors (see the references in [B-5,
E-1, Z-1]) have studied various aspects of the analybicity of the
solutions of very special types of functional differential equations,
although none of these results appear to include those presented in
section 5. Theorem 5.1 is a rather straightforward application of
known results in, ordinary differential equations. However,

Theorem 5.2 which is extremely believableJ seems to require a proor
involving a substantially mcre intricate form of analysis than is
needed to prove its simple counberpart in the theory of ordinary
differential equatioﬁén— It shouvld be nobed that the conclusion of
Theorem 5.1 guarantees a type of piecevise aﬁalyticity of the

" fundemental matrix", whereas Theorem 5.2 gives only what we have
termed quasi piecewige analyticit&. One might expect that-if the
coefficient ﬁatrices in system (5.2) are amelytic, and if one starts
with an analytic initial function, then the solution of the functional
differential equation will also be amalytic, Indeed, several authors
have attempted to prove such results (for example, see [0-2], {P-1]),
but very simple examples reveal that such general theorems are nob
true {see Remark 5.1).

Finally, in section 6 we'apply the aforementioned piecewise
analyticity (resp. quasi piecewise analyticity) properties to show
that under certain circumstances the admissible initial functions
and the admissible controls may be delimited to an appropriate class

of plecewise continuous (resp. almost piecewise continuous) finctions



funetions and the attainable set will be the same as if one were
ugling Borel measurable admissible initial- functions and conitrols.
These results are simply analogs of those obbtained by Halkin [H-5]
for ordinary linear control problems using the work on subintegrals
by Halkin and Hendricks [H—G}o Halkin's paper exbends earlier work

in [G-1, H-4, L-47.



§2. Notation, Definitions, and General Hypotheses, If X

and Y are nonempty sets, then a multifunction QI ¥ —»Y is simply

a subset of X x Y with domain equal to X; equivalently Q is a
mapping of . X into the nonempty subsets of Y., If Y is a topo-
logical space and Q(x) 1is compact for each x € X, then we s.ay‘

Q: X =Y isg a compact multifunction. If @ is a o-algebra of

subsets of X and if Y is a topological space, then we say a

multifunction Q. X =Y is o -measurable if
OF = (xeXeE)NF £ G
belongs to QA for each cloged FC Y. If X is a topological

space and @ is the collection of Borel sets in l}{, then we shall

write Borel measursble instead of a--measurable. f (Y,d) is a

metric space, then diam (Q{x)), x € X denotes the diameber of

Qx), i.e.,

diam Q(x) = sup {d(yy,¥, )} ¥ ,¥, € Q)]

The real vector space of all real 7p X ¢ mabrices will be
denoted by ipq for any pair of p?sitive integexrs p and q. I%
is assumed that a definite norm, [-|, is given on any of the finite
dimensional vector spaces which come into our discussion. Leb
[a,b] be a compact interval in R, and let HI I ﬁipq_ be a func-

tion of bounded variation. We shall use +to denote the

i
Lebesgue-Stieltjes measure on [a,b] determined by H (see [D-3,



pg. 358 £f.7). In constructing such measures from H, H will

always be baken to be left continuous on (a,b). We observe that

if t - TH(t), t € [&,b] denotes the scalar function defined by
TH(“‘G) = Varse[a,t]ﬁ(s)’ t € [a,b],

and if | ]J.HI denotes the varlation of the Lebesgue-Stieltjes

measure i, then one has [D-3, pg. 362],

(2"1)' |IJH1 = “’T .
H
For conciseness we Trequently-use |E|(t) for TH(t) (this should
not be confused with |H(%)| which is the norm of the matrix
b

H(t)). If g [a,b] >R is p-integrable, then [ g(t)aH(t) de-
- a,

notes the integral of g over [a,b] with respect to The measure
bye Weuse #([a,0], uy, ®P) %o denote the collection of all
uH-integrable functions g [a,b] — RF,

b
If Q: {a,b]‘—>Rp is a multifunction, then [ Q(t)dH(%)

is used to denote the set (possibly empty)

b
(f s(e)am(t)|e € £((a,b], My RP), g(t) € o(t), a =t 5 D)
a,

(ef. [A-2, C-2, C-3, D-2, H-T, 0-1, J-37).
We shall deal frequently with mappings I X XY >% vwhere

X,Y,2 are sets. It will be convenlent to use f(x,-), wvhere x 1is



a Tixed element of X, to denote the mapping y - f(x,¥), v € ¥.
The mappiné f(-,y)i X 52, for y a fixed element of Y is
siﬁi&amly.defineé.

Throughout the paper we make the following standing hy-
pothecses: lo) F gnd G are two Lebesgue measurable mappings from
RXR into £ , 2°%) F(t,s) = 0 for sz Q, 3%) F(t,s) =
F(t,-t) for s 5 -t where < is a given positive constant,
4%y ¢(t,s) = 0 for sz t, 5% &(t,s) = G(t,-1) for s s -7,
€°) for each Tixed +t ¢ R’ the functions G(t,*) and F(t,") are
. of bounded wariatien on R, and in addition 70) there is a ILebesgue
measurable function B. R — R which is Lebesgue summable on every

finite interval and which satisfies

(2.2) la(e,s)|, |F(t,8)| =B(%), t%,s eR,
VarseBF(t,s) = Varse[-T,O]F(t’s) s p(t), © eRB,
VarseRG(t,s) = Varse[_T’th(t,s) £ p(t), teRr.

Tet hi B xR —-R bea given function such that for each
t € B +the functlon u —h(u,t), u e R@, is continuous, and for each
u e B the function & - h(u,t), t € R, is Borel measurable. We shall

consider control systems which can be described by systems of real

functional differential equations (FDE's) of the form



o T
(2.3) x(t) = X(t+s)dSF(t,s) + f h(u(s),s)dSG(t,s),
-T ; -T

where both integrals in (2.3) are understood in the Lebesgue-Stieltjes
sense- with the symbol d‘s being used to emphasize that the measures
are constructed from the functions F(t,*) and G(%,').

Iet Ul [-1,@) »R" and @: [-7,0] > K" ‘be given Borel
measurabl_e, compact multifunctions. It will be assumed that there

is a positive constant M such that

(2.k) diam U(t), diam h(U(t),t) =M, ©z -t

diam @(t) s M, -T=t = 0.

A triple {cp,u,tl} is called admissible if ¢! [-7,0] >R and

1

ul [-T,tl] eRm, tl 2z 0 are Borel measurable functions satisfying:

(2.5) o(t) e @(t), -=
u{t) e U(s), -7

HA
ct
ItA
Q

1A
ct
A
ot

The selection theorem of Kuratowskl and Ryll-Nardzewski [K-3] assures

the exisztence of admisgible triples.

Remark 2.1, It is noted that if ul [a,b] — K" is a Borel measurable
function, then the function + - hu(t),t), t € [a,b] is alsc Borel
measurable, This follows eagily from the fact that there is a

. . mn .
sequence of Borel functions, u . [a,b] - R , whose range is a



countable set, and which satisfy lim un(t) = u(%) for each
t ¢ [a,b]. It follows now from the assumpbions on h +that t —
hCun(t),t), t e [a,b] are each Borel measurable funchions and
lim h(un(t),t) = h(u(t),t), t € [a,b]. Consequently,
t —»h(u(t),s), t € [a,b] is Borel measurable.

For any admissible triple [q),u,‘bl] there is a unique
absolutely continuous function (or response) t — x(%,9,u),
0=+t = tl satisfying (é;5) almost everywhere on [O,%l} and the

initial condition

A
pan
A
<

(2'6) X(t:q):u) = q)(t), =T

According to the variation of parameters formula [B-1], this re-
sponse is given by

C T

(2.7 =(t,0,u) = 9(0)¥(0,t) + [ (s)a_{] F(o,s-a)¥(e,t)da)
-1 o
t

o
+ [ {f h(u(s),s)dSG(oc,s)}Y(a,‘c)dcx,

o -T
where for fixed % z O the function s »¥Y(s,t), 0Os s £t is an
n X n nmatrix solution of

t
(2.8)  Y(s,t) + [ F(o,s-0)¥(c,t)da = E, 0ss =t

8
which is of bounded variation and which satisfies Y(%,t) = E, the

1 X n identity matrix, and Y(s,t) =0 for s> t.
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A point xe Rn 1s attainable if there is an admissible

triple {p,w,t;} such that x(tl,q),u) = x. The attainable set
o£(@,U) (or simply ¢ when & and U are understood) is defined

by The eguation
o/(@,U) = (x ¢ B¥|x is attainable].
The fixed time cross sections of Z(@,U) at t 2z O are denoted by

_gzlgtb,U) (or simply by _th vhen @& and U are understood) and

are defined by The eguation

_gft(@,U) = {x ¢ Ru]there exist {p,u,t} admissible

such that =x(t,p,u) = x}.
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§3. Properties of the Attainable Set without Convexily

Assumptions. We begin with some simple lemmas and observationsg.

