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Abstract: A nanostructured thermoelectric device is designed by connecting a double-barrier 

resonant tunneling heterostructure to two electron reservoirs. Based on Landauer’s equation 

and Fermi-Dirac statistics, the exact solution of the heat flow is calculated. The maximum 

power output and efficiency are calculated through the optimizations of several key 

parameters. The optimum characteristic curve of the performance is obtained. The reasonably 

working region of the device is determined, the selection criteria of main parameters are 

provided, and the optimum configuration of the device is drawn. Results show that the 

heterojunction becomes a perfect energy filter by appropriately regulating the chemical 

potentials of electron reservoirs and optimally choosing the widths of barrier and quantum 

well and the nanostructured thermoelectric device with resonance tunneling may obtain 

simultaneously a large power output and a high efficiency.  
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1. Introduction  

Nanostructured thermoelectric devices, which offer many advantages for energy 

conversion with high efficiency, have attracted great interest [1, 2]. There are unexpected 

harvests of utilizing quantum effects at nanoscales. Paradigmatic examples are quantum dots 

[3, 4], heterojunctions [5], nanowires [6], and quantum point contacts [7]. By using a quantum 

dot embedded into a semiconductor nanowire, Josefsson et al. demonstrated that 

thermoelectric conversion efficiency can be close to the thermodynamic limit [8].  A further 

insight into the operation of the single quantum dot device included the Anderson impurity 

model and the master equation, which revealed that the efficiency is increased significantly by 

the cotunneling process [9]. Kuo et al. evaluated the properties of the electrical conductance, 

Seebeck coefficient, and power factor of quantum dot superlattice nanowire arrays by using 

the tight-binding Hamiltonian combined with the nonequilibrium Green’s function method 

[10]. Nakpathomkun et al. compared the performances of three low-dimensional 

thermoelectric systems, including zero-dimensional quantum dot with a Lorentzian 

transmission resonance, one-dimensional ballistic conductor, and two-dimensional energy 

barrier [11]. 

In recent years, thermoelectric devices with resonant tunneling structures have been 

extensively studied due to their extraordinary advantages [12-17]. The resonant tunneling 

effect makes it possible to realize the ballistic transport of electrons [18], and consequently, 

the performance of a device depends on the energy spectrum of the tunnel. Yamamoto et al. 

studied the Fe/MgO/Fe (001) magnetic tunneling junction by means of the linear-response 
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theory combined with the Landauer-Büttiker approach, where the interface resonant state 

causes the resonant tunneling and enhances the Seebeck coefficient [19]. A resonant tunneling 

state also occurs within the forbidden gap of the electron transmittance and creates a giant 

thermoelectric effect in p and n doped graphene superlattice heterostructures [20]. Castro et al. 

experimentally studied the optical and electronic transport properties of n-type 

AlSb/GaInAsSb double barrier quantum well resonant tunneling diodes, where a significant 

resonance current density is observed at room temperature [21]. 

The energy spectrum of the double barriers-quantum well structure depends on structure 

parameters [22-25]. One can optimize the performance of thermoelectric devices with double 

barrier quantum well by controlling the widths of barriers and well. However, by applying the 

Maxwell-Boltzmann approximation in the directions perpendicular to the direction of the 

current, most studies assumed that each electron removes an extra average kinetic energy 

Bk T  from a reservoir , where Bk  is the Boltzmann constant and T  is the temperature of a 

reservoir  [26, 27]. Under certain circumstances, this approximation may underestimate the 

magnitude of the heat flow. Therefore, for the purpose of revealing the limit of energy 

conversion, it is necessary to get a stricter analytical solution of the thermodynamic quantities. 

In the present study, we will evaluate the performance of the thermoelectric devices 

with 1AL Ga Asl l− / GaAs heterojunction by solving the exact solutions of heat fluxes. The 

rests of this paper are organized as follows: In Sec. 2, the schematic of the thermoelectric 

device is illustrated. The electronic current density is derived based on Landauer’s formula. 

Fermi-Dirac (FD) statistics is used to get the exact analytical solutions of the heat fluxes 
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flowing out of reservoirs. In Sec. 3, the transmission probability, net electron current density, 

power output, and efficiency are evaluated. The optimum selection criteria of main parameters 

are obtained by maximizing the power output and efficiency. The main conclusions are 

summarized in Sec. 4. 

