
The Optimum Addition of Points
to Quadrature Formulae*

By T. N. L. Patterson

Abstract. Methods are developed for the addition of points in an optimum

manner to the Gauss, Lobatto and general quadrature formulae. A new set of

n-point formulae are derived of degree (3n — l)/2.

1. Introduction. In a recent book Kronrod [1] has shown how the n-point

Gaussian quadrature formulae may be augmented by a set of n + 1 abscissae to

yield quadrature formulae of degree 3w + 1 On even) or 'in + 2 On odd). The im-

portance of these formulae is that the accuracy of a numerical integration can be

considerably improved without wasting the integrand evaluations at the Gaussian

abscissae. Kronrod has given tables of these extended abscissae including their

associated weights for all Gaussian formulae up to 40 points.

Kronrod noted that as n is increased a large number of guarding digits have

to be carried to preserve the accuracy of the results and implied that about sixty-

five decimal digits were carried to produce the tables correct to sixteen decimal

places. It is, unfortunately, the large values of n which are likely to be of the most

interest.

In this paper it is shown how the additional abscissae may be derived in a nu-

merically stable fashion by an expansion of the equation for the abscissae in terms

of Legendre polynomials. A technique is also discussed to extend the n-point

Lobatto quadrature formulae by the addition of n — 1 abscissae to yield quad-

rature formulae of degree 3n — 3 On even) or 3n — 2 On odd). Finally a method is

discussed for the optimum addition of abscissae to general quadrature formulae

and a new set of n-point formulae is derived of degree (3n — l)/2.

2. The Extension of Quadrature Formulae. The basic reasoning behind the ex-

tension of quadrature formulae is as follows. Let an n-point formula be augmented

by the addition of p abscissae and let Gn+P(x) be the polynomial whose roots are

the n + p abscissae of the new quadrature formula. A general polynomial of degree

n + 2p — 1 can be expressed as

v-i

(1) Fn+2p-lix)   =   Qn+p-lix)  +  Gn+pix)   X) CkXh ,

where Qn+p-iOx) is a general polynomial of degree n + p — 1. This transformation

of Fn+2p_i(.r) is possible since the number of unknown coefficients on the left- and

right-hand sides of (1) is equal. Qn+p-iOx) can always be exactly integrated by a

in + p)-point formula and if Gn+P0x) is such that
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(2) /    Gn+Ax)xkdx = 0 ,       k = 0,1, • • -, p - 1,
J -1

then all of (1) can be exactly integrated by an On + p)-point quadrature formula.

Thus it should, in principle, be possible to derive formulae having n + p abscissae

and of degree n + 2p — 1.

2.1. The Extension of the Gauss Formulae. Kronrod [1] has considered the case

p = n + 1 for the n-point Gauss formula. This choice of p yields the number of

points required to subdivide the intervals spanned by the n original Gauss points.

The resulting quadrature formula should have degree 3w + 1. Since the formulae

are symmetrical in the range [—1, 1] odd functions are always integrated exactly

with value zero. Hence the effective degree can be increased to 3n + 2 when n is

odd. For this choice of p the polynomial Kn+iix) whose n + 1 roots are the addi-

tional abscissae must satisfy, corresponding to (2),

(3) /    Kn+iix)Pnix)xkdx = 0   for k = 0, 1, • • -, n ,
J -i

where Pn0x) is the Legendre polynomial. Kronrod determines Kn+iix) and hence

its zeros by substituting its polynomial expansion into (3) and solving the resulting

triangular system of equations to find the polynomial coefficients. It is at this

point that the numerical difficulties arise. When n is large, the polynomial coeffi-

cients of Kn+iix) differ greatly in magnitude, so the significant inaccuracies due to

both rounding and cancellation errors can appear in their calculation and when

they are used to evaluate Kn+iix).

These numerical difficulties can be circumvented by expanding Kn+iOx) in terms

of orthogonal polynomials, in particular the Legendre polynomials. Writing

r

(4) Kn+iOx) = J2 aiP2i-i-q0x) ,
¿«»i

where [x] denotes the integer part of x, q = n — 2[n/2] and r = [(n + 3)/2], then

(3) becomes

(5) ¿ ai f   PU-i-tix)P»ix)xkdx = 0 .
!=1 J -I

Since the points should be added symmetrically (that is, if x is an abscissa then

so is —x) Kn+iix) must be an odd or an even function and can be expressed in

the form (4). The notation insures that odd and even values of n are correctly

dealt with. Since xk can be expanded in terms of Legendre polynomials and vice

versa, condition (5) can also be expressed with xk replaced by Pkix). In addition,

since odd functions automatically satisfy (5) because of symmetry, then only odd

values of k in (5) need be considered (note that P2¿_i_,(x)P„(.r) is an odd function).