Tewma 5,1, Let the standing hypotheses of section 2 be satisfied.

t
Then |[¥(s,t)| = |B| exp f B(t)dE, © = s = +.
S

Proof. This is an easy consequence of (2.8) and the boundary con-

ditions.

Remark 3¢i. If _# is a compact interval and Hi_jf—aipq is of
bounded variation, thep B has the well known decomposition into a
sum of a singuler function, an.absolutely continuous funcfion, and
a séltus (jump) function. We note also that if H=A+ N vhere A
is the saltus function and N is continuous, then Var H= Var A +
Var N. Tt is also observed that if H is continuous, then © —
TH(t), t e # is also continuous. Conseguently from (2,1) it can
be shown that [uH[ is nonatomic whenever H is continucus.

The next lemma is in essence contained in the papers of
Liapunov [L-6], Blackwell [B-6], and Olech [0-1]. There are, how-
ever, some technical.differences 50 wWe incluée a proof for the sake

of completeness.

Lemma 3.2. ILet _# be a compact interval and let H: ;ﬁ'—éipq

of bounded variation on % Tet Q! F-%" be a uH-méasurable

compact multifunction. Let p e £ (7, |u,|,R) be such that
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di=am Q(t) = p(t), t € #Z Then fzrﬂ(t)dﬂ(t) is compact.

’Froof; First we observe that by the Lebesgue-Nikodym theorem (for
example see [D-3, pg. 263]) there is a [pH|-integrable Function

B. ¥ -—) i_’éq such that
fjg(t)an(t) - fﬂg(m(t)a[m (t), & <2 (Fu,R).

We write TH = 0+ v vhere o is the saltus function of TH and v

is continuous. It is an easy matter to prove that the multifuﬁction,

t = Q(t)B(E), t ¢ _?rig measurable where Q(t)R(t)} = {x € qux = yB(%)
for some y e Q(t)}. Moreover, diam Q(t)B(%t) = p(t)|B(t)f, te H#

One cen also verify the identities:

(3.1) fjs‘z(t)aﬂ(t) = fjn(t)B(t)dIHI (t) = fja(t)B(t)da(t)‘

+ {?Q(t)B(t)dv(‘c);

the proof of the first equality is facilitated by versions of Filippov!'s
selection lemms, [C—B,-J-i], and the second equality follows from the
definition of o and v. Now “a is purely atomic and K, is’
nonatomic 8o the conclusion of the lemma follows from (3.1) and a
remark of Olech's [0-1, pg. 100] (see [C-3] also for the nonatomic

case).

Lemmé, 3.5, Let H and ¥ be ag in Lemma 3.2. Tet 0 _?'qu
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be a multifunction with a Borel measurable selection; <that is there
is & Bokel functitn g% ¥ R® such thet g*(t) e 9(t) for each
t e & Then {?_Q(t)dﬂ(t) coincides with the set Z(Q,H) =

{j“y g(t)au(t)] the function gl # > RP is Borel measurable and
g(t) e (), + ¢ F)

Proof. Clearly 2B(Q,H) C f_:a,ﬂ(t)dH(t) Conversely suppose

g € ;ﬁl(}?;uH,Rp), g(t) e 9(t), t ¢ #F Then there is a Borel set
E,C ¥ with uH(EO) = 0 and there is a Borel function

T F R suchthat E=g on 7\ E_ [R-1, pg. 225]. Using

XS for the characteristic function of a set & we see that g =

— LA . . . .
g% Lt g is a Borel function satisfying
v \EO X.E o -

2(t) e (), t e & and E=g a.e. [byl. Hence {?E(’s)dﬂ(t) =
[ g()an(t), and so [ g(t)dH(t) ¢ H(9,H). This completes the
7 Z
procf.

In preparation for the next lemma let us introduce some
addit;ional notation. %,E: [O,m) X R -—>inn are mappings defined by
the following two relations,

F(t,s) = J'TF(a,s-oc)Y(cx,t)da,

2

t
G(t,s) = [ G(oys)¥(a,t)da, t20, s eR
o

where F,G, and Y are the functions defined in section 2 which
appear in equations (2.3) and (2.7). We define a function

&R XR->E"x B- by the equation
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&(u,t) = (0,0(n,t)), t e R, u e ¥,

where h dis the function introduced in section 2 (see equation (2.3)).

A function Il [0,w) X R = &£ is defined by the equation

(mn)n

where Omn denotes an m X n mabrix all of whose entries are zero.

A multifunetion L. R —aRm X Rn ig defined by the condition
L(t) = &(U(t),t), t = -

Remark 3.2. The sebts L(%), t = -t are evidently compacts TLet
bz O begiven. If p is any Lebesgue-Stieltjes measure on
[-7,b], then the multifunction U|[-7,b] is p-measurable. _This
follows from the assumption that U is Borel measurable. Using
Iusin's theorem for p-measvrable multifunctions [C-3, J-1)] and
exbensions of Scorza-Dr%goni's theorem [C-3, J-2] it can be proved
that the multifunction +t - L(t) = &(U(t),t), t € [-1,b] is p-
measurable, Hence LI[_T,b] is p-measurable for every Lebesgue-
Stieltjes measure u on [-T1,b]. ‘We note also that becanse U is
Borel measurable and compact, there is a Borel measurable function
u*! [-7,0) >R such that u*(t) e U(t), £ 2 -7 [X-3]. Remark 2.1

shows then that 1T has a2 Borel measurable selection, Recall now



that © was also assumed to be Borel measurable. Hence in evzluat.

I

ing. either of the integrals

o} t
f @(s)asﬁ(t,s) or [ L(s)a_T(t,s)
-T -7

the conclusion of Lemma 3.3 may be applied.

Lemma, 3.4, TLet the standing hypotheses of section 2 be sabisfied.

For © 2 0 define 22 (9,U) to be the set

o t
8(0)¥(0,8) + f_@(s)a;ﬁ(t,s) + [ L(s)ar(t,s).
-T =T

Then we have the identity: _Qé’t(@,U) = %, (2,U), t 2 0.

Proof. Examining the third summand on the right hand side of (E.Tj

we use the wnsymmetric Fubini theorem [C-1] and the assumptions on

G in section 2 Lo write

t @

(3.2) ] U B(u(s)ys)a (e, s)yi(e,b)do =
QO -7

t t

I n(u(s),s)d_G(e,s)}¥(e,t)da =
o T

£ -;
I n(u(s),8)a (] ¢la,s)¥(a,t)da).
-T O
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We "have the identity*
: & L +
(3.%) I h(u(s),s)dsG(ﬁ,s) = f ﬁﬁTu(s),s)dSP(t,s).
- -T
Consequently from (3.2), (3.3), and (2.7) we have
%(@,U) C g?t(@,u).
Since F(t,*) " is left continuous on (-7,0) we have that if
-T = s, < 0, and -8y =0 as n - w, then lim F(a;5n~a) = F(og—a),

O <o s 7. Therefore from the Lebesgue dominated convergence

theorem and the definition of F we get that {0} is not an atom

of W .. Hence
F(t,*)
o] - o] -~
[ a(s)a F(t,8) = [ §(s)aF(s,e)
-T -T

if p(s) = 9(s) except at s = 0. From this remark, the variation
of perameters formula (2.T7), and Remark 3.2 one can show the reverse
inclusion £, (2,U) C o, (2,U). If the detailed proof of this in-
clusion is carried out, bthen the meaning of the comment in the
preceding footnote becomes clear. This completes the proof of the

representation formula of the lemma.

= .
Our reason for inbtroducing the suxiliary function & and T is
to avoid certain gquestions concerning the existence of Borel

measurable selections. Halkin used a similar device in [H-5].
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Theorem-3,1. ILet the standing hypotheses of section 2 be satisfied.
Then
(1) The sets &%%(@,U),-t z 0 are compact;

(ii) The mepping + — JM%(@,U), t 2 0 taking its values
in the compact nonempty subsets of R is continuous with respect
to the Hausdorff metric [A-17;

(iii) For anmy T2 0 the set . U j&%(@,U) is compact.

te[0,T]

Proof of (i), This is an immediate consequence of the representatio

formula in Temma 3.4 and Temma 3.2,

Proof of (iii). Thie is readily deduced from (ii).

Proof of (ii). Let § denote the closed unit ball in R with

center at the origin., We must prove that given tl =20 and €>0

there is & & > 0 such that

- =
(3.4) ;y%l + 8D of and o + &5 :)ngl, |t tl| £3, tz0.