 

2. Model description 

In semiconductor devices, electron transport is usually driven by the temperature and 

chemical potential differences. In our setup, two electronic reservoirs are connected by a 

double-barrier resonant tunneling heterostructure, as shown in Fig. 1 (a), which consists of a 

quantum well of GaAs embedded between two 1Al Ga Asl l−  barriers. The heterostructure 

allows the electron motion in the x  direction completely separated from the y  and z  

directions. Fig. 1(b) indicates the wave vectors of electrons in the momentum space, where 

xk , yk , and 
zk  are the wave vectors in the x , y , and z  directions. The electron 

distribution in a reservoir at temperature T  and chemical potential   is described by the 

Fermi-Dirac (FD) distribution function ( ) ( )
1

( ), , 1 exp [ ( ) ] / ( )Bf E k T E k k T
−

 = + −
 

  , where 

2 2 2 2( ) ( ) / 2x y zE k k k k m= + +  expresses the dispersion relation [28] between the wave vector 

k  and the kinetic energy of an electron,  is the reduced Planck constant, and m  is the 

effective mass of electrons. The hot reservoir is at temperature 
HT  and chemical potential 

H , while the cold reservoir is characterized by temperature 
CT  and chemical potential 

C .  

Only electrons having a kinetic energy 
2 ' 2 / 2x xE k m=  large enough in the x  

direction can pass over the barrier, where 
'

xk  is the corresponding wave vector. By assuming 

that the electron transport process is ballistic, the electronic current density flowing out of a 
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reservoir through the heterostructure is given by the Landauer equation [28, 29]  

 

              

Fig.1. (a) The schematic and band diagrams of the thermoelectric device with two electronic 

reservoirs connected by a double-barrier resonant tunneling heterostructure. b  and w  are, 

respectively, the widths of the layers of 1Al Ga Asl l−  and GaAs . biasV  is the bias voltage 

applied on the heterostructure. The barrier height  of 1Al Ga Asl l−  is much higher than the 

chemical potentials of two reservoirs. (b) The wave vectors for electrons in the momentum 

space.  

 

( )( ) ( )
0

2 , , ( )
2 2 2

yx z
x x

dkdk dk
J e f E k T v k k

  

− −
=     

  
,                     (1) 

where the factor 2 accounts for the degeneracy of electrons and ( ) /x xv k k m=  is the 

electron velocity in the x  direction. ( )xk  indicates the transmission probability of an 

electron tunneling through the heterostructure as a function of 
xk . It is calculated by the 

transfer matrix technique [30], which will be summarized in the appendix.  

By converting the momentum space into the energy space, Eq. (1) is written as 

( ) ( )
0

,
2

x x

e
J n T E dE 





=                         (2) 
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with 

 ( ) 2
, log 1 exp xB

B

Em k T
n T

k T






   −
= + −  

  
.                   (3) 

The net electronic current density netJ  is calculated by the difference between the electron 

current density flowing out of the hot reservoir and that leaving the cold reservoir, i.e., 

( ) ( ) ( )
0

, ,
2

net H H C C x x

e
J n T n T E dE  





= −   .                (4) 

According to the first law of thermodynamics, each electron leaving a hot reservoir 

carries away energy HE −  [31, 32], which is the difference between the total energy E  of 

the electron and the chemical potential H  of the hot reservoir. An electron from the cold 

reservoir travelling through the heterojunction will dump the energy that it removes from the 

cold reservoir plus the work done on it by the chemical potential bias into the hot reservoir, 

i.e., CE eV− − , where e  is the elementary charge and ( ) /C HV e = −  is the voltage of 

the device. By combining with Eq. (1), the net heat flux HQ  flowing out of the hot reservoir 

is given by [33] 

( ) ( ) ( )
0

2 30

2 2
2 1

22 3 2 3

2 ( ) , , , , ( )
2 2 2

( ) log[1 exp ]
2

( ) ( )
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−
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         (5) 

with 
1

L ( )
k

n n
k

t
t

k



=

=  being the polylogarithmic function. The net heat flux CQ  flowing out of 
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the cold reservoir can be derived by switching the subscripts “C ” and “ H ”. FD statistics is 

used in Eq. (5) to get the exact analytical solutions of heat fluxes. However, 

Maxwell-Boltzmann (MB) statistics has been widely adopted in literatures to calculate the 

energy carried by electrons in the y  and z  directions [34]. As a result, the energy removed 

by each electron that leaves a hot reservoir is replaced by 
x B HE k T+ −  , where 

xE  is the 

energy in the x  direction and 
HkT  is the average value of kinetic energy in the y  and z  

directions based on the MB approximation [35]. The electron leaving the cold reservoir may 

arrive at the hot reservoir and deposits energy x B CE k T eV+ − − . The net heat flux flowing 

out of the hot reservoir concerning the relevance of such approximation becomes 

   ( )
0

1
( ) ( )