Thus (5) finally becomes

(6) ¿ ai I    P2i_i-qix)PnOx)P2k-iix)dx = 0 ,       k = 1, 2, • • -, r - 1.
i=i     J -i

Writing
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(7) Si,k= j   P2i-i-qix)Pn0x)P2k-iix)dx ,
J — i

then (6) can be expressed as

r

(8) Eo¡Sa = 0,        fc= 1,2, ---,r- 1
í=i

It can be shown [2] that

(9) Si,k = 0   if i + k < r .

Equation (8) then becomes

r

(10) £ aiSi,k = 0 ,
i=T—k

or expanding in full

_      Sr,i
ar—i ar ç,       ,

Or-1,1

Or,2 Or-1,2
ar_2 — — ar-¿        — or_i ¿        ,

Or-2,2 Or-2,2

(ID

Sr,T—l Or-l.r-1 Q2,r-1
fli — —aT „        — Hr-i   o ■ - -     a2 „        ,

Ol.r-l Oi,r_l Ol,r_l

which can be solved recursively. The coefficient ar can be arbitrarily set equal to

1 without affecting the calculation of the roots of Kn+iix). It can be shown that

s¡,k

&Vi,t {n-q + 2(i + k- l)l(n + 1? + 2(fe-» + l)Hn- 1 - g + 2(t - k)\\2(k + i - 1) - 1 - ,, - /, |
Sr-k.k \n - q + 2(» - k)\ {2(fc + t - 1) - j - n)|» + 1+î + 2(i - t)!i» - 1 - 4 + 2(» + fc))

Thus the quantities appearing in (11) can be recursively calculated using (12)

with i = r + 1 — A-, • • -, r in steps of one for each of k = 1, 2, • • •, r — 1. Even

for high values of n the a, do not vary excessively in magnitude and in calculating

the roots of Kn+iix) very few digits are lost through cancellation and round-off.

For example, using sixteen-decimal-digit arithmetic at most two digits were lost

for the case of n = 65.
The expansion in terms of Legendre polynomials can easily be summed by a

simple algorithm which is based on the recurrence properties of the polynomials.

To evaluate S = ^"=o a3P30x), a series of coefficients b3 is calculated from the

recurrence relation

(13) b3 = {(2j + l)xb,+i - (j + l)f>/+2 - aA/j

for j = n, n — 1,  ■ • -, 1 with bn+i = bn+2 = 0. Then S = a0 + b2 — bix.
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2.2. The Extension of Lobatto Formulae. The addition of n — 1 points (p = n — 1)

to the n-point Lobatto formula should allow the derivation of a quadrature formula

of degree 3n — 3 (n even) or 3n — 2 On odd). This choice of p gives sufficient

points to subdivide the intervals spanned by the original n abscissae.

Noting that the n Lobatto abscissae are the roots of the polynomial

ix2 — l)P,',_iGr) the polynomial Wn-iix) whose roots are the required additional

points must satisfy, corresponding to (2),

(14) /    Wn-iix)ix  - l)PAiix)xdx = 0 ,       k = 0, 1, ••'-i
n - 2.

Again, as discussed earlier, xk may be replaced by PkOx) and taking account of

symmetry and the recurrence relations between the Legendre polynomials and

their derivatives (14) may be reduced to,

r-l ri

Qr-v !L<9-J      Pii-l-Áx){Pnix)   - Pn-20x)}P2k-lix)dx = 0,

fc= 1,2, •••,r-2,

where

r-l

(16) Wn-iix) = T,9iPu-i-_ix),
¿=1

the expansion again being in terms of Legendre polynomials. As before q =

n - 2[n/2] and r = [On + 'A/2]. Defining

(17) Si.t = [   Pnix)P_i-i-Ax)P2k-iix)dx ,
J —i

(18) £>,-,, = /    Pn-2ix)P2i-i-A^Pu-Ax)dx ,

and

(19) Ui,k = Silk - £>,-,,,

then Eq. (15) reduces to

r-l

(20) T.(lA,,k = 0,        k = 1,2, ...,r- 2.
/-i

It can be shown that

(21) Ui,h = 0    ift + fc <r- 1.