The relations in (3.4) can be verified by considering two cases:

Case (a). t z t.;

;5 Case (b). 0=t < t,. Consider case (a) first.

Suppose X € .&i%; then there is an admissible triple

(o, 0, ,t} such that x, = x(t,@t,ut). Define the funetion

as [-T,tl] >R to be the restriction of u, to [-T,tl]. Using
the variation of parameters formula (2.7), Lemma 3.1, inequalities
(2.2) and (2.L), hypothesis 4°) of section 2, and some standard -
manipulations with Lebesgue-Stielbjes inteérals we obtain the

estimate
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(3.5} |X('t,q>t,ut) - X(tlJ(Pt::E)'l = MlY(O,t) - Y‘(O,Jﬁl)] +

T t : t .
M B ()Y (e,t) - Yoyt )|do+ MIEIé B(o)lexe [ B(t)ds]d

(04
) 1
+ Mf B(a)|¥{c,t) - Y(a,tl)|da.,
o]

We now give a similar estimate for Case (b). By the Kuratowski-Ryll-
Nardzewski selection theorem [K-3] there is a Borel function
Wl [-T,0) - R" sich that u*(t) e 2(t), t 2 -1. We note that
— . *_ . C o s
ny = uy X[__T”t:1 4 u X(t,tl] is a Borel function.and {@t,ul,tl}
is admissible. For reasons similar to those adduced to support

(3.5) we get the inequality

(3.5') Ix(t,qat,ut) - x(%y,0,,m)| = M|¥(0,t) - Y(O,t-_!:)[ +

T .. tl tl

M B(e)|¥(e,t) - ¥(a,b;)|da + M[E[{{ Blo)lexp [ B(E)aE Jda +
0 o
t

M Bla)y|Y(a,t) - Y(cx,“bl)|dcz.

- From the continuity of Y(a,-), the Iebesgue dominated convergence

theorem, and inequalities (3.5) and (3.5!) there results

(3.6) Given t, 20 and e>0 there is a 5> 0 depending only
on t, and e such that [t-t| £8,t20 iuply-
Ix(t)cpt.’ut) - x('tlJ(thE)l s € and lx(t:q)t}ut) -

X(tl,q)t,ul) I s €.
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Statement (3.6) implies

,thl + €S D 04, [t_tl] =8, tzo.

The other inclusion relationship in (3.1) is proved by a symmetric

argument which is omitted.,

Remark 3.3. Tet & - 7(1;), -2 0 be a compact multifunction
which is continuous with respect to the Hausdorff metric, If we

impose a texrminal conditilon of the form
(3.7) X(tl:q):ﬁ) € _5’7(1:1),

then by the usuval device [N-2] Theorem 3.1 yields an existence
theorem for the time opbimal control problem. If we consider only

admissible controls whose domain [-1,t lies in some fixed inter-

1]
val [-7,%], and if there is a terminal constraint (3.7) or, indeed,
if the right end is free, then Theorem 3.1 can be used to give an
existence theorem for the problem of minimizing P(x(tl,m,u)) on

the class of admissible triples &p,u,tl} such that (3.7) is

k3
satisfled , or for the problem of minimiging P(x(tl,@,u)) on the

%Actually for these existence gtatements it is not necessary to assume
that the multifunction ¥ is continuous or even conmpact. It
suffices to have the multifunction 7 closed (i.e., J(t) is
closed for +t z 0) and upper semicontinwous in the Kuratowski sense
(see for example [K-4, C¢-L, J-17). We keep the sironger hypothesis
of continulty because it is needed in proving necessary conditions
for a minimm,
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class of admissible triples {(p,u,tl}, where P is a real valued
continuous function on R-.

In order to deduce necessary conditions for the opbimization
problems mentior;ed in Remark 3.3 it is -desirable to have that the
sets  of (9,U) are convex. This cannot be deduced under the general
circumstances of Theorem 3,1 because the Lebesgue-Stieltjes measures
involved in the representation formula, _Qlt(@,U) = g?t(@ ,U), of
Lemmas, 5.4 can “t?e atomic.- —It is noted that any function on an inter-
_val [a,b] into ipq ‘:Thich is of bounded variation has only a
denumerable number of discontinuities. We say that F has préperty

(Al) if for each t € R it is possible to index the points

-ei(t), i=1,2 ..., in the inberior of [-7,0] at which F(t,-) is

discontinuous , in such a way that continuous fumetions + — Qi('b) , & eR,

.
i
1

are defined and + -t - ei(t), t € R is strictly increasing

i=1,2,.,. . We say that G has property (AQ) if for each t ¢ R it

is possible to index the poinks qgi (t)y, i = 1,2;.,. in the interior of
[-7,%], a'tAwhi}ch G(t,~) is discontinuous in such a way that continuous
strictly increasing functions t - ¢, (t), t e R, i'= 1,2,..., are defined.
) Tlf'lec;rer;l.'j’".é:- If in ‘addition to the stail&ing hyﬁoﬁﬁéses"of sectic;ﬁ 2
we assume that ©(0) is convex, F and G are Borel measurable, F
has property (Al) , and G has property (A,), then conclusions
(i), (ii), and (iii) of Theorem 3.1 are still valid and _Qé_'t(é,ﬂ),
t 2 0 are convex.
Before proceeding with the proof we give another lemma

that will be useful in the -proof.
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Temma 5.5. Let p. R->R be a conbinuous strictly increasing func-
tion. Let f. [a,Db] -aipq be a Lebesgue summable fumction. ., We

define three functions Wi,Wé,WB: R —aipq by the equations

b

Wy (s) = J £(e)I(s-p(e))dz, s e R,
b

Wy(s) = [ £(e)T(s-p(E))&, s enr

b -
Wo(s) = J £(8)I(-stp(E))d, s eR
a

vhere I,J. R —R are the step functions defined by the relations

0 X =0
I(x) =

1 x>0

0 x< 0
J(x) =

1 xz0

Then Wi is continuous, i = 1,2,3.

Proof. First we remark that p: [a,b] - [p(a), p(b)] has a con-
tinuous inverse, p_l: [p(a), p(b)] — [a,b] which is also strictly
increasing. Some elemenbary calculations yield the following

Tormulas.
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_O for s = p(a)
b
Wl(s) = | [ £(e)at for s > p(b)
o7 (s)
I f{e)ag for pla) <s £ p(b),
—0 for s < pfa)
b
Wi (s) = | [ r(e)ak for sz p(b)
o™ (s)
f f(g)dt for ofe) = s < p(b),
and
e for s > p(b)
b
[ £(&)ag for s £ p(a)
we = |
f £(g)de for p(a) <s = p(b).
-1
p " (s)

The continuity of the functions Wi’ i=1,2,3 is an immediate con-

sequence of these formulas and the conbtinuity of p"l on [p(a),p(b)].
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Proof of Theorem 3.2. We write F(t,s) = AF(t,s) -+ Nf(t,s) and

G(t,s) = AG(t,s) + NG("G,S) where AF(t,°) is the saltus function
for F(t,*), AG(‘t,-) is the saltus function for G(%,+), and both
NF(t,-) and I\IC_(t,-) are continucus. Denote the jump of F(%,-)

at -0,(t) by B, (t) end the jump of G(t,*) at £, () vy ci(t),
i=14,2,... . The jump of F(t,*) at -7 is denoted by B_l(t)

and the jump of F(t,:) at O is denoted by Bo(t). The jump of
G(t,*) at -1 is denoted by C_l(-t) and the jump at t is denoted:

by C_(t). From Remark 3.1 and inequalities (2.2) it follows that
. [~ 0
(3.8) % |B,(®)], 2 [Ci(t)[ < B(t), % eBR.
i=1 i=1

Since ¥ and G are Borel measurable, the functions Bi’ci’
i=41,0,1,2,... are all Lebesgue measurable, For example let us
show B; .is Lebesgue measursble, 1 = 1. Define sn(t) =1/n - 0, (%),
n=123,.,. , then sn(t) > -ei(t) and lim sn(t) = -ei(t). Since

F(t,°) is left continuous on (-7,0). we have
Bi(t) = lim F('b,sn('t)) - F(t,—ei(t)).