2

MB

H x B H H H x B C H C x xQ = E k T n E k T n E dE


+ − − + − 
  .            (6) 

A similar equation can be derived for the net heat flux 
MB

CQ  flowing out of the cold reservoir 

by using MB statistics. It is worth noting that this approximation may not be accurate under 

certain circumstances. This problem will be further discussed below. Thus, one has to resort to 

FD statistics for obtaining the optimal performance of the thermoelectric converter. 

By assuming that electrons are transported through an ideal window within a narrow 

energy range E , the transmission probability is given by [36] 

 ( )
( )

( )
0 0

0 0

1 / 2 / 2

0 / 2; / 2

x

x

x x

E E E E E
E

E E E E E E


 



−   +
= 

 −  +
,          (7) 

where 0E  is the central energy of the window. Fig. 2 shows the curves of the net heat fluxes 

out of the hot reservoir varying with 0E  based on Eq. (5) (red dashed line) and Eq. (6) (black 

solid line), which provides a direct comparison between the exact analytical solution and the 

MB approximation. It is observed from Fig. 2 that when the window is at a range of low 
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energy ( 0E 1.87meV), the heat flows HQ  and MB

HQ  are obviously different. The method 
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Fig.2. The curves of the net heat fluxes out of the hot reservoir varying with 0E  based on the 

exact solution (red dashed line) and Maxwell-Boltzmann approximation (black solid line ), 

where 10KHT = , 1KCT =  , 0.1meVH = , 200meVC = , and  0.0002meVE = . These 

values are used unless otherwise mentioned specifically in the following discussion. The 

effective mass of electrons in the hot and cold reservoirs 0.1*

em = m  with em  being the free 

electron mass. 

 

based on the MB approximation underestimates the magnitude of the heat flow. The difference 

between HQ  and MB

HQ  vanishes when 0E  is large enough. The reason is that less electrons 

occupy the high energy levels in the reservoirs. Therefore, both the heat and electron flows 

approach zero as 0E  is very large. Although the MB approximation greatly reduces the 

complexity of calculation, the result of the heat flow may deviate from the accurate value, 

especial for the case that 0E  is not large enough. In the following discussion, the heat flow 
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calculated by Eq. (5) will be adopted to evaluate the performance of the nanodevice. 

 

3. Results and discussion  

For the heterostructure shown in Fig. 1(a), the transfer matrix technique (Appendix A) is 

used to calculate the transmission probability ( )xE . Fig. 3(a) gives the curves of the 

transmission probability ( )xE  as a function of xE  at biasV 0V=  for different widths of 

barrier and well. It is clearly shown that the half peak width of the first resonance peak 

depends on the width b  of the barriers. When 3.5nmw =  and b is changed from 3.5nm  

(black dash-dotted line) to 4.0nm (green dashed line), the first resonance peak becomes 

narrower as its half peak width decreases. On the other hand, the resonant energy resE  

corresponding to the maximum transmission probability 
max  of the first resonance peak is 

mainly determined by the width of the well w . When 4.0nmb =  and w  decreases from 

3.5nm  (green dashed line) to 3.0nm  (red solid line), the first resonance peak moves to the 

right with higher energy level. Note that the half peak width of the first resonance peak 

increases slightly with the decrease of w  as well, as indicated by the inserted figure in Fig.3. 

(a).  

In order to reveal the influences of the bias voltage, the maximum transmission 

probability 
max  of the first resonance peak and its corresponding resonant energy 

resE  

varying with 
biasV  are presented in Fig.3. (b), where 4.0nmb =  and 3.5nmw = . It is 

shown that 
max  monotonically decreases with the increase of 

biasV  (black solid line), while 

resE  is a monotonically increasing function of 
biasV . 