Thus (20) becomes

r-l

(22) £    g,Ui,k = 0,        k= 1,2, ...,r-2,

or
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ffr-2 =   "i

0r-3  =

Ur-l.l

'-1 Ur-2.l

Ur-1.2
gr-2

Ur-

l'r

(23)

9l   =   -ffr-l
Ur-l. -02- U: ,r—2

Writing

(24)

it can be shown that

s7l,r_2 Ul.r-2

Dj.k \Sjtk/Di.k  —   a. j

Ui-i,k     Di-i,k \Si-i,k/Di-i:k — lj

Ui

(25)

and

5,,t _ |« + 1 - g + 2(» 1) | [n - 1 + ■? + 2(1- - i))| n - <? + 2(t + t - 1))(2(fc + i) - n - g\
D¡.t      \n + l-g + 2(» + fc- l))\n - g + 2{i - k)\\n + g + 2(k - i)){2{k + i - 1) - n + 1 - g)

(26)
(it - 47 + 2(» + h-2)\{n + q + 2(fc - Q) ¡n - 1 - y + 2(t - t - 1)) (2(t + Q¿>,.s _

öf-i.i      \n-g + 2(« - fc - l)){2(t + 0 - » - î) I» + 1 + g + 2(k - i - 1)) (n - 1 - q + 2(i + it - 1)|
1-9)

The quantities in (23) can then be recursively calculated using the relation

Ui,k U i-i,k     U\,k
(27)

Ur—l—k.k Ur-l—k,k   Ui—l,k

with i = r — k, ■ ■ -, r — 1 in steps of one for each of k = 1, 2, • • -, r — 2. The

calculations again show that the g i do not vary greatly in magidtude, and the

roots of Wn-iOx) can be calculated with little loss of accuracy due to cancellation.

Table 1

Davis-Rabinowitz aR for a — 1.05

Formula Number of points used

15 31 63

Gauss
Curtiss-Clenshaw
Tables M10-M13

.118

.254

.132

1.12 X 10-3
3.01 X 10-3
2.07 X 10-3

6.75 X 10"8
9.95 X 10-7
3.99 X 10-7

1.31 X 10-21
5.73 X 10"12
1.20 X lO"14

2.3. The Extension of General Quadrature Formulae. The methods described in

Sections 2.1 and 2.2 for the extension of the Gaussian and Lobatto formulae are
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specific in that they make use of a knowledge of the properties of the polynomial

whose zeros are the abscissae of the quadrature formula. In general no useful prop-

erties may be known and it is necessary to resort to an alternative technique.

The basic equation (2) can be written in the equivalent form,

/;(28) /    Gn+Ax)Pkix)dx = 0,       k = 0, 1, • • -, p - 1,•'-i

where PAX) is the Legendre polynomial. Gn+P(x) can however be expanded as

n+v

(29) Gn+Pix) = J^tiPiix)
i— 0

and substitution in (28) gives

n+p rl

(30) T.U]    Piix)PAx)dx = 0,       k = 0, 1, ---,p - 1.
¿=o     ■'-i

It is clear that this implies, due to the orthogonality properties of the Legendre

polynomials, that i, = 0 for i = 0, 1, • • -, p — 1. Thus (29) becomes

(31) Gn+Pix) = "2 tiPiix) .
i—P

Taking account of the symmetry of the abscissae, (31) may be rewritten as

[n/2]+l

(32) Gn+p(X)   =       ¿_i     CiP2i—2+p+q(x)  ,
¿=1

where again q = n — 2[n/2]. Since the original abscissae x¡,   j =  1,   • • -, n are

roots of Gn+P(x) and since C[„/2]+i may be arbitrarily taken to be unity, then

[n/2]

(33) ]T CiP2i-2+p+qix3) = -Pn+Pix3) ,       j = 1,2, •
L2J-

The symmetry of the abscissae about the origin has also been taken into account

in (33). The coefficients Ci, c2, • • -, C[n/2] may be found by solving the [n/2] simul-

taneous equations which comprise (33) and hence the p additional abscissae de-

termined as the zeros of G„+Pix) as given by (32).

When this analysis is applied to the Gauss and Lobatto formulae, it can be

shown that p must be at least n + 1 in the former case and n — 1 in the latter

case. The reason for this is that if ai, a2, ■ ■ ■, ap denote the abscissae added to the

n-point Gauss formula, then the weight associated with a3 in the resulting quad-

rature formula is (cf. [3])

where

>i Œ  /    Pnix)Sjix)dx ,
J — 1

SÁx) =    11    ix-a/)
t=l; iVj
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7 POINT   GAUSS   FORMULA

NEW 7 POINT  FORMULA

20
_I_
30 40 50

Figuee 1. Absolute relative error in integrating ji.i xKdx using the formula of Table MIO.

The corresponding result for the Gauss formula is also shown.

10'

id2!-

10'

10

lid5
111

>

Id6

10

Id8

15 POINT   GAUSS   FORMULA

J_I_L J_L
20   30   40   50   60   70   80   90   100 110    120

K

Figure 2. Absolute relative error in integrating f-¡ xKdx using the formula of Table Mil.

The corresponding result for the Gauss formula is also shown.
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Noting that S3ix) is of degree p — 1 and that Pnix) is orthogonal to all polynomials

of degree less than n then p must be greater than n otherwise o>3 would be zero.