Since F -is Borel measurable, the functions t - F(%, 8, (t)) and
t -aF(t,—Qi(t)) are Borel measurable (a fortiori Lebesgue measurable).
Hence Bi is a Borel function and thus Iebesgue measurable. The

proof of the measurability of the. other functions is similar. Define

B(t) =2 Bi(t) and C(t)= 2 Ci('t) {both series converge by (3.8)).
i=1 i=1
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The saltus functions AF and .AG can be written in the form

(5.9)  Ap(t,5) = By (8)3(-5-7) + (B,(5) ~ B(6))3(e)

+ iElBi (6)I(s0, (%)),

and

AG(t,s) = C_l(t)J(—S—T) + (co(-t) w C(t))JI(s-%)

+ L ¢ (8)I(s-t;(8)).
i=1

We have

(3.10) F(t,s) = ITAF(a,s—a)Y(a,t)dcx+ ITNF(CX,S—(Z)Y(&,t)dG
o o

t t
G(6,5) = [ A (0,9)¥(0,t)do + [ W, (a,5)¥ (0, t)dcs,
R, O

and. the second terms on the right hand side of both eguations depend
continuously on s by the Lebesgue dominated convergence theoremn.
Using (3.8), (3.9) and the dominated convergence theorem we get

(3.11) ITAF(a,sna)Y(o:,t)da = J’TB_l(o&)Y(a,‘c)J(~S+a~T)da +
o] o )

T w T
I (Bo(a) - B(o))Y(a,t)T(s-a)da + L Bi(a)Y(ogt)I(s—o&Qi(aO)da.
o] i=1l o .
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Aceording to property Q&l) and Lemma 3.5 each term in the series

(3.11) is continuous in s. We also have

T T
(3.12) |f B, (@)¥ (o, t)I(s-a6, (Y] = K[E[f |Bi(o¢)[do:, i=1,2,...,
o o
t
where K = exp [ B(£)dt. Moreover, the series
O
w :
L [Bi(a)[da converges by (3.8). Hence by the Weierstrass M-test
i=1 o

and (3.12) the series in (3.11) converges uniformly for s e [-7,0]

(6

I

T
0 is fixed). fTherefore the function s — [ AF(ogs—a)Y{ogt)da,
o

~T £ § £0 ‘is .conbimious, and we conclude that %(t,') is continuous
on [-1,0] for each fixed + z 0. By an entirely parallel argument
it can be shown that E(t,') (also TI'(t,*)) is continuous for each
fixed t z 0. TUsing the Lebesgue-Nikodym theorem [D-3 , P8. 255} it

]
is debermined that there exist integrable Borel functions

V?. [-%,0] *ainn and VP' [-7,%] —9£(m+n)n such that
0 o o
Jo(s)aF(t,s) = J (s)v,(s)aln, !
-T -T F F{t,-)

for ¢ ¢ "{l([_TJO]J B ) Rn) and

F(t,-)

t 5
{Tg(S)dSP(tJ S) '= {Tg(s)vl-\(s)dl I""I\(-t, . )l 2

for g e il([-T;tl: “I‘('E: )2 Rn). From the representation formula
2> -
in Lemma 3.4 and an extension of Filippovts selection principle

[C-3, J-1] we obbain
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o .
(5.23) ¥, (2,0) = 2(0)¥(0,%) + [ 2(s)V (s)d|n, | +
-t F F(t,)

+
{TL(S)VI\(S)CII I'LI‘(’G, . )I .

By Remark 3.1 Ip.m [ and l“I‘(t .)| are nonabomic, and we
F(t:') ?

conclude that J&%(@,U) is convex (see [0-1, C-3]).
We shall use co (B) +o denote the convex hull of a set

BCR .

Corollary 3.1. Let ¥ denote the multifunction, t - co (2(t)),

A

-T2t =20, Let U: [-T,) —R be a Borel measurable compacth
multifunction such that diam (U*(%)) =M and co (b(U(t),t)) =
co (h(U*(%),t)) for % z -7. Let the hypotheses of Theorem32 be

satisfied., Then

o (2,U) = %(‘I,U*), t 2 0,

Proof. The identity is easily verified by using equation (3.13),

the linearity of V_(s) and VP(S) and Theorem 7.1 in [C-3].
F
As a particular case of Corollary 3.1 we cbtain.

Corollary 3.2. Let the hypotheses of Corollary 3.1 be sabisfied.

In addition suppose ¥ (t) is the set of extreme points of ¥(%),

and. U#f [T, ) - R is a multifuncbion such that diam U#(t) =M
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and the set of extreme points of co (h(U(t),t)) is equal to
h(U#(t),t), t z -7. If the multifunctions ¥ and U# are compact

and Borel measurable, then

IV
O
.

« i
7, (2,0) = JX%(?,U#I, t

Remark 3.4, TIn Theorem 3.2 it was assumed that ¢(0) is convex.
If this should happen not to be the case, then one can always select
o, a campact convex subset of »(0) (for example & could be a
singleton point set), and define

3 () t£0
¥ (t) =

Since &% is also Borel measurable, compact, and satisfies
diam @ (t) = M, t € [-7,0] we could replace ¢ by & and

Theorem 3.2 could be applied.
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§k. Necessary Conditions for an Opbimal Control. The

propert'ies of the attainable sets deduced in section 3 suggest that
the main geometric ideas involved in proving the maximal principle
for ordinary linear control problems (see [L-E]) are ‘going to retain
theif validity for certain of the optimization problems formulated
in Remark 3.5. We shall only consider the time optimal control
problem mentioned in Remark 3.3, It will be clear from the dis-
cussion that the results .can be used to prove a maximal principle
Tor the other problem discussed in the aforementioned remark if we
add additicnal assumptionsg which assure that on compact convex sib-
sets J&% of R° the mapping P assumes its minimum on 3&%;, the
boundary of _Q{t, e.g., when P is linear (ef. [H-2]).

The following lemma is true and the proof is in effect

given in [L-3].

Lemma 4.1, Let §,0: [a,b] SRS e compact multifunctions which

are continuous with respect to the Hausdorff metric. TLet F(H)
% *

be convex for a =t =Db. ILet &t e (a,b] be such that F(t' ) n

#* : ¥

O )4 ¢ and FE)N GE)=¢ if ast <t . Then

* * * * *

x e )N @) implies x e OF (% ).

We shall use. <x,y> %0 denote the scalar product, X,¥ € Rn,

and. A' to denote the transpose of a matrix A.

Theorem 4.1. Let the hypotheses of Theorem 3.2 be satisfied. If

ﬁy*,u%,t*} is an optimal solution to the time optimal control



*
problen in Remaxk 5.5, then there is a function ! [0, ] = Rn

which ig of bounded variabion and satisfies the adjoint equation

9(.
t

v(s) + f v(a)F (o,s-a)da=e, Oss=t,
5

where e 1s an outward normal to a support hyperplane to the set

o7 (9,U) through the point x(t*,(p*,u*) on the boundary of
t

o7 ,.(9,U), such thatb
©

1%) @ (0),¥(0)> = 9_,¥(0)>, o e a(0);

2%) 1 <f " (e)a P (e 5-0);¥{0)>da 2

fT<qu) (s)c'iSF (c,s-a) , ¥ {a)>8c
Qo =1

for every admissible @,

* *

t- %
53°) [ </ B0 (s),8)d,0(c5), W(0)>d0 2

£ 4

I < h(u(é),s)dSG(a,s),l}r(a)>da.

o -%
for every admissible wuw. Moreover if I (t) is egual to & fixed
compact convex set T C Rn for 4 z 0, then e can be picked to
sabisfy the transversality condition: e is normal to a common

support hyperplane separating o7 ,(9,U) and <.
b
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%* . ¥ % *
Proof. Iet x = x(t ,p ,u ). By Theorem 3.2 and Lemma 4.1 we in-

* .
fer that x  belongs to the boundary of g7 .. There is a vector
t

e ¢ B with |e| = 1 such that
max (<€,x>|Xx € ¥ ,} = <e,x*>.
%

Using the fact that the value of ¢@(0) does not affect the value
of the second term on the right hand side of (2.7) (ef. proof of
Lemma 3.4}, and some elementary reasoning involving formula (2.7)

it can be shown that

(k1) (2) <@ (0), er(0,5)> 2 <7 (0,87)>, o9 e 0(0);

0 % T %
(®) <J o (s)o ) Flays-0)x(a,t )daf, e 2
-7 o

o T %.-
<f 9(s)d | Fla,s-a)¥(a,t )da|, e
- o

for every admissible g,

‘t*—‘t*
() </ |/ h(u'(s),5)d 6la,s)| V(e e, o> =
o {-% )
£ &
<J | f nlu(s),s)a ala,s)| Tyt g, e
Q ~-F
L

* %
for every admissible wu., Define. V(o) = e¥'{a,t ), 0Osa=+t .
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Then by appropriately using the unsymmebric Fubini theorem [C-1] and
some standard menipulation with the scalar product in (h.l)b,c,
relations 20) and 50) are proved. The fact that o - V¥(a), 0 £ a <= &
is of bounded variation and satisfies the adjoint equation is an
immediate consequence of (2.8).