 10 

0 100 200 300 400 500 600

-20

-15

-10

-5

0

200 220 240 260
-10

-8

-6

-4

-2

0

ln()

Ex(meV)

 b=4.0 nm, w=3.5 nm

 b=4.0 nm, w=3.0 nm
ln()

Ex(meV)

 b=3.5 nm, w=3.5 nm

 b=4.0 nm, w=3.5 nm

 b=4.0 nm, w=3.0 nm

(a)

0 0.75 1.5 2.25 3

0.9987

0.999

0.9993

0.9996

0.9999

(Ex)

Vbias(mV)

(b)

0.2066

0.207

0.2075

0.2079

Eres

 

Fig.3. (a) The curves of the transmission probability ( )xE  varying with xE  at 

biasV 0mV=  for different widths of barrier and well as labelled. The inserted figure shows the 

curves of ( )xE  varying with xE  for 4.0nmb =  and 3.0nmw =  and 3.5nm , where the 

range of xE  is from 180meVxE =  to 280meVxE = . For the heterostructure, we choose 

600meV= and 0.33l = . (b) The curves of the maximum transmission probability 
max  of 

the first resonance peak and its corresponding resonant energy 
resE  varying with 

biasV  for 

4.0nmb =  and 3.5nmw = . The left vertical axis shows the value for 
max , while the 

corresponding scales of 
resE  is on the right vertical axis.   

 

In the operating regime of the thermoelectric device, the thermodynamic affinity due to 

the temperature difference of reservoirs drives the electronic flow against the bias voltage 

biasV . Fig.4 shows the electronic current netJ  as a function of biasV , where the chemical 

potential of the cold reservoir 200meVC = . The electronic flow is mainly determined by 

the first resonance peak, because the second resonance peak appears at the energy level much 

larger than 
resE . Note that 

resE  increases with biasV , less electrons exists in higher energy 

levels, leading to the reduction of netJ .  netJ  at 3.5nmb w= = (black dash-dotted line) is 
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larger than netJ  at 4.0nmb =  and 3.5nmw=  (green solid line). This phenomenon can be 

explained by two aspects. The half peak width of the first resonance of ( )xE  at 

3.5 nmb w= =  is larger than that of ( )xE  at 4.0nmb =  and 3.5 nmw=  [Fig. 4(a)]. On 

the other hand, the first resonance peak moves to higher energy levels as b  changes from 

3.5 nmb =  to  4.0nmb = , as indicated by the inserted figure in Fig. 4. In the case of 

4.0nmb =  and 3.0 nmw= , netJ  (red solid line) is quite small compared to the other two 

cases in Fig. 4, because the transmission probability ( )xE  shifts to energy levels with fewer 

electron occupation numbers. In general, both the shape and the energy range of the first 

resonance peak influence the electronic flow.  
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Fig.4. The net electron current density netJ  varying with biasV  for different widths of barrier 

and well as labelled, where 200meVC = . The inserted figure shows the curves of ( )xE  

varying with xE  for 3.5nmb = , 3.5nmw =  (black dash line) and  4.0nmb = , 3.5nmw =  

(green solid line),  where xE  is in the range from 206.3meVxE =  to 206.7meVxE = .  

 

We consider the heat leak from the hot reservoir to the cold one by the equation of 
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phonon radiative transfer [37] 

 
4 4( )L P H CQ T T=  − , (8) 

where 6 -2 -41.0 10 W cm KP

− =   is the coefficient of the heat leak analogous to the 

Stefan–Boltzmann constant of phonon. The power output P  and efficiency   of the 

thermoelectric device are, respectively, expressed as 

 
net biasP J V=  (9) 

and 

 / ( )H LP Q Q= + . (10)  

Fig. 5 gives the three-dimensional graphs of P  and   varying with the chemical 

potential 
C  of the cold reservoir and the chemical potential difference 

biaseVD = . For a 

given value of 
C , P  first increases as D  increases. After P  reaches a maximum value, 

the electronic flow netJ is dramatically reduced [Fig. 4] as D  continues to increase, 

resulting in the decrease of P . Similarly, P  is not a monotonic function of 
C . It is 

observed from Fig. 5 (a) that when 
C  and D  are, respectively, equal to their respective 

optimal values ( ) 206.5meVC P=  and ( ) 0.60meVPD = , the power output attains its local 

maximum. Fig.5 shows that the local maximum power output and efficiency are two different 

states. When  
C  and D  are, respectively, equal to their respective optimal values 

( ) 206.2meVC  =  and ( ) 0.67 meVD = , the efficiency attains its local maximum. Fig. 5 

also shows that ( ) ( )C C P   and ( ) ( )P D  D .  
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Fig.5. The three-dimensional graphs of (a) P  and (b)   varying with the chemical potential 

C  of the cold reservoir and the chemical potential difference 
biaseVD = , where  

3.0 nmb = , and 3.5nmw= .  