A similar argument extends to the n-point Lobatto formula whose abscissae are the

roots of [Pn0x) — Pn-2ix)]. In this case p must exceed n — 2. The formulae given

in Sections 2.1 and 2.2 thus represent the minimum extensions of the Gauss and

Lobatto formulae. It may be noted that the extension of the integrating power of

the n-point Gauss formula to degree 3n + 1 by the addition of n + 1 points as

discussed by Kronrod [1] is not a property restricted to the Gauss formulae. Any

n-point formula irrespective of its original integrating degree will have its degree

increased to 3n + 1 by the addition of n + 1 points by the method discussed in

this section. An example of this will be given later.

3. Some Extended Quadrature Formulae. In this section some examples of the

applications of the techniques discussed earlier will be given. It has tacitly been

assumed in Section 2 that the roots of the polynomial which defines the additional

abscissae for any quadrature formula are all real. It has not in fact been possible

to derive general conditions under which this is assured and the procedure has

been to apply the techniques assuming that real roots exist but numerically check-

ing for the occurrence of imaginary roots. All calculations have been carried out

using not less than thirty decimal digits and any formulae quoted are correct to

all digits given. The usual checks of integration of powers were successfully carried

out.

70    80    90   100    110    120   130   140    150    160   170   180   190

K

Figure 3. Absolute relative error in integrating Jij xKdx using the formula of Table M12.

The corresponding result for the Gauss formula is also shown.
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500

Figure 4. Absolute relative error in integrating /Ij xKdx using the formula of Table M13.

The corresponding result for the Gauss formula is also shown.

3.1. Gauss and Lobatto Formulae. In a recent paper [3] a set of economical quad-

rature formulae have been proposed which are based on the 65-point Gauss and

65-point Lobatto formulae. These formulae can be further extended by the addi-

tion of points as described in Sections 2.1 and 2.2. The weights and abscissae of

the extended 65-point Gauss and 65-point Lobatto formulae, which are of respec-

tive degree 197 and 193 are given in Tables* Ml and M2. As further examples of

the extension of Lobatto formulae, Tables M3 to M9 give the extended Lobatto

formulae for n = 3 to 9.

3.2. General Formulae. Using the method of Section 2.3 a group of quadrature

formulae were derived in the following sequence. Beginning with the 3-point Gauss

formula, 4 abscissae were added to produce a 7-point formula of degree 11. Then

8 abscissae were added to this formula to produce a 15-point formula of degree 23.

The process was continued until a 127-point formula of degree 191 was obtained.

The effective degree of these n-point formulae is (3n — l)/2. The weights and

abscissae for these formulae are given in Tables MIO to M14. It may be noted

that the weights associated with all these formulae are positive so that they are

likely to converge in a satisfactory manner.

A detailed assessment was made of the integrating power of the first four of

the new formulae of degree (3n — l)/2. Figs. 1-4 show the results obtained when

they are applied to integrate powers of x which they would not be expected to

* The letter M preceding a table number refers to the microfiche card.
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integrate exactly. The absolute relative error (defined as \(I — It)/It\ where h is

the true value of the integral and I is the value obtained by the formula) is plotted

against K, the power of x being integrated. The results for the Gauss formulae

using the same number of points are also shown for comparison. The sharp dips

that appear on the curves are a result of a sign change in the relative error which

give the formulae superior integrating performance to the Gauss formulae for high

powers.

The performance of the new formulae has also been assessed by applying them

to a large number of badly behaved integrands such as those having near singulari-

ties, cusps or singularities in their derivatives. In general it was found that the

formulae had the important property of converging uniformly towards the true

values of the integrals and were more accurate than the Gauss formula using the

same number of points.

The quantities, aR, introduced by Davis and Rabinowitz [4] have also been

calculated. An upper bound to the error E of a quadrature formula can be ex-

pressed as

\E\  Ú au\\f\\

where ||/|| is the norm of the integrand over a region R of the complex plane con-

taining the range of integration. Table 1 shows the values of aR obtained for the

new formulae of Tables MIO to M13 together with the values of aR for the Gauss

and Curtiss-Clenshaw [5] formulae using the same number of points. The region R

has been taken as an ellipse with semimajor axis a and semiminor axis (a2 — l)"2

with a = 1.05. As a further comparison it may be noted that the Romberg formulae

using 5, 9, 17 and 33 points have aR respectively equal to 1.24, 0.422, 0.102, and

0.0155.
It should be emphasized again that the abscissae of these new formulae inter-

lace with one another so that no computational labor is lost in going from a par-

ticular formula to the one of next higher degree. In practice, the successive applica-

tion of the formulae would be used to monitor the convergence of the integral to

which they are applied so that they are well suited to automatic quadrature. It

thus appears that these new formula may form the basis of a very powerful tech-

nique for economically carrying out numerical integration.
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