The transversality condition is Just a geometric property.
In proving this condition we use the nowm in Rn defined by [x[2 =
<xX,x>. We have Jyjt NT =0 for 0st<t. ‘Le’i‘. t € [o,t*)‘ be
such that tn =% as n -, Leb a € ,Qf_'t ;b e T be such that

n

a_-~b is the minimum value that the function (x,y) — |x-v
n n J 2

(x,¥) e _thn X T assumes. Then a - b £ 0 and e =

(b -a )/|a -b_ | is a unit outer normal to F at a_  and a unit
n n n n 5 n
inner normal to E ab 'bn. Hence

(k.2) [x|<en,x-a.n> £0} D M_tn

Iy

{xlgen,x-bn> 0} 0%, n=121273 ...
We might as well assume e, ~e and bn —-b as n —e, Then a,

also converges to b. Using (4.2) and the fact that %G - o
n t

as n - w (the limit is taken with respect to the Hausdorff metric)

we find that

{x]<e,x-b> = 0) D L,
t

{x[<e,x-b>2 0} D ¢
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so that - 7 = [x|<e,x-b>= 0} 1is a hyperplane satisfying the trans-

versality condition.

Remerk 4.1, We can put conditions 2°) and 3°) of Theorem 4.1 in a
form which will in meny cases be more manageable if we assume thatb
F(t,*) and G(%,-) have no singular part and if the functions
ei,gi, i=1,2,5,... introduced in properties (éi) and (A?) are
of class Cl. Leb us indicate the form which 20) and. 30) take in
this case. We usge the decompositions F = AF + N? and G = AG_+ NG
wnich were introduced in the proof of Theorem 3.2. According to

our assumpbions ‘N?(t,') and NG(t,-) are absolutely continuous.

By some rather involved analysis, which includes several applications

of the unsymmetric Fubinil theorem [C-1], it can be shown that condition

2°) of Theorem k4.1 implies

2)) <@ (s),B(s)> z @ (s),P(s)>  a.e. on [-7,0]

for every admissible ¢ where P 1is defined by

B(6) = <¥{r3:, (o5) ¢ 5 w00y (55 (0K 613, 0
+ fT¢(a)EE£ (o, s-x)da, s € [-7,0],
o]

and pi(a) = o - Si(a) for « e [0,7], K; denotes the characteristic
function of [p,(0), e, ()] N [-7,0], and v, (s) = 1/;51(;);1(3)) for
s € [-1,0], i=1,23,... . By a similar type of analysis which is

again omitted.BO) can be shown to imply
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30) <a(u’ (-1),-1), ¥(£)01, (£) 2 <h(u(-7),-7), ¥(e)c!, (6)>,

a.e. on [O,t'x],

a(u¥(e),8), Qt)> 2 <n(u(e),s), Q(t)>, a.e. on [-1,% ]

for every admissible u where Q is defined By

) = W(E)Ey(e) - 0 )6 ¢ YO 8,

¥
t Eﬂé
+ [ V(o) P (o, £)aq
fa) ]

gnd. 59% is the charscteristic function of [O,t*], _%/l is the
characteristic function of [gi(o), gi(t%)], and Bi(g) = l/§i(§;_l(g)),

*
~TE=tst.



3h

§5. #nalyticity Results for Solutions of FDE's. As the

reader is by now well aware, the representation (2.7) of solutions
to (2.3). in terms of "fundamental" or "adjoint" mabrix solutions
[B-1] is of immense imporbtance in the study of control of such sys-
tems.v In this section we investigate analyticity properties of
these fundemental matrix solutions for certain types of linear (in

the state variable) systems which are special cases of (2.3); namely

X o
(5.1) (%)= 2 x(5-6)4; (8) + [ x(ors)A(%,5)ds + h(u(t),t)
i=0 -T

with 0 =86 <8, <... < 8, = 7, vhich correspond to an F(t,+)
congisting of an absolutely continuous function plus a salbus funec-
tion with a finite number of constant (in ). jump points. The

asgociated fundamental matrices X(t,c) satisfy (as a function of

)
. K o
G.2) x)= 1 X(t—'ei)Ai(t) + [ X(t+e)A(t,8)ds, t >0
i=0 -T

X(o) = B, X(t) =0 for % <o.

' Since the corresponding adjoint natrices Y(o,t) satisfy (in o)
systems [H-1] which can be put in a form similar to that of (5.2)
and since we have X(t,0) = ¥(ou,t), to investigate analyticity
properties of X and Y in o or t it suffices to examine the-
analyticity in t of solutions to (5.2). Copsidering the following

two examples one sees that systems of the type (5.2).with analytic



coefficients and analytic initial fuhction need nobt possess an

analytic solution.

Example 5.1, The sealar syshtem

x(t)

x(t)

x(t-1), t>0

i, € e[-1,0]

has a unique golution on [-1,2] given by-

L, t e [-1,0]

; t e [0,1]

5/2+-t2/2, t e [1,2]
which is not analytic at + = 1.

Bxample 5.2. The scalar system

o
[ x(t+s)ds, t>0
-1

(t)

x(t)

H

1 t e [-1,0]

2

has a unigue solution on [-1,2] given by
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1, t e [-1,0]
x(%) = 1+ sinh b, t e [0,1]
- (6-1) 21
1+ sinh - ;;l(n_l)zﬁﬁji)l , tef[i2],

which is not analytic at + = 1.

Remark 5.1. Example 5.1 can be used to contradict s theorem of
Pimney [P-1, p. 257] while Example 5.2 contradicts a result due to
Oguztoreli [0-2, p. 52].. (It is not difficult to show that the
right side of the system in Example 5.2 is analytic in x in the sense
of Volterra [V-1, 0-2] as reguired in Oguztdreli's theorem.)

In light of the previous examples and remarks one might ex-
pect under reasonable assumptions on the coefficienté to obtain not
analyticity but some type of piecewise analybiciby for solutions %o
(5.2). We are thus motivated to introduce the following concepts

(see also Halkin [H-4] and Levinson [L-k]). A function f: R »R
is analytic on [a,b] if there éxist € >0 and a function g
analytic on (a-g,b+e) such that £ =g on [a,b]. We say that f

is piecewise analytic (pwa) on [a,b] if there exists a partition

a=3s8 <8

o s <ese < S, = b such that £ 1is analytic on [s,

312515

I'=1,2,...,v. Finally, £ is said to be-quasi piecewise analytic

(gpwa) on f[a,b] if there exists a partition a = 8o <8 < ... <5,

= b such that £ is analytic on (Si-l’si)’ i=1,2...,v.

2
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Combining a modification of the step-method [E-1] with

known results for ordinary linear differentisl equations we can prove

Theorem 5.1. Let A(t,s) =0 dn (5.2) and ¢ ->,£\.i(t), i=0,1,...,k

be (real) analytic on [o,=) into Lo+ IF the lags 6., i = 1,2,
...,K, are commensurate, then the solution to (5.2) is pwa on

o, for any T > 0.
2

Proof, We shall give the proof for K = 1, el =1 since it will
then be clear how one extends the results to cover the case of =

finite number of commensurate lags., Thus we consider the system

(5.3) X(t) = X(0)A () + X(6-2)a (), t>o0
X(o) = E
X(t) =0, t<ag

and denote by I +the solution of

B(t)

W(6)A, ()

il

MW(c) = E.

From the theory of ordinary differential equations it is known that
B and W exist and are analytic on (o-e, o+T+e) for some

€ > 0, gince the solution X of (5.3) agrees with T on [o,o+l],

we have that X is analytic on [o,o+1]. Furthermore, we see that



t
G X(6) = (X(om) B (em) + [ K(s-1)A, ()T (s)ds) L (5)

o1

for + e {own,oint+l], n = 1, Hence the analyticity of 2B, QB-l, Ay
on [o+l,o+2], and that of X on [o,o0+l] imply that X is
analytic on [o+l,o+2], which by the same reasoning leads to the

analyticity of X on J[o+2,0+3]. A finite number of repetitions of

this reasoning using (5.lt) completes the proof.

Remark 5.2, Prom the definition of the determinant it follows
immediately that if [q,B] 1s any interval of amalyticity of X

(the solution to (5.2) with A(t,s) = 0), then either X is singular
on -[a,B] or else there are at most a-finite nuwber of points in
laaﬁ] where X"l(t) fails to exist,

| Just as the step-method fails in existence proofs for (5.2)
vwhenever A(t,s) £ 0, this form of the step-method will not be of use
in proving analyticity results for solutlons to the general system
(5.2). We can, however, obbain the following result by ubilization

of successive approximations with step-like procedures.