    

For the given values of 
C  and D , one can also plot the three-dimensional graphs of 

P  and   varying with the barrier width b and well width w，as indicated by Figs. 6(a) and 

(b), respectively. It is seen from Fig. 6 that both P  and   are not monotonical functions of 

b and w , and the local maximum power output and efficiency are also two different states. 

When b and w  are, respectively, equal to their respective optimal values 2.752nmPb =  

and 3.491nmPw = , the power output attains its local maximum. When b and w  are, 

respectively, equal to their respective optimal values b  and w , the efficiency attains its 

local maximum. It can be seen without difficulty that 
Pb b   and Pw w . The line 

connected by star in Fig. 6 (a) represents the stopping energy level, where the current driven 

by the temperature-gradient TD  in the forward direction is compensated accurately by the 

bias driven current flowing in the opposite direction. The white region in the upper left corner 

of Fig. 6 (a) is not the operation regime of the heat engine, where the electron flows from the 
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cold reservoir to the hot reservoir along the chemical potential difference D . In addition, in 

the working region of the heat engine, the power output increases initially and then decreases 

with the increase of barriers width b and well width w , respectively. It should be noted that 

the power reduces and vanishes to zero with the decrease of well width and the increase of 

barrier width (lower right part of Fig.6 (a)). It can be explained by the fact that the decrease of 

well width and the increase of the barrier width also contribute to the resonance energy level 

res
E  to shift to higher energy levels (along the direction of green arrow), where less electrons 

can be transmitted from the occupied state of the hot reservoir to the cold reservoir. In general, 

the heat engine cannot work at the maximum output power and maximum efficiency 

simultaneously. Thus, an optimally working region is required to trade off the efficiency and 

power. Fig. 6 (b) shows that the efficiency increases to its maximum and then decreases with 

respect to b  and w , and the local maximum efficiency is obtained at 

3.960 nmb

= , 3.498nmw


= .  

When four parameters 
C , D , b , and w  are optimized simultaneously, one can 

obtain the characteristic curve of the efficiency versus power output, as shown in Fig.7, where 

P  is the efficiency at the maximum power output maxP  and  P  is the power output at the 

maximum efficiency max . maxP  and max  give, respectively, the upper bounds of the power 

output and efficiency. For a nanostructured thermoelectric device, one always wants to obtain 

a high efficiency and a large power output as far as possible. Thus, according to Fig.7, the 

optimal regions of the power output and efficiency should be 
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Fig.6. The (a) power output and (b) efficiency as functions of the barrier width b and well 

width w , where 206.9meVC=  and 0.6meVD = .   

 

maxP P P                                    (11) 

and  

 maxP    ，                               (12) 

which correspond to the green curve with negative slope shown in Fig.7. 
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Fig.7. The optimum characteristic curve of the efficiency   versus power output P . 

 

According to Eqs. (11) and (12), one can directly determine the optimum regions of 
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other parameters as 

 , ,c c c P     ,  (13) 

 ( ) ( )P D  D  D  (14)                         

  Pb b b  , (15)             

and 

 Pw w w  , (16)    

where ,c P , ( )D , b , and w are the upper bounds of optimized parameters, and  

,c  , ( )PD , Pb , and Pw  are the lower bounds of optimized parameters. The maximum 

power output and efficiency and the boundary values of optimized parameters are listed in 

Table 1. Eqs. (11)-(16) and Table 1 may provide the optimal selection criteria for the main 

parameters of nanostructured thermoelectric devices.  

              

Table 1 The optimal values of some parameters at the maximum power and efficiency 

max
P  

2(W/ cm )  

P
b

(nm)  

P
w  

(nm)  

,C P

(meV)  

( )PD

(meV)  

max
  b


 

(nm)  

w

  

(nm)

        

,C 

(meV)  

( )D

(meV)  

0.181  2.752  3.493  206.8 0.627  0.402  3.836  3.501 206.6  0.705  

 