Theorem 5,2, Suppose that (%,s) - A(t,s) and t —>Ai(t),
i=0,1,.,..,K, are (real) analytic on [g,) X [-T,0] and [o,)
respectively into xnno Tf the lags 61’92’°°"8k’T are
commensurate, then the solution to (5.2) is gpwa on [o,04+T] for

any T > 0.

Again, we shall here give a proof of this thecrem only for



the special case

o]

(G.5) X(%) X(E)A,(B) + X(6-1)4, (t) + [ X(bxs)A(t,s)ds, t e [0,T],
-1

X(0)=E X(t) =0 for t <O

2 2

as it will then be easily seen how one modifies the ideas to obbai
the result for commensurate lags on [0,0+T]. Since the uniform
limit of a seguence of real analybtic functions need not be analyti
if we wish to use succesgive approximation techniques to obtain
analyticity results, then we must work with complex systems. That
is, we must somehow replace (5.5) by a system defined on a domain
the complex plane ({ which contains [-1,T] so that the system
%s equivalent to (5.5) on [-1,T]. Before beginning the proof we

give some preliminary resulis which will be needed.

Lemma 5.1, If £ is analytic in a region (e,b) = {z = =tiy]
a<x<b, -d<y <d} and continuous gt z = a from within
z

Sa,b), then F defined by F(z) = [ £{¢)Af is an analytic function
a

on (a,b).

Proof. TFrom the extended form of Cauchy's theorem [W-1] it follows

that F 1s independent of path in S“(a,b) and is thus well defined.
For z € 5(a,b) in a neighborhood of Z, € S(a,b) we have
Z

F(z) = F(z) + [ £(¢)af which is smalytic at z by well-known
Z

o
results.,
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Lemma 5.2. Suppose (t,s) > a(t,s) is real analytic on

. 2 .
(-e,™e) X (-l-g,e) C R . Then there are sets 7, and ‘9% in @

5]
of the form
.Eg = {z = x+iy|xe(-8,™8), ye(-5,3))
K = {z = x+iy|xe(-1-8,8), ye(-5,8)}

and a function (z,w) - o:*(z,w) analytic on _a/g X _9%(: 0:2 such
%
that o |K = @ where K = {(x,0)|xe[0,T]} x {(x,0)|xe[-1,01} (or

K= [0,7] X [-1,0] as a subset of Rg).

Proof, Define & = (-¢,T+e) x ( l-e,¢), which is an open reglon

. 2 . . .
in R on which ¢ 1is analybic, It then follows [N-1, p. 5] and
RS 2
[H-8, p. 21-427] that there is an open set & in € -with
® 2
D 08 =D and an analytic function o on D such that
* 2.
o |D = o The set XK defined in the lemma is compact in - €7 and
2 %,
EN (€ -9 ) is empty since K N B C &. It is then not difficult
to show that there is a 8 > 0 =such that" _9g and . j}g as defined
in the lemma satisfy KC 9 X _9”8 c 9.

Proof’ of Theorem 5.2. OQur first task is to somehow extend system

(5.5) (or, as in the usual case of successive approximations, its
equivalent in integral foxm) t0 a system on a complex domain where
of course we want all coefficients involved to be analytic. From

Lemma 5.2 and standard arguments it follows that there exist domains
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_9’8, f’g (see Lemma 5.2) and emalybic continuvations (which we again
_denote by A and Ai) of the mappings (t,s) - A(t,s) and + -
'Ai(‘ﬁ) to _92 X 5% and. ffg réspectively. Let 9_9’" and _@y
be 8/2 mneighborhoods in ( (using the usual norm in @-) of the
sets [-1,0] and [0,T] respectively. These are the regions on
vhich we shall work throughout the remainder of the proof.
For k any integer, we define S, = fz ¢ £ |k <Re (z) <k + 1}
n (,_OJS/,U _0%’(/_.) We shall consider the system defined for

z €8 U {kt1}, k 2 0 by

(5.6) x(z)=E+ [ (X({A(E) + x(t-1)A (L)
: [0,2]

+ f X(g-r-w_)A(g,W)dW} ag
[“lJ O]

vhere we must indicate the path’s- of integration to be.used, The
path [0,z] for =z e Sk U {k+1} consists of straight line segments

joining 'z end k, k and 2.1, 21 and ‘k-1,...,z-(k-1) and 1,

1 and z-k, z-k and 0. Nobe that the path will always lie in
9_/ . The integral [ . X({&+w)A(§,w)dw, for ¢ on the polygonal
[-1,0]

path joining 0 and =z described above and £ ¢ S, U {m+1}, is to be
integrated along the w-path of straight line segments joiming O and
-t +m, -{;+m and -1. Hence for any ¢ ¢ SI'Il U {m+l} this latter
integral depends- on the values of X aloag the segmwents joing ¢
and m, m and ¢ - 1. Nobe that for 2z wreal the system (5.6)

with the proper initial conditions reduces to the integrated form
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(in the usual sense) of (5.5).
We next obtain a gquasi-slabwise analytic (i.e., analytic on
S8 k= 0,1,...) solution o (5.6). To do this we define successive

approximations X

7 Show that each is amalytic on 8 , k= 0,1,...,

k

and that [Xﬁ} converges uniformly on each 8 The limit function

"
will be the desired solution. Define for n = 0,1,2 Xﬁ(z) =0

i - |
for Re (z) <0 and X (0) =E. For z e 8 U (kl}, k=0,1,2,...

define XO(Z) =E and

G X () =B+ [ (X (DA (L) + X (1A (C)

[0,2]

+ f Xh_l(§+w)A(§,w)dw}d§
[-l:O]
for n= 1,2,..., where the paths of integration are the polygonal

paths described above. Note that each Xn’ nzl1 is defined on

G WD less the rays U (z = ktiy|y # 0].
L k=0

We shall say that a function g is left continuous at
z=% kz 0, if g(f) »glk) as § -k, € ¢ Sk_i' A similar
meaning is attached to "right continuwous at =z = k". Finally, we
shall say that .g is continuous at =z = k 1if it is both left and
right continuous at 2z = k in the above sense. We now state and
prove an induction lemma which will yield analyticity of Xn on the
Sk’

Induction Lemma. Let nz 1. Tet kX = 0. Then Xn analytic on

1




54, 8

o? Sl"”’sk and contlnuous at 2z =-0,1,2,...,k imply Xn

analytic on Sk and continuous at z = k.

Nobe, 8ince clearly none of the approximations are left continuous

at z = 0, we understand "continuous at =z = 0" +to mean "right

continuous at =z =" Q" in the above lemms,

Proof, GSuppose the assumptions of the induction lemma are true.
We can then establish

Lemma 5.5, Iet m be a fixed integer, 0 sm = k, TFor

2

¢ e S U {m} U {m+l} define

2

F(t) = J Xn_l(§+W)A(§,W)dW.
0]

Then F 1is analytic on 5, right continuous at . z = m, and, if
m <k, left continuous at z =m + 1,
Use of the hypotheses of the induction lemma and Lemma 5.3

yield that the integrand

FO) = %y OO+ Xy EULE + [ %3 (Gmalcmar

2

1seme S g and continuous at

z=0,1,...,k-1, left continuous at 2 = k. Hence by the extension

in (5.7) is analytic on -8_,8

_of Cauchy's theorem (see the proof of Lemma 5.1) the part of the
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integral in (5.7) from O %o k along the polygonal paths is
actually independent of path (as long as the paths cross the lines

Re' (z) = m through the point =z = m). Thus, (5.7) may be written

k Z
(5.8) XAz) =B+ ] g+ | F(L)ae
o] k
2
where as usual [ denotes inbegration along the straight line
7z
1

segment joining z, and #,. The first integral in (5.8) is now

independent of 2z ¢ Sk“ Thus we need only show that the second

integral is analytic for =z e Sk' But this follows immediabely from
the hypotheses of the induction lemma, Lemma 5.3, and Lemma 5.1.

We therefore have Xn analytic on Sk‘

We shall next argue that Xn is right continuous at =z = k;

the arguments for left continuity are not dissimilar and will be
Z
omitted.. From (5.8) we have Xn(z) - X (k) = f FE)ag for z e 8,5
’ k

the integrand _¥ Ybeing analytic on Sk and right continuous at

z = k. Thus ¥ is bounded in some "right neighborhood" of =z = k,

from which the desired result follows immediately. To complete the
proof of the induction lemma it remains only to establish the

validity of Lemma 5.3,

Prooi of Lemma 5.3. Making the assumptions given in the statement
of the induction lemma, we let m be a fixed -integer, 0 = m = k.

Then F({), ¢ ¢ 5, can be written
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‘ {l X, 1 (Grw)A(g,w)aw + { §+'m}<_'n_ 1 (Gr)A(L,w)aw

F(L)-

m g
= é‘ an__l(w)A(g,w-g)d.w + 1{1 Xn_l(w)A(g-,t-r—.g)dt-r.

The right continuity of P at =z =m follows from the continuity
of A, the boundedness of X . in right and left neighborhoods of
z=m and a right neigh‘bc;rhood of z=m - 1, and the theorem on
dominated convergence. For m <k <the proof that F is left
continuous at z =m+ 1 is similar. (If m = k these arguments
are no longer valid.in obtaining left continuity of F at m+ 1

llS

left conbinuous at k + 1, which is needed for the boundedness

since at this stage in the induction we do not have that Xn

conclusions about X
. n-1

We turn next to the analyticity arguments for F on Sm.
We shall argue that the function f defined by f£(¢) =

/ X, l(w)A(gj‘w..g)dw is snalytic on S , similar arguments being
m

m
valid for the term [ X l(x-r)A(g,w-g)dt-r in F above.
Sk

Fix & e8 . F¥or ¢ in a sufficiently small neighborhood
o} m . 110!

/}6 of QO we can write

A £
£ 0
f Xn—l(w)A(g,W-g)dw = [ Xn“l(w)A(g,w-g)dw
m m

¢
+ é Xn_l(w)k(g,‘w-g)dw = hl(g) + b, (£)

where the integramds are analytic in § on _/16’ for each fixed



ve A and analytic in ¥ on A, for each fixed { e M. A
straightférward application of Morera's theorem egtablishes the
analybicity of h, on ,/lg. Use of a theorem of Hartogs-Osgood

[H-9, p. 28] yields that h

, 1is of the form [ g(w,{)daw where g

o]
is analytic in _/!6 X /ig , Trom which the analyticity of h2 fol-
lows eagily.

Having confirmed the validity of the induction lemma, we
voint out that it follows directly from the analyticity properties of
X, (recall XO(Z) =E for ze8 U {kl}, k=0,1,... and
Xo(z‘) = 0 for Re (z) < 0) and the induction lemma that each X,
is analytic on each Sk.'

We next prove that the sequence {Xn} converges uniformly
on the region of interest. ILet £ be the positive integer (4 > T)
such that § =@ for kz £ and § .1 # @. (Recall the definition
of 8, '@_9/’ and @j’/_') Vg?lshall show that the sequence [Xn} con-

verges uniformly on R = [J Sk U {k}. We note that we trivially
k=0

have uniform coanvergence of {Xn} on S, U {0} to the function X

1
defined by X(z) = 0 for =z ¢ S_1 X(0) = E. Recall now the
definition of X, siven in (5.7) and the integration paths employed.
For any z e R let s(z) dencte the arclength of the polygonal
path described sbove (see (5.6)) which joing 0 to- z. Let M

ve & bownd for [A ()], [8,(0)], € ¢ Dy ama [A(L,W), (L¥) e

9—9_ X %/ Then for =z € R we have



1%, () - x (@) = 1] & (0)a (8) + x_(6-1)a, (€)

{0,21
+ [ X (Lrw)A(E,w)aw}ag]
[-1,0]
=] Ua O+ [a @) + [ afe,wm)][aw])]at]
[0,2] [-1,0]

< | (M + M+M(l+2(§))}|d§|
[0,z2] ~

< 3M(1+8)s (z) = ps(z).
Furthermore,

IXQ(Z) - Kl(z)l ] {:‘0 {Mlxl(g) - Xo(g)l + MIX}_(Q‘]‘) - XO(§"1)|

52]

2

i f O]M]Xl(§+1-r) - X (ga)] |awrf 3] ag] .

For ¢ e S, e have

(o]
R R e R XC

o o
s [ Mps(&+w)|aw| = [ Mps()]aw|

= Mps (&) (1+8).

For € e S, k21l we find that



hg

5-9) s (&) = s(8)

for any w lying on the path consisting of shraight line segments
joing -1 to -f{+ k and -{ + k to 0. Hence the above

estimate is also valid for these valuves of . It follows that

% (2) - X,(2)] 5 J (ips(g) + Mes(£) + Mps(£)(1+5))|al]
2 1 [0,2]

M(1+8)p [ s(g)|ag]
[0, 2]

2

A

L2l
2

Using this estimate and the asbove ideas it is easily shown that

[5(=)7

—37——

|%,(2) - %,(2)] 5 o

and in general

%, (2) - %, (=)] 56" Esé?)]

for % ¢ M, Hence for n>m we have

N s o s [s(z)7
(5'10) ]Xn(Z) - J{m(Z)] = jzillxj (Z) - Xj—l(z)l = J‘zi_;_-lp ‘_'_3’1_—

But for z e R we have that s(z) 5 £(1+2(8/2)) = £(1+d). Using
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this with (5.10) yields the uniform convergence of [Xn} on R.
Let us denote by X +¥his limit function on R y & 10 Since each

Xn is analybtic on S

Y and continuous. at =z = k, we have that X

also possesses these properties. Furthermore, for each n, Xﬁ(z)
is real valued vhenever z 1s real, from which it follows that X
is real amalytic on (0,1), (1,2), ete. Finally, since X 3X on
[-1,T] it is not difficu%t to argue that X 1ig the uvnique solution
to (5.5), which completes the proof of Theorem 5.2.

.One might reasonably expect a stronger type of analyt@city
(say pwa) than that obtained in Theorem 5.2 4o be true for systemsg
of the type (5.2) even with A # 0. The authors have tried un-
successfully so far to obtain these stronger results. Several ideas

using different integration paths in defining the successive

1
approximations (see the proof of Theorem 5.2) and stronger assumptions

on the coefficients have been tried. These lead Lo either a lack
of analybticity of the estimates in the desired regions, or else an
inability to cbtain uniform convergence of the estimates, The authors
were able to prove that the solution to (5.5) is amalytic on [0,1],
but could not adapt thede methods to prove anglyticity on [k,k+1]
for k > 0. The fact that one is using a zero initial matrix on
[-1,0) appears to be essential in cbtaining analyticity on [0,1].
(Note that in this case the system loges some of its lag behavior
on [0,l] and is much more like an integral egquation.)

The analyticity results obtained in this section can be

-used to study the zeros of the multipliers in the maxiwum principle
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for confrol problems involving functional differential equations
(see Remark 5.2 and [B-2, B-3, B-4, H-2]. The information thus ob-
tained can be especially useful when the maximum principle is also
a sufficient condition for optimality (see [H-2]). Another applica-

tion of these analyticity resulls is discussed in the next section.
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§6. Application of the Analyticity Results. We shall use

pwe as an abbreviation for piecewise continuous, and when ve say a

function £3 [a,b]_—aRP ig piecewise continuous we are taking the

standard definition. We shall say that £ is almost piecewise

continuous (apwe) if there is a finite number of points s; € [a,b],
i=0,1,...,N with the property that f|[a,B] is pwc For every
[0,8] C [a,b] for which s, £ [0,B], i =0,1,...,N.

Tn this section we shall demenstrate how some -of the work
with-subintegrals of multifunctions by Halkin and Hendricks [H-6]
and the related exighence theory for piecewisé cohbinuous optimél )
controls [H-D] can be applied in special cases of (2.3) to give
analogs -of Theorem 3.2 when the admisgible triples [@,u,tj are

required to be pwe (or apwe) (i.e., ® and u are pwe (or apwe)).

1 Lebesgue measure will be understood in all ‘of the inbegrals

appearing in this section., Suppose a multifunction H. [a,b] —aR?
. b

is given, Then we have defined [ H(%)dt and with [a,b] under-
a

‘stood 'we denote this by [ H. We define

* b
fa={f g(t)dt[g? [a,b] »RP is apwe and -g(t) e H(t), t e [a,Db]]}.
a

*
Lemma 6,1 (Halkin-Hendricks). [ H is convex.

We omit the proof. Let it suffice to zay that The proof of
Theorem 1 [H;6, pg. 365] may in effect be repeated. One need only take
fl and. £ to be agpwe in that proof and observe that '#l'x[a,b]§E -+

fe-XE ig apwe if E C [a,b] is the union of a finite number of intervals.

A set B C:Rq is said to be semianalytic (see Lojasiewlicz
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[L-7] or Halkin and Hendricks [H-6]) if for every point in RY

there exists a neighborhood V of that point such that

k

ENV=UfxeRYr,(x) =0 and g, .(x) >0 for j= 1,2,.0.,8)
i=1 - +d

where gij and. fi are real valued functions which are analytic

on V.