4. Conclusions 

A one-dimensional double-barrier resonant tunneling heterojunction has been adopted to 

study the thermoelectric performance of a nanostructured device. By comparing the exact 

analytical solution with the solution obtained from the MB approximation, it is found that the 
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method based on the MB approximation underestimates the magnitude of the heat flow. The 

transfer matrix method further shows that the electron and heat flows rely on the structure 

parameters of the heterojunction. The power output density and efficiency have been locally 

maximized by optimizing the chemical potential of the cold reservoir and the bias voltage for 

the given barrier and well widths or optimizing the barrier and well widths for the given 

chemical potential of the cold reservoir and the bias voltage. The optimum characteristic curve 

is obtained and the maximum power output density and efficiency are calculated. The 

optimally working regions of the thermoelectric device are determined, and the selection 

criteria of main parameters are supplied. These results obtained here may promote the 

experiment development of the nanostructured thermoelectric devices with resonance 

tunneling. 
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Appendix A. The transfer matrix technique for the transmission probability 

The resonant tunneling in the double-barrier heterostructure is a quantum effect in which 

the electron transmission probability  ( )xE   is sharply peaked at certain energies. ( )xE  

depends only on the energy of an electron in the transport direction and is restricted to 

0 ( ) 1xE  . The chemical potential difference between the hot and cold reservoirs results in 

the asymmetric distribution of the potential, which increases the complexity for determining 

( )xE . By assuming that the voltage bias increases linearly from 0  at 0x =  to biasV  at 

2x b w= + , the transfer matrix method is applied to calculate ( )xE . The solid line in the 

band diagram of Fig.1 (a) represents the potential profile ( )U x  used in the calculation, which 

is given by 

 

,0

( ) ,

,

x x b

U x x b x w b

x w b x

D
+   


D

=   +

D

+ +    

, (A1) 

where   is the total length of the double-barrier resonant tunneling heterostructure.  

By solving the Schrodinger equation, the wave function outside the heterojunction has 

the following form [38] 

 
0 0

0 0( ) ( )

, 0
( )

,

ik x ik x

ik x ik x

Ae Be x
x

Ce De x
 




−

− − − −

 + 
= 

+ 
, (A2) 

where 
*

0 2 /GaAs xk m E=  is the wave vector of free electrons in the hot reservoir, 

*2 ( ) /GaAs x biask m E +eV=  is the counterpart of free electrons in the cold reservoir, *

GaAsm  is 

the effective mass of electrons in reservoirs, and A  and B  are the coefficients of the 
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forward traveling wave and reflection wave for electrons in the left side of the heterojunction, 

respectively. Similarly, C  and D  are the coefficients of the wave functions for electrons in 

the right hand side of the junction. At 0x =  and x = , the wave function ( )x  and its 

derivative ( )x   satisfy the continuity conditions. In this way, the amplitudes in Eq. (A2) 

can be rewritten in a matrix form 

 
C A

p
D B

   
=   

   
, (A3) 

where the matrix p  is given by 

 
0 0

1 11 /1
(0, )

1 /2

i k
p M

ik iki k


−   
=   

−   
, (A4) 

with (0, )M   being the transfer matrix connecting the boundaries 0x =  and x = . For a 

potential profile of arbitrary shape, it is convenient to compute (0, )M   by dividing the 

heterojunction into N  pieces with identical thickness ( )2 /b w N+ . For N → , the 

potential in each piece can be regarded as a constant. As a result, (0, )M   can be 

decomposed as [39]  

 
1 2 1(0, ) N NM M M M M −=  .    (A5) 

If ( )0 2 /b w N b +   or ( )2 /w b b w N +  +  , piece   is located in the region of 

barriers with transfer matrix  

 
cosh ( / )sinh

( / )sinh cosh

b b
M

b b

    



    

   

   

 
=  
 

, (A6) 

where the wave vector ( ) 
x 1-x

*

Al Ga As2 [ 2 / ] /x= m E U b w N + +  and   is the ratio of 

the effective mass of electron in piece   to that of electron in piece 1+ . For 

( )2 /b b w N b w +  + , piece   is located in the region of the well with transfer matrix  
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1cos sin

sin cos

k w k k w
M

k k w k w

− 
=  

− 

    


    

， (A7) 

where ( ) *

GaAs2 [ 2 / ] /x= m E U b w N + + . 

By combining Eqs. (A1)-(A8), the transmission probability ( )xE  is given by 

 

2

0

2 2 2

11 0 12 0 12 210

4 /
( )

( / ) ( / )
x

C k k k
E

S k S k k S S kA k
= =

+ + −
 .  (A8) 
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