Iemma 6,2. (Halkin-Hendricks). Let H: [a,b] = R’ be a compact
multifunction and suppose the graph of H is bounded. ILet there
exist a finite sel of points 8s 5 i=20,1,...,8 gsuch that
a = N <. sy < e < SN % b and such that for each compact interval
[2,B] C [a,b] which contains none of tI_Ie points 85 the graph of
H restricted o [e,B] is semianalytic. Then [ H = I*H.
Again this is only a slight extension of the main result
(Theorem 2) in [H-6]. Indeed, the proof is clear upon examining the
proof of that theorem. In effect one observes that [ H O f*H D[ H)
where ([ H) denotes the set of extreme points of the convex set

. * -
J H, and that [ H is convex, and then the proof is immediste. To

show that [ *H %] H) one need only show that the function

g, [a,-“o] 8 is apwc, vhere g 1is defined by the condition that
g(t) is the lexicographic maximum (with respect to an a.rbitraryK
orthonormal basis for R' as in Olech [0-1D of H(%), t.e [a,b].
If the s;.L, i=0,1,...,,§ and an inberval [[:x,ﬁ], are chosen ag in
the hypo‘l::heses of Lemma 6.2, then Halkin and Hendricks [H-6] have

shown g|[,B] is pwe. Hence g [a,b] -»R° is apwc.
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Lemma 6.3 (Halkin)., Let B! [a,b] X RY =8P be a continuous func-

tion with the property that there i1s a finite set of points

1
that B|(a,s ) X RY B| (s b) x R%, and B| (s s.) x RY, 5= 1,2 N
AL > Bl oy > i.1%1 s 3

855 1= 0,1,...,N, such that as=s <s <...< sy &b end such
PE-JANN

are analytic. Define . [a,b] X Rq - Rp+q_ by the relation
B(b,0) = (u,B(t,u)).. Let Q. [a,b] R be a compact multifunction
‘satisfying the generic hyg')otheses of Lemma 6.2, Then the compact
multifunction % [a,b] » R & defined by Z(t) = B(t,0(t)),
t e [a,b] also satisfies the generic hypotheses of Lemma 6.2,

This result is a modification of a statement of Halkin's
[H-5]. Since Halkin omilted a proof and since the asbove lemma
differs somewhat from his result, we shall suggest a proof which is
straightforward. There will be no loss in generality if we assume
%hat the same points sabtisfy the hypothesis of Lemma 6.2 with
H: Ta,b] —RP replaced by 5-2‘.’ [2,b] » R, Tt will suffice for us
to show that if [a,B] C [a,D] and s, £ [e,8], i=0,1,...,N,
then 7//|‘[cc,|3] has a .sewianalytic graph. Let ¥ denote the graph

of #|[c,B] end let P = (to,uo,xo) be an arbitrary peint in

R % R* x B = RPFqH-. Then there is e neighborhood V of (to’uo)
. +1 . . .
in R X RT = RY and analytic functions fi’gij’ i=1,...,k,
J=1,...,2 on V, such that
k +1
ENV_ = UJ ) e XY e (t,u) = 0 and g, (t,0) >0,
° =1 1 - 3

for j=1,...,48)
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wvhere E is the graph of @|[a,B]. Let %R denote the set

gt L
{(t,u,x) e B

Rpi—q%—]:‘

[(t,u) e V }, then © is a neighborhood of P,

g+l

in . A generic point ('t,ﬁ,x) in R is also denoted

) 1
by (t,ul,...,uq,xl,‘..,,xp) and we write (B*,...,Bp) for the

g+l

function B. ILebt . Rp+q+l - R be defined by T(t,u,x) = (t,u).

Define functions -fi and Eij on B by the equations

. |
E, (6,0,%) = [, @(6,u,x))]0 + 2 (B, - X1
n=1

Eij (tﬁu}x) = gij-(ﬂ-(t}uﬁx))
for i=1,...,k, j=1,...,4. Then we have that there are real
numbers Q,p such that (@,p) D [o,B] and such that B is analybic

on  (G,B) X R*. One can now verify that

20 0 (GER xR = U (bu,x) e FFNE (6,0,5) =0 and.
i=1 -

'éir]:(ft,u,x) >0 for j=1,2,.0.,4}

where the functions ?i and gi,j are _a.naly‘tic on BN
((e,B) % qu). We can assume P _¢ (@,B) % ﬁp-fq since the contrary
case can be dealt with trivi‘alty. Thus & is semianslytic and
this proves the lemma.

We now twrn our attention to the control system (5.1). Let
_Q'Z'i(@,U) denote the collection of all points in o7 (2,U) which

are attainable from admissible triples ‘{p,u,t} where
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®: [-7,0] >3 and ug [0,t] = R" are apwc. TLet J%%(@,U) denote
the collection of all points in J&%(@,U) which are attainable from
admissible triples {9,u,t} vhere both ¢ and u are pwe, The

variation of parameters Fformula (2.7) when applied to the FDE (5.1)

gives
t o

(6.1)  x(t,9,u) = 9(0)¥(0,t) + [ n(u(a),)¥(a,t)do + [ o(a) & (a,t)da
o -T

where f(o,t) is defined by the equation

k
f(a,t) = Zﬁi(wei)y(mei,t)x[_e‘ 0] (o)
“5=1 12
QT
+ [ A(s,0-8)Y(s,t)d8s, -T=qas 0.
o

. 2
Let a function M. [-7,0] XK =R~ be defined by
, ! n
Ma9) = @28 (t)), -15as0, ek,
o m_mkn . !
and let ! [0,4] X R —R be the function defined by

9(u,0) = (w,h(w,0)¥(0,t)), 0=ast, uek.

2

= -
We remark that the representation theorems can easily be shown to
be velid under the gnalyticilty hypotheses placed on (5.1) in
section 5 (Theorems 5.1, 5.2).
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. . . P (13541 31 .2 L n . .
Define projections 1. R - R ard W, R —= XK by the equations
1 o Y q
3 , PR N & m--1n
‘ﬂ'l(a,x) = X, {u,x} ¢ R R.=
he cn
'H‘E((p,:f.) = X, @,x) € ¥ X R =1

In each of the following thrsc formnlas the first inbegral om the
right hand side of the equation is over the interval [C,v] and
the second integral is over the interval [-v,0]. Using (6.1} it

can be shown that

—~~
[5)Y
no

-

—
WEH

W
<

N

!
(o]
~—
o
~—
<

o
o

A
<

N
-

LS $(U(e),a}do] + T,f J Do, @ (o) Ydol,

* *
x. A A Y
& (9,0} = 0(0)¥(0,%) + m[f H{U(0),)da} + mLf Mle, (o) yde],

H(0,0) = 0(0)0(0,8) + (] HU(a),0)a0] + Tyl f Mo, ®(c))da],

woenever the left hand sides are nonempty.

Theorem 6.1. Ict the homogeneous part of (5.1) satisfy the hypotheses

v

- . . m .
of Theorew 5.2, and let the functions hW|R x [0,8]; + = 0 satisfy

the same conditions as the function B in lLemma 6.3. Let &I [-1,0]

-

n . m . s . .
R and Ul [0,o) =R be compact multifunctions satisfying the

%
Here [ depotes the subintegral in Halkin and Hendricks [H-61, i.e.,

if H. [s,b] SR is some mulbilunetion, thea [ H =

_b el
{f s(t)atig: [=2,b] R is puc and g{t) e H{%), for t e [a,b]}.
a
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generic hypotheses of Lemma 6.2. Then
* - -
%(@,U} =, (9,0), t=zo.

Progof, With vhe aid of Theoram 5.2 and a few rudimentary deducticns.

[ R

one can show that the function £ [0,t] X & —~R" " and the multi-

funetion Ul [0,%] —;Rm' gsatisfy the generic hypotheses of Lemms 6.3,
. 2

and similarly for the function W} [-7,0] x R® =R~ and the

mutvitunction @0 [-1,0] - R'. Thus Lemmas 6.5 and 5.2 and the

second formula in relabion (6.2) apply to give the derived conclusion.

Theorem 6.2, Let the homogeneous part of (5.1) satisfy the hypotheses

cf Theorem 5,1 and let the function h be analylbic on R X [o,w).
Let ®) [-7,0] =R and ©US [0,0) =R be compact multifunctions
such That the graph of & and the gravh of Ui [0, for Ttz 0O

L
-

are bounded and semianalytic. Then

I
<o

2£(0,0) = 2 (0,0),

With ths aid of Theorem 5.1 and the above ramarks the proof
of this theorem will be so similar tc Halkints proof [H-3] of the
corresponding result for nondelay systems that It can safely oe
aaitted.

Recalling Remark 3.5 one sees that Theorems 6.1 and 6.2 give

new existerce theorems for cerbtain optiwal control problems in tha



class of apwe admissible triples {o,u,t)}

admissible triples ({p,u,t} respectively.

and the class of pwe
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